JP3590572B2 - Check valve structure - Google Patents

Check valve structure Download PDF

Info

Publication number
JP3590572B2
JP3590572B2 JP2000270492A JP2000270492A JP3590572B2 JP 3590572 B2 JP3590572 B2 JP 3590572B2 JP 2000270492 A JP2000270492 A JP 2000270492A JP 2000270492 A JP2000270492 A JP 2000270492A JP 3590572 B2 JP3590572 B2 JP 3590572B2
Authority
JP
Japan
Prior art keywords
valve
pressure
piston
check valve
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000270492A
Other languages
Japanese (ja)
Other versions
JP2002081561A (en
Inventor
広宣 松沢
秀司 出雲
起美仁 笹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Denki Kogyo KK
Original Assignee
Advance Denki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Denki Kogyo KK filed Critical Advance Denki Kogyo KK
Priority to JP2000270492A priority Critical patent/JP3590572B2/en
Publication of JP2002081561A publication Critical patent/JP2002081561A/en
Application granted granted Critical
Publication of JP3590572B2 publication Critical patent/JP3590572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Check Valves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、弁体により流体の流れを順方向のみに制限し、その逆方向の流れを防止する逆止弁の構造に関する。
【0002】
【従来の技術】
例えば、半導体製造工場等の超純水や薬品等を扱う工場における管路等には、その管路等を流れる流体の流れを一方向(順方向)のみに制限して逆流を防止する逆止弁が配設されることがある。
【0003】
この種逆止弁として従来では、図4に示すような逆止弁50を挙げることができる。この逆止弁50は、被制御流体の流入口52と流出口53を有する弁室51と、前記流入口52を開閉し、かつ前記流出口53からの流体圧力を受ける球状の弁体55と、前記弁室51内に設けられ前記弁体55を常時流入口閉方向に付勢するスプリング60とで構成されている。なお、図示の例では流入口52が形成された第1ブロック51aと、該第1ブロック51aと螺着結合され、流出口53が形成された第2ブロック51bによって弁室51が形成されている。図中の符号54は弁座、61は前記第1ブロック51aと第2ブロック51b間に介在されるパッキン等のシール部材である。
【0004】
前記逆止弁50においては、流入口52側(一次側)の流体圧力が所定値以上となると、スプリング60の付勢力に打ち勝って弁体55が弁座54から離座して流入口52が開くことによって、被制御流体が流出口53へ流通する。これに対して、流出口53側(二次側)の流体圧力が流入口52側の流体圧力よりも高くなると、流出口53側の被制御流体が流入口52側へ逆流しようとするが、その流体の流れと圧力により弁体55が弁座54に着座して流入口52が閉じることによって、流入口52側への被制御流体の逆流を防止する。
【0005】
