JP3591599B2 - Method for producing resin composition for composite material - Google Patents

Method for producing resin composition for composite material Download PDF

Info

Publication number
JP3591599B2
JP3591599B2 JP25607594A JP25607594A JP3591599B2 JP 3591599 B2 JP3591599 B2 JP 3591599B2 JP 25607594 A JP25607594 A JP 25607594A JP 25607594 A JP25607594 A JP 25607594A JP 3591599 B2 JP3591599 B2 JP 3591599B2
Authority
JP
Japan
Prior art keywords
weight
parts
resin
component
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25607594A
Other languages
Japanese (ja)
Other versions
JPH0892350A (en
Inventor
昭夫 大島
欣弘 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP25607594A priority Critical patent/JP3591599B2/en
Publication of JPH0892350A publication Critical patent/JPH0892350A/en
Application granted granted Critical
Publication of JP3591599B2 publication Critical patent/JP3591599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は複合材料用樹脂組成物の製造方法に関する。
【0002】
【従来の技術】
炭素繊維、ガラス繊維等を補強材とする複合材料はゴルフシャフト、釣竿、テニスラケット等のスポーツ・レジャー用品、航空機関係、印刷インキ用ロール、圧力容器等の工業材料および医療関係等に使用されている。
【0003】
さらに、近年においては、かかる複合材料が工業材料部品に使用されることが多くなってきた。
【0004】
繊維強化プラスチック(FRP)、炭素繊維強化プラスチック(CFRP)などの複合材料は炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維等の強化繊維基材にマトリックス樹脂を含浸してプリプレグとなし、これらを積層して適当な温度で硬化させることにより得られる。
【0005】
CFRPのマトリックス樹脂としては炭素繊維に対する接着性に優れるエポキシ樹脂が採用されている。しかしながら従来より主に用いられているビスフェノールA型エポキシ樹脂は耐熱性に劣り、さらにコンポジット物性、特に層間剪断強度(ILSS)が低いという欠点を有している。一方、多官能のエポキシ樹脂は耐熱性が高いが樹脂組成物を製造する場合、その反応性が高いため、得られた樹脂組成物の品質および配合時の安全性に問題がある。更に、多官能エポキシ樹脂が主成分の場合には強化繊維に含浸して得られる中間材はタックが強く、取扱いが悪く、しかも、硬化剤のジアミノジフェニルスルホンが樹脂に溶解しているため貯蔵安定性が劣る。また、中間材を成形する際に、加熱時の粘度が著しく低いため、樹脂が漏洩したり、流動したりするため、得られる成形体の精度に問題を生ずる。成形時の粘度をコントロールするため、ジアミノジフェニルスルホンとともに、ジシアンジアミドおよびその促進剤を添加する方法(特開昭59−207920)がみられるが、得られた硬化物の耐湿性が低下する。
【0006】
【発明が解決しようとする課題】
本発明はこれらの欠点を解決するため、樹脂組成物の製造が安全で、樹脂組成物を強化繊維に含浸して得られる中間材の貯蔵安定性が優れ、さらにこれらを成形する場合には成形性が優れ、得られた成形物の耐湿性が優れたものを提供するものである。
【0007】
【課題を解決するための手段】
すなわち、本発明は、以下の樹脂成分(A)〜(D)の樹脂温度が90℃以下になってから硬化剤成分(E)を添加し、該硬化剤成分(E)を混合する際に真空脱気することを特徴とする複合材料用樹脂組成物の製造方法に関する。
(A)ビスフェノールF型エポキシ樹脂 5〜15重量部
(B)フェノールノボラック型エポキシ樹脂 50〜70重量部
(C)3官能グリシジルアミン型エポキシ樹脂 7〜25重量部
(D)フェノキシ樹脂 5〜15重量部および
(E)4,4′−ジアミノジフェニルスルホンを前記(A)〜(D)の総量100重量部に対して25〜45重量部。
【0008】
以下、本発明の内容をより詳細に説明する。
【0009】
本発明において用いられる成分(A)の配合割合は5〜15重量部であることが好ましく、より好ましくは7〜12重量部である。成分(A)が5重量部より少ないと複合材料用樹脂組成物の粘度が高くなりすぎて炭素繊維等の繊維束への含浸が困難となる。一方、15重量部より多くなると、複合材料としての耐熱性が不十分となる。
【0010】
成分(B)の配合割合は50〜70重量部であることが好ましく、より好ましくは55〜65重量部である。成分(B)が50重量部より少ないと複合材料用樹脂組成物の粘度が低くなりすぎて、成形が困難となる。一方、70重量部より多くなると、複合材料としての耐熱性が不十分となる。
【0011】
成分(C)の配合割合は7〜25重量部であることが好ましく、より好ましくは15〜20重量部である。成分(C)が17重量部より少ないと複合材料としての耐熱性が不十分であり、一方、25重量部より多くなると、複合材料用樹脂組成物の粘度が低くなりすぎて成形性が困難となる。
【0012】
成分(D)の配合割合は5〜15重量部であることが好ましく、より好ましくは7〜12重量部である。成分(D)が5重量部より少ないと複合材料としての靭性が不十分であり、一方、15重量部より多くなると、複合材料用樹脂組成物の粘度が高くなりすぎて炭素繊維等の繊維束への含浸が困難となり、さらに複合材料としての耐熱性が不十分となる。
【0013】
本発明において硬化剤として用いられる成分(E)の配合割合は成分(A)〜成分(D)の総重量100重量部に対して、25〜45重量部であることが好ましく、より好ましくは30〜40重量部である。成分(E)が25重量部より少ないと複合材料としての耐熱性が不十分であり、一方、45重量部より多くなると、炭素繊維等の繊維束への含浸が困難となる。