しかしながら、前記従来の逆止弁50にあっては、弁体55を付勢するスプリング60が弁室51内に配設されるため、そのスプリング60が流体と接触してしまう。このようにスプリング60が被制御流体と接液すると、スプリング60の腐蝕や劣化等に起因して、被制御流体中にパーティクルと呼ばれる微細な塵や屑が混入されるといった不具合が懸念される。特に、超純水や高純度薬品を被制御流体とする場合には、前記不具合は重大な問題となる。また、当該逆止弁50では流入口52の開閉、つまり弁体55の制御を自由に行うことはできないが、ユーザーからは自由に弁体を制御したいと言う要望がある。
【0006】
【発明が解決しようとする課題】
この発明は、前記の点に鑑み提案されたものであって、微細ゴミが発生するおそれがなく、超純水や高純度薬品等を被制御流体とする場合に最適に使用できるとともに、自由に弁体の制御を行うことができる新規な逆止弁構造を提供することを目的とする。
【0007】
【課題を解決するための手段】
すなわち、請求項1の発明は、被制御流体の流入口(21)と流出口(22)を有し前記流入口と流出口との間に弁座(23)が形成された弁室(20)と、弁軸(31)と、前記弁軸に膨出状に形成され前側に前記弁座を開閉するシール部(33)及び後側に前記流出口からの流体圧力を受ける受圧部(34)とを有する弁部(32)と、前記弁部の反対側に前記弁軸と一体に形成され前記弁室内に装着されダイヤフラム部(35)とを有するポペット弁体(30)と、前記ダイヤフラム部の弁室外側に設けられ前記ポペット弁体を常時前進方向に調圧しかつ被制御流体の流入圧によって弁部のシール部を開く調圧手段(40)とを備え、前記ポペット弁体の弁部のシール部の直径距離(SD)を前記ダイヤフラム部の膜部最大径と膜部最小径を2分した位置における直径距離(MD)よりも大きく形成し、被制御流体から前記弁部に対して弁体前進方向(X)に作用する力が、被制御流体から前記ダイヤフラム部の膜部に対して弁体後退方向(Y)に作用する力よりも大となるようにしたことを特徴とする逆止弁構造に係る。
【0008】
また、請求項2の発明は、請求項1において、前記調圧手段が、前記弁軸と一体に形成されたピストンと該ピストンが嵌挿されるシリンダ部と前記ピストンを調圧する駆動機構からなる逆止弁構造に係る。
【0009】
さらに、請求項3の発明は、請求項2において、前記ピストンを調圧する駆動機構が前記ピストンを常時前進方向に付勢するバネ体である逆止弁構造に係る。
【0010】
またさらに、請求項4の発明は、請求項2または3において、前記調圧手段のピストンを前進方向及び後退方向に移動調整可能とする調圧エア機構を有する逆止弁構造に係る。
【0011】
【発明の実施の形態】
以下添付の図面に従ってこの発明を詳細に説明する。
図1はこの発明の一実施例に係る逆止弁の開状態を示す縦断面図、図2は同逆止弁の閉状態を示す縦断面図、図3は他の実施例に係る逆止弁を示す縦断面図である。
【0012】
図1及び図2に示す逆止弁10は、この発明の一実施例に係るもので、半導体製造工場等における管路等に配設され、その管路等を流れる被制御流体の流れを一方向(順方向)のみに制限して逆流を防止するものである。この逆止弁10は、弁室20とポペット弁体30と調圧手段40とを備えている。実施例では、前記弁室20は、フッ素樹脂等の耐蝕性及び耐薬品性の高い樹脂からなるボディ体11内部に形成されている。
【0013】
弁室20は、被制御流体のための流入口21と流出口22を有しているとともに、前記流入口21と流出口22間に弁座23が形成されている。
【0014】
ポペット弁体30は、前記ボディ体11と同様にフッ素樹脂等の耐蝕性及び耐薬品性の高い樹脂から形成され、弁軸31と弁部32とダイヤフラム部35とを有している。前記弁部32は、弁軸31の一端側(前側)に膨出状に形成されており、その前側には前記弁座23を開閉するシール部33が形成され、後側には前記流出口22からの流体圧力を受ける受圧部34が形成されている。この実施例では、図から理解されるように、弁部32の前側が前端に向かって細くなるテーパ状に形成され、それによって得られる傾斜面32aの一部が前記弁座23に着座及び離座可能なシール部33となっている。また、実施例では、平らな弁部32後端面が前記受圧部34となっている。
【0015】
前記ダイヤフラム部35は、前記弁軸31の弁部32の反対側(後側)に該弁軸31と一体に形成され、弁室20内に装着されている。このダイヤフラム部35は、ダイヤフラム面である薄肉の膜部(可動部)36と、その外周側の外周部37を有している。また、実施例では、ダイヤフラム部35の外周部37がボディ体11と後述の調圧手段40のシリンダ部42間に挟着されて固定されている。
【0016】
そして、この発明に係る逆止弁10においては、前記弁部32のシール部33の直径距離(図示の例では弁座23内側の開口径(オリフィス径)と等しい距離)SDが、前記ダイヤフラム部35の有効径となるダイヤフラム部35の膜部36の最大径L1と膜部36の最小径L2を2分した位置における直径距離MDよりも大きく形成されている。このダイヤフラム部35の膜部36の最大径L1と膜部36の最小径L2を2分した位置における直径距離MDは、いわゆるダイヤフラム部35の膜部36の有効受圧径として考えることができ、この直径距離MDを基準として、シール部33の直径距離SDをこのダイヤフラム部35の直径距離MDよりも大きくすれば(SD>MD)、被制御流体からダイヤフラム部35の膜部36に対して弁体後退方向(図では上方向)Yに作用する力より被制御流体から弁部32に対して弁体前進方向(図では下方向)Xに作用するの方が大きくなる。したがって、流出口22側(二次側)の流体圧力が流入口21側の流体圧力より高くなって流出口22側の被制御流体が流入口21側へ逆流しようとした時に、弁体30に弁体前進方向(図では下方向)Xの力が作用し、弁部32が弁座23に着座して被制御流体の逆流を防止することができるのである
【0017】
調圧手段40は、前記ダイヤフラム部35の弁室20外側に設けられ、前記ポペット弁体30を常時前進方向Xに調圧(実施例では加圧)しかつ被制御流体の流入圧によって弁部32のシール部33、つまり流入口21を開くように構成されている。この実施例では、前記調圧手段40は、前記ポペット弁体30の弁軸31と一体に形成されたピストン41と、該ピストン41が嵌挿されるシリンダ部42と、前記ピストン41を調圧(実施例では加圧)する駆動機構43とで構成されている。なお、図示の例では、前記ピストン41は、前記弁軸31の後部(図示の例では上部)と螺着結合されている。勿論、このピストン41と弁軸31との結合方法は上記螺着結合に限らず、例えばピストン41と弁軸31とが一体成形されてもよい。また、前記シリンダ部42は、前記ボディ体11に適宜手段により固着されている。
【0018】
また、実施例では、前記ピストン41の後側(図では上側)にバネ受け部41dが設けられ、該バネ受け部41dにピストン41を常時前進方向(図では下方向)Xに付勢するバネ体が、ピストン41を調圧(この例では加圧)する駆動機構43として配設されている。さらに、この実施例においては、前記ピストン41を後退方向(図では上方向)及び前進方向(図では下方向)に任意に移動調整を可能とする調圧エア機構(この例では加圧エア機構)Aが設けられている。前記調圧エア機構Aは、調圧気体(この例では加圧気体)を供給する供給源A1と、調圧気体の圧力を調整・制御する電空変換器や電空レギュレーター等の調整・制御機器A2を有している。なお、図中の符号P1はピストン41の後部(大径部)41aと前記シリンダ部42内壁間の空間への調圧気体の供給及び前記空間からの調圧気体の排出を行うための第1ポート、P2はピストン41の中央部(小径部)41bと前記シリンダ部42内壁間の空間への調圧気体の供給及び前記空間からの調圧気体の排出を行うための第2ポート、44はピストン41の後部41aと前記シリンダ部42内壁間に介在されるパッキン等のシール部材、45はピストン41の前部41cと前記シリンダ部42内壁間に介在されるパッキン等のシール部材、46は前記ダイヤフラム部35の後側(外側)空間の空気を外部へ出し入れするために形成された呼吸孔である。
【0019】
なお、前記ピストン41を調圧する駆動機構43としては、バネ体に限定されるものではなく、前記調圧エア機構Aによる調圧気体のみでピストン41を調圧しても良いし、荷重調節自在なバネ装置やソレノイド等によりピストン41を調圧しても良い。また、駆動機構43として荷重調節自在なバネ装置を用いる場合には、該荷重調節自在なバネ装置にサーボモータ等を接続してバネ定数を自動制御できるように構成しても良い。
【0020】
次に、上記構造の逆止弁10の作動例について説明する。
上記逆止弁10においては、流入口21側(一次側)の流体圧力が所定値以上となると、図1に示すように、前記駆動機構、実施例ではバネ体43の付勢力に打ち勝ってポペット弁体30の弁部32のシール部33が弁座23から離座して、弁部32のシール部33が開く(より具体的に言えば、当該シール部33と弁座23間に流体流通空間ができる)ことによって、被制御流体が流入口21から流出口22方向(順方向)に流通する。
【0021】