【0014】
本発明における成分(A)のビスフェノールF型エポキシ樹脂の例としてはエポトートYDF−170(東都化成社製)、エピコート807(油化シェルエポキシ社製)、エピクロン830(大日本インキ化学工業社製)等が挙げられる。成分(B)のフェノールノボラック型エポキシ樹脂の例としてはエピコート152,エピコート154(以上油化シェルエポキシ社製)、ダウエポキシDEN431,ダウエポキシDEN438,ダウエポキシDEN439(以上ダウケミカル社製)、エポトートYDPN638、エポトートYDPN601、エポトートYDPN602(以上東都化成社製)、アラルダイトEPN1138(チバ−ガイギー社製)等が挙げられる。
【0015】
成分(C)の3官能グリシジルアミン型エポキシ樹脂の例としてはスミエポキシELM100、スミエポキシELM120(以上住友化学工業社製)等がある。
【0016】
成分(D)のフェノキシ樹脂の例としてはフェノトートYP−50(東都化成社製)、スミエポキシESP−50(住友化学工業社製)、エピコートOL−53(油化シェルエポキシ社製)等が挙げられる。
【0017】
成分(E)のジアミノジフェニルスルホンとしては4,4′−ジアミノジフェニルスルホンおよび3,3′−ジアミノジフェニルスルホンのいずれも使用できる。これらは室温で粉末状であり、粒径の上限が20μm以下、好ましくは17μm以下、より好ましくは12μm以下のものでかつ粒径の下限が0.01μm以上、好ましくは0.1μm以上、より好ましくは1μm以上の粉末粒子が全体の粉末粒子に占める割合が65重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上の粒径分布であると均一な硬化物が得られ好ましい。
本発明の複合材料用樹脂組成物においては、その性能を損なわない範囲で他のエポキシ樹脂、靭性付与樹脂、フィラー、着色剤等を配合することができる。
【0018】
本発明の樹脂組成物に所望に応じて含有することのできるその他のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、o−クレゾールノボラック型エポキシ樹脂、環式脂肪族エポキシ樹脂、トリグリシジルメタン型エポキシ樹脂、テトラグリシジルアミン型エポキシ樹脂、ハロゲン化ビスフェノールA型エポキシ樹脂などを挙げることができる。
【0019】
本発明の樹脂組成物に所望に応じて含有することのできる靭性付与樹脂としては反応性エラストマー、ハイカーCTBN変性エポキシ樹脂、ウレタン変性エポキシ樹脂、ニトリルゴム添加エポキシ樹脂、架橋アクリルゴム微粒子添加エポキシ樹脂、シリコーン変性エポキシ樹脂、熱可塑性エラストマー添加エポキシ樹脂などを挙げることができる。
【0020】
本発明の樹脂組成物に所望に応じて含有することのできるフィラーとしてはマイカ、アルミナ、タルク、微粉状シリカ、亜鉛末、アルミニウム粉などが挙げられる。
【0021】
本発明の樹脂組成物に所望に応じて含有することのできる着色剤としては有機顔料ではアゾ顔料、フタロシアニン系顔料、キナクリドン系顔料、アンスラキノン系顔料など、無機顔料では二硫化チタン、硫化クロム、コバルトブルー、硫化鉄などが挙げられる。
【0022】
また、成分(E)の硬化剤の他、必要に応じ他の硬化剤、硬化促進剤を配合することができる。成分(E)以外に配合できる硬化剤としてジシアンジアミド(DICY)など、成分(E)以外に配合できる硬化促進剤として三フッ化ほう素のモノメチルアミン錯体などのBF 錯体、3−(3,4ジクロロフェニル)−1,1ジメチルウレア(DCMU)、3−(4クロロフェニル)−1,1ジメチルウレアなどが挙げられる。
【0023】
本発明による樹脂組成物の製造方法は特に制限はないが、例えば、樹脂成分(A)、(B)および(D)を180〜210℃で加熱混合後、冷却あるいは自然放熱によって100℃以下に温度が低下した後、成分(C)を添加し、その後、樹脂温度が90℃以下になってから硬化剤成分(E)を添加する方法が好ましく用いられる。また、該硬化剤成分(E)を混合する場合は、成形後のボイドの発生を少なくする目的で撹拌しながら真空脱気する方法が好ましく採用される。この方法によれば、成分(E)は樹脂組成中に均一に分散した系となり、貯蔵安定性に優れる。なお、樹脂温度が90℃より高い温度で硬化剤成分(E)を添加、混合すると硬化剤成分(E)の一部が樹脂に溶解し、樹脂と硬化剤が反応しやすくなり、該樹脂組成物に強化繊維を含浸させてできる複合材料用中間材の貯蔵安定性が著しく損なわれる。
【0024】
成分(B)の代わりに4官能のテトラグリシジルアミン型エポキシ樹脂を主成分として135℃でジフェニルジアミノスルホンを溶解すると混合時の急激な反応のため安全性に問題があり、成形時のボイドの除去も十分でなく、さらに他の樹脂と混合した場合は成形物の耐湿性や樹脂組成物の貯蔵安定性が低下するので好ましくない。
【0025】
本発明においては前記成分(A)、(B)、(C)、(D)および(E)を含有する樹脂組成物を強化繊維に含浸させ複合材料用中間材(プリプレグ)とする。
【0026】
強化繊維としては特に限定されず複合材料の強化繊維として用いられる全ての繊維を用いることができる。例えば炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、炭化珪素繊維および表面処理した有機繊維等でありかつ、これらのうちから選ばれる2種類以上をハイブリッド構造とした繊維を用いることができるが、特に、炭素繊維を強化繊維として用いた場合、軽量で高剛性の成形物が得られるため好ましく用いられる。
【0027】
強化繊維プリプレグの形態は特に限定されず、目的に応じて適宜選択することができる。例えば、一方向材、織物、組み紐状組織り、不織布等が挙げられる。本発明における強化繊維に樹脂組成物を含浸させる方法としては特に制限はないが樹脂組成物を通常60〜90℃に加温して強化繊維に含浸させるいわゆるホットメルト法が好ましく採用される。
【0028】
このようにして製造された中間材の樹脂組成物の含量は強化繊維と樹脂組成物の総量に対して通常25〜50重量%、好ましくは30〜45重量%である。
【0029】
中間材は最終的に複合材料に成形される。例えば中間材を積層して、オートクレーブ中または加圧プレス等により通常150〜200℃で30分〜3時間、加熱硬化させることにより複合材料とすることができる。得られた複合材料は硬化剤成分(E)が分散系であるにもかかわらず、品質が安定で、しかも均一でボイドの少ないものが得られる。
【0030】
これらの用途の一例として印刷インキ用ロール、自転車パイプ、圧力容器等が挙げられる。中でも印刷インキ用のCFRP製ゴム被覆ロールには本発明の複合材料が適している。すなわち、近年、従来のスチール製ロールと比べ、軽量で作業性が良好であるため、CFRP製ゴム被覆ロールがスチール製ロールの代替として急速に利用されつつある。従来の250°F硬化エポキシ樹脂系のCFRP製ロールでは未加硫ゴムをCFRP管に巻き付け、150℃のスチーム加熱下に加硫する際、熱の影響のためロールに変形を生じたり、高温の水分の影響のため、一部に腫れやはがれを生じたりする。それに対し、本発明により得られたCFRPロールでは150℃における耐熱性はもちろんのこと、スチームの影響も少ないため、寸法精度の優れたCFRP製印刷インキ用のゴム被覆ロールが得られる。
【0031】
【発明の効果】
本発明の複合材料用樹脂組成物は従来のプリプレグ用エポキシ樹脂では達成し得なかった製造時の混合安全性のため、真空脱気により樹脂中の気泡を十分に抜くことができる。また、強化繊維に該樹脂組成物を含浸して得られる複合材料中間材は貯蔵安全性がよく、パイプ等の成形性に優れ、得られた成形物の耐湿性が優れている。該複合材料中間材から得られた複合材料にはボイドが少なく、しかも耐水性の優れたものが得られる。
【0032】
【実施例】
以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0033】
実施例1
(複合材料用樹脂組成物の製造)
樹脂成分(A)としてエポトートYDF170(東都化成社製)10重量部、樹脂成分(B)としてエポトートYDPN638(東都化成社製)70重量部および樹脂成分(D)としてフェノトートYP50(東都化成社製)10重量部を200℃で1.5時間混合後、温度を120℃に下げ、樹脂成分(C)としてスミエポキシELM100(住友化学工業社製)を20重量部を添加混合した。さらに温度を90℃に下げた後、硬化剤成分(E)として、アミキュアS粉砕品(住友化学工業社製)40重量部を添加し、真空脱気を20分続けた。その後、樹脂を抜き出し、冷却した。
【0034】
(複合材料用中間材の製造)
得られたエポキシ樹脂組成物を引張弾性率23t/mm ,引張強度350kgf/mm の炭素繊維に含浸し、一方向プリプレグを作製した。(Vfは60vol%)。得られた一方向プリプレグは室温で一週間放置してもタックおよびドレープの変化がわずかなため、積層時の取扱いがよかった。
【0035】
(複合材料の製造)
得られた中間材を長さ30cm、幅15cmに裁断して、繊維方向が同一方向になるように積層して、オートクレーブで成形し、CFRP板を作成した。得られた成形物の断面をX線マイクロアナライザーによる面分析をしたところ、ジアミノジフェニルスルホンが分散系にもかかわらず、層状に局在することなく、均一に硬化していることを確認した。
【0036】
(複合材料の耐湿性評価)
得られた中間材を長さ30cm、幅15cmに裁断して、繊維方向が同一方向になるように積層して、オートクレーブで成形し、CFRP板を作成した。この硬化板から切断機を用いて、長さ60mm、幅10mm、厚さ3mmの試験片を得た。これを150℃のスチーム内に10時間、放置した。重量増加は2.0wt%であり、耐湿性は良好であった。
【0037】
比較例1
(複合材料用樹脂組成物の製造)
4官能のグリシジルアミン型エポキシ樹脂であるエポトートYH434(東都化成社製)70重量部、フェノールノボラック型エポキシ樹脂であるエポトートYDPN638(東都化成社製)15重量部、ビスフェノールA型エポキシ樹脂であるエピコート1002(油化シェルエポキシ社製)10重量部を混合して130℃で溶解した。この混合物を85℃まで温度を下げた後、硬化剤としてジアミノジフェニルスルホン30重量部、ジシアンジアミド1.5重量部をビスフェノールA型エポキシ樹脂であるエピコート828(油化シェルエポキシ社製)3重量部と、3本ロールを用いて混練したものおよびジシアンジアミドの硬化促進剤として3(3,4−ジクロロフェニル)−1,1−ジメチルウレア1.5重量部をビスフェノールA型エポキシ樹脂であるエピコート828(油化シェルエポキシ社製)3重量部とを3本ロールを用いて混練したものを添加し、撹拌しながらよく分散した。
【0038】
(複合材料用中間材の製造)
得られたエポキシ樹脂組成物を引張弾性率23t/mm 、引張強度350kgf/mm の炭素繊維に含浸し、一方向プリプレグを作製した。(Vfは60vol%)。
【0039】
(複合材料の製造)
得られた中間材を長さ30cm、幅15cmに裁断して、繊維方向が同一方向になるように積層して、オートクレーブで成形し、CFRP板を作成した。得られた成形物の断面をX線マイクロアナライザーによる面分析をしたところ、ジアミノジフェニルスルホンが、層状に局在した状態で硬化していることを確認した。
【0040】
(複合材料の耐湿性評価)
得られた中間材を長さ30cm、幅15cmに裁断して、繊維方向が同一方向になるように積層して、オートクレーブで成形し、CFRP板を作成した。この硬化板から切断機を用いて、長さ60mm、幅10mm、厚さ3mmの試験片を得た。これを150℃のスチーム内に10時間、放置した。重量増加は5.5wt%であり、耐湿性は良くなかった。
【0041】
比較例2
(複合材料用樹脂組成物の製造)
4官能のグリシジルアミン型エポキシ樹脂であるエポトートYH434(東都化成社製)70重量部を135℃に加熱し、そこへ硬化剤としてジフェニルジアミノスルホン30重量部および硬化促進剤として三フッ化ほう素のモノメチルアミン錯体0.5重量部を急激な重合が発生するのを避けるためすばやく添加し、約10分間という通常より短い時間で脱気しながら加熱、撹拌した後、抜き出しすぐに冷凍保存した。
【0042】
(複合材料用中間材の製造)
得られたエポキシ樹脂組成物を引張弾性率23t/mm 、引張強度350kgf/mm の炭素繊維に含浸し、一方向プリプレグを作製した。(Vfは60vol%)。得られた一方向プリプレグはタックが強く、積層時の取扱いが悪かった。また、室温に一週間放置した一方向プリプレグは硬化が進み、パイプ等の巻き付けが困難なほど、ドレープ性が低下した。
【0043】
(複合材料の製造)
得られた中間材を長さ30cm、幅15cmに裁断して、繊維方向が同一方向になるように積層して、オートクレーブで成形し、CFRP板を作成した。得られた成形物の断面をX線マイクロアナライザーによる面分析をしたところ、多数のボイドが発生しているのを確認した。
[0001]
[Industrial applications]
The present invention relates to a method for producing a resin composition for a composite material .
[0002]
[Prior art]
Composite materials using carbon fiber, glass fiber, etc. as reinforcing materials are used for sports and leisure products such as golf shafts, fishing rods, tennis rackets, etc., aircraft-related materials, industrial materials such as printing ink rolls, pressure vessels, etc., and medical-related materials. I have.
[0003]
Further, in recent years, such composite materials have been increasingly used for industrial material parts.
[0004]
Composite materials such as fiber reinforced plastics (FRP) and carbon fiber reinforced plastics (CFRP) impregnate reinforced fiber base materials such as carbon fiber, glass fiber, aramid fiber, and boron fiber with a matrix resin to form a prepreg and laminate these. And cured at an appropriate temperature.
[0005]
As the matrix resin of CFRP, an epoxy resin having excellent adhesion to carbon fibers is employed. However, bisphenol A type epoxy resins, which have been mainly used in the past, have poor heat resistance, and furthermore have the drawback of low composite physical properties, especially low interlaminar shear strength (ILSS). On the other hand, a polyfunctional epoxy resin has high heat resistance, but has high reactivity when producing a resin composition, and thus has a problem in the quality of the obtained resin composition and the safety at the time of blending. Furthermore, when the polyfunctional epoxy resin is the main component, the intermediate material obtained by impregnating the reinforcing fibers has a strong tack, is difficult to handle, and has a storage stability because the diaminodiphenyl sulfone as a curing agent is dissolved in the resin. Poor nature. Further, when molding the intermediate material, the viscosity at the time of heating is extremely low, so that the resin leaks or flows, which causes a problem in the accuracy of the obtained molded body. In order to control the viscosity at the time of molding, a method of adding dicyandiamide and an accelerator thereof together with diaminodiphenylsulfone (JP-A-59-207920) is found, but the moisture resistance of the obtained cured product is reduced.
[0006]
[Problems to be solved by the invention]
The present invention solves these drawbacks, the production of the resin composition is safe, the storage stability of the intermediate material obtained by impregnating the resin composition with the reinforcing fibers is excellent, and when these are further molded, the molding is performed. The present invention provides a molded article having excellent moisture resistance and excellent moisture resistance.
[0007]
[Means for Solving the Problems]
That is, the present invention relates to a method of adding a curing agent component (E) and mixing the curing agent component (E) after the resin temperature of the following resin components (A) to (D) becomes 90 ° C. or less. The present invention relates to a method for producing a resin composition for a composite material, which comprises performing vacuum degassing.
(A) Bisphenol F type epoxy resin 5 to 15 parts by weight
(B) Phenol novolak type epoxy resin 50 to 70 parts by weight
(C) Trifunctional glycidylamine type epoxy resin 7 to 25 parts by weight
(D) Phenoxy resin 5 to 15 parts by weight and 25 to 45 parts by weight of (E) 4,4'-diaminodiphenyl sulfone based on 100 parts by weight of the total of (A) to (D).
[0008]
Hereinafter, the contents of the present invention will be described in more detail.
[0009]
The compounding ratio of the component (A) used in the present invention is preferably from 5 to 15 parts by weight, more preferably from 7 to 12 parts by weight. If the amount of the component (A) is less than 5 parts by weight, the viscosity of the resin composition for a composite material becomes too high, so that it is difficult to impregnate a fiber bundle such as carbon fiber. On the other hand, when the amount exceeds 15 parts by weight, the heat resistance of the composite material becomes insufficient.
[0010]
The mixing ratio of the component (B) is preferably from 50 to 70 parts by weight, and more preferably from 55 to 65 parts by weight. If the amount of the component (B) is less than 50 parts by weight, the viscosity of the resin composition for a composite material becomes too low, and molding becomes difficult. On the other hand, if it exceeds 70 parts by weight, the heat resistance of the composite material becomes insufficient.
[0011]
The mixing ratio of the component (C) is preferably from 7 to 25 parts by weight, more preferably from 15 to 20 parts by weight. When the amount of the component (C) is less than 17 parts by weight, the heat resistance of the composite material is insufficient. On the other hand, when the amount is more than 25 parts by weight, the viscosity of the resin composition for a composite material becomes too low and moldability is difficult. Become.
[0012]
The mixing ratio of the component (D) is preferably 5 to 15 parts by weight, more preferably 7 to 12 parts by weight. If the amount of the component (D) is less than 5 parts by weight, the toughness of the composite material is insufficient. On the other hand, if the amount is more than 15 parts by weight, the viscosity of the resin composition for a composite material becomes too high and fiber bundles such as carbon fibers. Impregnation into the composite material, and the heat resistance of the composite material becomes insufficient.
[0013]
In the present invention, the blending ratio of the component (E) used as a curing agent is preferably 25 to 45 parts by weight, more preferably 30 to 100 parts by weight of the total weight of the components (A) to (D). 4040 parts by weight. When the amount of the component (E) is less than 25 parts by weight, the heat resistance of the composite material is insufficient. On the other hand, when the amount is more than 45 parts by weight, it is difficult to impregnate the fiber bundle such as carbon fibers.
[0014]
Examples of the bisphenol F type epoxy resin of the component (A) in the present invention include Epototo YDF-170 (manufactured by Toto Kasei), Epicoat 807 (manufactured by Yuka Shell Epoxy), and Epicron 830 (manufactured by Dainippon Ink and Chemicals, Inc.). And the like. Examples of the phenol novolak type epoxy resin of the component (B) include Epicoat 152, Epicoat 154 (manufactured by Yuka Shell Epoxy), Dow Epoxy DEN431, Dow Epoxy DEN438, Dow Epoxy DEN439 (manufactured by Dow Chemical Company), Epototo YDPN638, Epototo YDPN601. And Epototo YDPN602 (all manufactured by Toto Kasei), Araldite EPN1138 (made by Ciba-Geigy) and the like.
[0015]
Examples of the trifunctional glycidylamine type epoxy resin of the component (C) include Sumiepoxy ELM100 and Sumiepoxy ELM120 (all manufactured by Sumitomo Chemical Co., Ltd.).
[0016]
Examples of the phenoxy resin of the component (D) include phenothoto YP-50 (manufactured by Toto Kasei), Sumiepoxy ESP-50 (manufactured by Sumitomo Chemical Co., Ltd.), and Epicoat OL-53 (manufactured by Yuka Shell Epoxy). Can be
[0017]
As the diaminodiphenyl sulfone of the component (E), any of 4,4'-diaminodiphenyl sulfone and 3,3'-diaminodiphenyl sulfone can be used. These are powdery at room temperature, the upper limit of the particle size is 20 μm or less, preferably 17 μm or less, more preferably 12 μm or less, and the lower limit of the particle size is 0.01 μm or more, preferably 0.1 μm or more, more preferably It is preferable that the powder particles having a particle size distribution of 1 μm or more have a particle size distribution of 65% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more in the whole powder particles, so that a uniform cured product can be obtained.
In the resin composition for a composite material of the present invention, other epoxy resins, toughness-imparting resins, fillers, coloring agents, and the like can be blended as long as the performance is not impaired.
[0018]
Other epoxy resins that can be optionally contained in the resin composition of the present invention include bisphenol A epoxy resin, o-cresol novolak epoxy resin, cycloaliphatic epoxy resin, and triglycidylmethane epoxy resin. And a tetraglycidylamine type epoxy resin and a halogenated bisphenol A type epoxy resin.
[0019]
As the toughness-imparting resin that can be contained as desired in the resin composition of the present invention, a reactive elastomer, a Hiker CTBN-modified epoxy resin, a urethane-modified epoxy resin, a nitrile rubber-added epoxy resin, a crosslinked acrylic rubber fine particle-added epoxy resin, Examples thereof include a silicone-modified epoxy resin and a thermoplastic elastomer-added epoxy resin.
[0020]
Examples of the filler that can be contained in the resin composition of the present invention as desired include mica, alumina, talc, finely divided silica, zinc dust, and aluminum powder.
[0021]
As a coloring agent that can be contained as desired in the resin composition of the present invention, azo pigments, phthalocyanine-based pigments, quinacridone-based pigments, anthraquinone-based pigments and the like as organic pigments, titanium disulfide and chromium sulfide as inorganic pigments, Cobalt blue, iron sulfide and the like.
[0022]
In addition to the curing agent of the component (E), other curing agents and curing accelerators can be blended as required. BF 3 complex such as monomethylamine complex of boron trifluoride such as dicyandiamide (DICY) as a curing agent other than the component (E) and boron trifluoride as a curing accelerator other than the component (E); 3- (3,4 Dichlorophenyl) -1,1 dimethylurea (DCMU), 3- (4 chlorophenyl) -1,1 dimethylurea and the like.
[0023]
The method for producing the resin composition according to the present invention is not particularly limited. For example, after heating and mixing the resin components (A), (B) and (D) at 180 to 210 ° C, the resin component is cooled to 100 ° C or lower by cooling or natural heat radiation. After the temperature is lowered, a method of adding the component (C), and then adding the curing agent component (E) after the resin temperature becomes 90 ° C. or lower is preferably used. When the curing agent component (E) is mixed, a method of vacuum degassing with stirring is preferably employed for the purpose of reducing the generation of voids after molding. According to this method, the component (E) becomes a system uniformly dispersed in the resin composition, and has excellent storage stability. When the curing agent component (E) is added and mixed at a temperature where the resin temperature is higher than 90 ° C., a part of the curing agent component (E) is dissolved in the resin, and the resin and the curing agent easily react with each other. The storage stability of an intermediate material for a composite material formed by impregnating a material with a reinforcing fiber is significantly impaired.
[0024]
If diphenyldiaminosulfone is dissolved at 135 ° C. with a tetrafunctional tetraglycidylamine type epoxy resin as a main component instead of the component (B), there is a problem in safety due to a rapid reaction at the time of mixing, and the removal of voids during molding Is not sufficient, and further mixing with another resin is not preferred because the moisture resistance of the molded product and the storage stability of the resin composition are reduced.
[0025]
In the present invention, a resin composition containing the components (A), (B), (C), (D) and (E) is impregnated into reinforcing fibers to obtain an intermediate material (prepreg) for a composite material.
[0026]
The reinforcing fibers are not particularly limited, and all fibers used as reinforcing fibers of a composite material can be used. For example, carbon fibers, glass fibers, aramid fibers, boron fibers, silicon carbide fibers, surface-treated organic fibers, and the like, and fibers having a hybrid structure of two or more selected from these can be used. When carbon fibers are used as the reinforcing fibers, a lightweight and highly rigid molded product can be obtained, which is preferably used.
[0027]
The form of the reinforcing fiber prepreg is not particularly limited and can be appropriately selected depending on the purpose. For example, a unidirectional material, a woven fabric, a braided fabric, a nonwoven fabric, and the like can be given. The method of impregnating the reinforcing fiber with the resin composition in the present invention is not particularly limited, but a so-called hot melt method in which the resin composition is usually heated to 60 to 90 ° C. to impregnate the reinforcing fiber is preferably employed.
[0028]
The content of the resin composition of the intermediate material thus produced is usually 25 to 50% by weight, preferably 30 to 45% by weight, based on the total amount of the reinforcing fibers and the resin composition.
[0029]
The intermediate material is finally formed into a composite material. For example, a composite material can be obtained by laminating an intermediate material and heating and hardening it in an autoclave or at a pressure of usually 150 to 200 ° C. for 30 minutes to 3 hours. The obtained composite material is stable in quality and uniform and has few voids, even though the curing agent component (E) is a dispersion system.
[0030]
Examples of these uses include printing ink rolls, bicycle pipes, pressure vessels, and the like. In particular, the composite material of the present invention is suitable for a CFRP rubber-coated roll for printing ink. That is, in recent years, CFRP rubber-coated rolls are rapidly being used as substitutes for steel rolls because of their light weight and good workability compared to conventional steel rolls. With a conventional roll made of CFRP made of 250 ° F cured epoxy resin, unvulcanized rubber is wrapped around a CFRP tube, and when vulcanized under steam heating at 150 ° C, the roll may be deformed due to the influence of heat, Due to the effect of water, some parts may swell or peel off. On the other hand, the CFRP roll obtained according to the present invention not only has heat resistance at 150 ° C. but also has little influence of steam, so that a rubber coated roll for CFRP printing ink having excellent dimensional accuracy can be obtained.
[0031]
【The invention's effect】
The resin composition for a composite material of the present invention can sufficiently remove bubbles in the resin by vacuum degassing for safety in mixing at the time of production, which cannot be achieved by the conventional epoxy resin for prepreg. Further, the composite material intermediate obtained by impregnating the reinforcing fiber with the resin composition has good storage safety, is excellent in moldability of pipes and the like, and has excellent moisture resistance of the obtained molded article. In the composite material obtained from the composite material intermediate material, a material having few voids and excellent water resistance can be obtained.
[0032]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
[0033]
Example 1
(Production of resin composition for composite material)
10 parts by weight of Epototo YDF170 (manufactured by Toto Kasei) as the resin component (A), 70 parts by weight of Epototo YDPN638 (manufactured by Toto Kasei) as the resin component (B), and phenotote YP50 (manufactured by Toto Kasei) as the resin component (D) After mixing 10 parts by weight at 200 ° C. for 1.5 hours, the temperature was lowered to 120 ° C., and 20 parts by weight of Sumiepoxy ELM100 (manufactured by Sumitomo Chemical Co., Ltd.) was added and mixed as the resin component (C). After the temperature was further lowered to 90 ° C., 40 parts by weight of Amicure S pulverized product (manufactured by Sumitomo Chemical Co., Ltd.) was added as a curing agent component (E), and vacuum deaeration was continued for 20 minutes. Thereafter, the resin was extracted and cooled.
[0034]
(Manufacture of intermediate materials for composite materials)
The obtained epoxy resin composition was impregnated into carbon fibers having a tensile modulus of elasticity of 23 t / mm 2 and a tensile strength of 350 kgf / mm 2 to prepare a unidirectional prepreg. (Vf is 60 vol%). The obtained one-way prepreg showed little change in tack and drape even after being left at room temperature for one week, so that handling during lamination was good.
[0035]
(Manufacture of composite materials)
The obtained intermediate material was cut into a length of 30 cm and a width of 15 cm, laminated so that the fiber directions were the same, and formed in an autoclave to prepare a CFRP plate. When the cross section of the obtained molded product was subjected to surface analysis using an X-ray microanalyzer, it was confirmed that diaminodiphenyl sulfone was uniformly cured without being localized in a layered form despite the dispersion system.
[0036]
(Moisture resistance evaluation of composite materials)
The obtained intermediate material was cut into a length of 30 cm and a width of 15 cm, laminated so that the fiber directions were the same, and formed in an autoclave to prepare a CFRP plate. A test piece having a length of 60 mm, a width of 10 mm and a thickness of 3 mm was obtained from the cured plate using a cutting machine. This was left in steam at 150 ° C. for 10 hours. The weight increase was 2.0 wt%, and the moisture resistance was good.
[0037]
Comparative Example 1
(Production of resin composition for composite material)
70 parts by weight of Epototo YH434 (manufactured by Toto Kasei) which is a tetrafunctional glycidylamine type epoxy resin, 15 parts by weight of Epotote YDPN638 (manufactured by Toto Kasei) which is a phenol novolac type epoxy resin, and Epicoat 1002 which is a bisphenol A type epoxy resin 10 parts by weight (manufactured by Yuka Shell Epoxy) were mixed and dissolved at 130 ° C. After lowering the temperature of the mixture to 85 ° C., 30 parts by weight of diaminodiphenyl sulfone and 1.5 parts by weight of dicyandiamide as curing agents were mixed with 3 parts by weight of Epicoat 828 (manufactured by Yuka Shell Epoxy Co., Ltd.) which is a bisphenol A type epoxy resin. 1.5 parts by weight of 3 (3,4-dichlorophenyl) -1,1-dimethylurea as a curing accelerator for dicyandiamide, kneaded using a three-roll mill, and Epicoat 828, a bisphenol A type epoxy resin, A mixture obtained by kneading 3 parts by weight with Shell Epoxy Co., Ltd. using a three-roll mill was added and dispersed well with stirring.
[0038]
(Manufacture of intermediate materials for composite materials)
The obtained epoxy resin composition was impregnated into carbon fibers having a tensile modulus of elasticity of 23 t / mm 2 and a tensile strength of 350 kgf / mm 2 to prepare a unidirectional prepreg. (Vf is 60 vol%).
[0039]
(Manufacture of composite materials)
The obtained intermediate material was cut into a length of 30 cm and a width of 15 cm, laminated so that the fiber directions were the same, and formed in an autoclave to prepare a CFRP plate. When the cross section of the obtained molded product was subjected to surface analysis using an X-ray microanalyzer, it was confirmed that diaminodiphenyl sulfone was cured in a state where it was localized in a layer.
[0040]
(Moisture resistance evaluation of composite materials)
The obtained intermediate material was cut into a length of 30 cm and a width of 15 cm, laminated so that the fiber directions were the same, and formed in an autoclave to prepare a CFRP plate. A test piece having a length of 60 mm, a width of 10 mm and a thickness of 3 mm was obtained from the cured plate using a cutting machine. This was left in steam at 150 ° C. for 10 hours. The weight increase was 5.5 wt%, and the moisture resistance was not good.
[0041]
Comparative Example 2
(Production of resin composition for composite material)
70 parts by weight of Epototo YH434 (manufactured by Toto Kasei Co., Ltd.), which is a tetrafunctional glycidylamine type epoxy resin, is heated to 135 ° C., and 30 parts by weight of diphenyldiaminosulfone as a curing agent and boron trifluoride as a curing accelerator 0.5 part by weight of the monomethylamine complex was quickly added to avoid rapid polymerization, heated and stirred while degassing in a shorter time than usual, about 10 minutes, and then immediately taken out and stored frozen.
[0042]
(Manufacture of intermediate materials for composite materials)
The obtained epoxy resin composition was impregnated into carbon fibers having a tensile modulus of elasticity of 23 t / mm 2 and a tensile strength of 350 kgf / mm 2 to prepare a unidirectional prepreg. (Vf is 60 vol%). The obtained one-way prepreg had a strong tack and was poor in handling during lamination. In addition, the unidirectional prepreg that had been left at room temperature for one week hardened, and the more difficult it was to wind a pipe or the like, the lower the drapability.
[0043]
(Manufacture of composite materials)
The obtained intermediate material was cut into a length of 30 cm and a width of 15 cm, laminated so that the fiber directions were the same, and formed in an autoclave to prepare a CFRP plate. When the cross section of the obtained molded product was subjected to surface analysis using an X-ray microanalyzer, it was confirmed that many voids were generated.

Claims (3)

以下の樹脂成分(A)〜(D)の樹脂温度が90℃以下になってから硬化剤成分(E)を添加し、該硬化剤成分(E)を混合する際に真空脱気することを特徴とする複合材料用樹脂組成物の製造方法。
A)ビスフェノールF型エポキシ樹脂 5〜15重量部
(B)フェノールノボラック型エポキシ樹脂 50〜70重量部
(C)3官能グリシジルアミン型エポキシ樹脂 7〜25重量部
(D)フェノキシ樹脂 5〜15重量部および
(E)4,4′−ジアミノジフェニルスルホンを前記(A)〜(D)の総量100重量部に対して25〜45重量部
When the resin temperature of the following resin components (A) to (D) becomes 90 ° C. or less, the curing agent component (E) is added, and vacuum degassing is performed when mixing the curing agent component (E). A method for producing a resin composition for a composite material.
( A) Bisphenol F type epoxy resin 5 to 15 parts by weight
(B) Phenol novolak type epoxy resin 50 to 70 parts by weight
(C) Trifunctional glycidylamine type epoxy resin 7 to 25 parts by weight
(D) Phenoxy resin 5 to 15 parts by weight and
(E) 25 to 45 parts by weight of 4,4'-diaminodiphenyl sulfone based on 100 parts by weight of the total of (A) to (D) .
粒径0.01〜20μmの粉末粒子が前記成分(E)の4,4′−ジアミノジフェニルスルホン全体の65重量%以上を占める、請求項1に記載の複合材料用樹脂組成物の製造方法。The method for producing a resin composition for a composite material according to claim 1, wherein the powder particles having a particle size of 0.01 to 20 µm account for 65% by weight or more of the whole 4,4'-diaminodiphenylsulfone of the component (E). 前記成分(E)の4,4′−ジアミノジフェニルスルホンを添加する前に、前記成分(A)のビスフェノールF型エポキシ樹脂、前記成分(B)のフェノールノボラック型エポキシ樹脂および前記成分(D)のフェノキシ樹脂を加熱混合する、請求項1または2に記載の複合材料用樹脂組成物の製造方法。Before adding 4,4'-diaminodiphenylsulfone of the component (E), the bisphenol F type epoxy resin of the component (A), the phenol novolak type epoxy resin of the component (B) and the component (D) The method for producing a resin composition for a composite material according to claim 1 or 2, wherein the phenoxy resin is heated and mixed.
JP25607594A 1994-09-27 1994-09-27 Method for producing resin composition for composite material Expired - Lifetime JP3591599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25607594A JP3591599B2 (en) 1994-09-27 1994-09-27 Method for producing resin composition for composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25607594A JP3591599B2 (en) 1994-09-27 1994-09-27 Method for producing resin composition for composite material

Publications (2)

Publication Number Publication Date
JPH0892350A JPH0892350A (en) 1996-04-09
JP3591599B2 true JP3591599B2 (en) 2004-11-24

Family

ID=17287547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25607594A Expired - Lifetime JP3591599B2 (en) 1994-09-27 1994-09-27 Method for producing resin composition for composite material

Country Status (1)

Country Link
JP (1) JP3591599B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039188A1 (en) 1998-12-25 2000-07-06 Mitsubishi Rayon Co., Ltd. Epoxy resin composition, prepreg, and roll made of resin reinforced with reinforcing fibers
JP5017794B2 (en) * 2005-04-13 2012-09-05 横浜ゴム株式会社 Epoxy resin composition for fiber reinforced composite materials

Also Published As

Publication number Publication date
JPH0892350A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
JP2003238657A (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JPH11171974A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2001302823A (en) Resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2000281747A (en) Epoxy resin composition for composite material
JP3591599B2 (en) Method for producing resin composition for composite material
JP2604778B2 (en) Matrix resin composition
JP3531845B2 (en) Epoxy resin composition
JPH068341B2 (en) Epoxy resin composition for prepreg
JPH09216958A (en) Prepreg
JP2003055534A (en) Resin composition for composite material, intermediate material for composite material, and composite material
JPH11279261A (en) Heat-resistant epoxy resin composition for fiber-reinforced composite material
JP2004292594A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2006104403A (en) Epoxy resin composition
JP2003041093A (en) Resin composition for composite material, intermediate material for composite material and composite material
JPH08301982A (en) Epoxy resin composition for fiber-reinforced composite, prepreg, and composite
JP2885331B2 (en) Prepreg
JP2000281755A (en) Epoxy resin composition for composite material
JPH07137163A (en) Manufacture of tubular composite moldings
JP2006274110A (en) Prepreg and fiber-reinforced composite material
JP3066907B2 (en) Resin composition for composite material, intermediate material and composite material
JP2001302766A (en) Resin composition for composite material, intermediate material for composite material and composite material
JPH0820654A (en) Epoxy resin composition and prepreg using the same
JP4266696B2 (en) Manufacturing method of fiber reinforced composite material
JPS6257417A (en) Epoxy resin composition for prepreg
JPH0586425B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term