これに対して、流出口22側(二次側)の流体圧力が流入口21側の流体圧力よりも高くなると、流出口22側の被制御流体が流入口21側へ逆流しようとするが、上述の如く前記弁部32のシール部33の直径距離SDが前記ダイヤフラム部35の膜部36の最大径L1と膜部36の最小径L2を2分した位置における直径距離MDよりも大きく形成されているので、被制御流体から弁部32の受圧部34に対して弁体前進方向Xに作用する力が、被制御流体からダイヤフラム部35の膜部36に対して弁体後退方向Yに作用する力よりも大となり、図2に示すように、弁部32が弁座23に着座して、弁部32のシール部33が閉じることによって、被制御流体の逆流を防止する。
【0022】
また、上記逆止弁10では、流入口21の開状態時に、前記調圧エア機構Aにより、前記第1ポートP1を介してピストン41の後部(大径部)41aと前記シリンダ部42内壁間の空間へ調圧気体を流入させることによって、ピストン41が前進方向Xに押されポペット弁体30が前進し、前記流入口21、厳密に言えば、弁部32のシール部33が閉じられる。一方、流入口21の閉状態時に、前記調圧エア機構Aにより、前記第2ポートP2を介してピストン41の中央部(小径部)41bと前記シリンダ部42内壁間の空間へ調圧気体を流入させることによって、ピストン41が後退方向Yに押されポペット弁体30が後退し、前記流入口21、正確に言えば、弁部32のシール部33が開かれる。すなわち、当該逆止弁10においては、自由にポペット弁体30を制御でき、任意に前記流入口21を開閉することができる。
【0023】
なお、この発明は、上記実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲において構成の一部を適宜に変更して実施することができる。例えば、図3に示す逆止弁10Aのように、ポペット弁体30Aの弁部32Aのシール部33Aが弁部32A前端面(図では前端面の外側部)に突出形成された突部で構成されてもよい。なお、その場合には、前記弁部32Aのシール部33Aの直径距離SDは、弁座23内側の開口径(オリフィス径)OD以上となる。図3においては、上記図1及び図2に示した実施例と同一部材については同一符号を付し、その説明を省略する。
【0024】
また、上記実施例の逆止弁10においては、ピストン41とシリンダ部42内壁間に調圧エア機構Aからの調圧気体を送るために二つのポートP1,P2が設けられているが、各ポートP1,P2からピストン41とシリンダ部42内壁間に調圧気体を流入させることにより、ピストン41の移動調整を行うようになっているが、これに限らず、前記ポートP1,P2の何れか一方だけ設け、そのポートを介してピストン41とシリンダ部42内壁間に調圧エア機構Aからの調圧気体を流入及び流出させ、ピストン41を加圧及び減圧することによって、当該ピストン41の移動調整を行うようにしても良い。
【0025】
【発明の効果】
以上図示し説明したように、この発明に係る逆止弁構造にあっては、弁室内にスプリング等の弁体を付勢する付勢手段が存在しないので、被制御流体中に微細ゴミが発生するのを防ぐことができるとともに、該逆止弁の接液部を耐腐食性あるいは耐薬品性の高い材質のみで製造することができるので、超純水や高純度薬品等を被制御流体とする場合に最適に使用できる。
【0026】
また、請求項2及び3の発明のように、ポペット弁体を調圧する調圧手段が、ポペット弁体の弁軸と一体に形成されたピストンと該ピストンが嵌挿されるシリンダ部と前記ピストンを調圧する駆動機構とで構成されれば、簡単な構造で、しかも効率よくポペット弁体を調圧して、該ポペット弁体を動作させることができる。特に、請求項3の発明のように、ピストンを調圧する駆動機構を前記ピストンを常時前進方向に付勢するバネ体とすれば、より構造を簡略化することができ、コスト的にも有利である。
【0027】
さらに、請求項4の発明の如く、前記調圧手段のピストンを前進方向及び後退方向に移動調整可能とする調圧エア機構を設けるようにすれば、自由にポペット弁体を制御でき、任意に流入口を開閉することができるようになるので、従来のこの種逆止弁には不可能とされていた全く新規な使用態様が作出され、この種逆止弁の利便性が大幅に向上する。
【図面の簡単な説明】
【図1】この発明の一実施例に係る逆止弁を示す縦断面図である。
【図2】同逆止弁の閉状態を示す縦断面図である。
【図3】他の実施例に係る逆止弁を示す縦断面図である。
【図4】従来における逆止弁の一例を示す縦断面図である。
【符号の説明】
10 逆止弁
20 弁室
21 流入口
22 流出口
30 ポペット弁体
31 弁軸
32 弁部
33 シール部
34 受圧部
35 ダイヤフラム部
36 膜部
40 調圧手段
41 ピストン
42 シリンダ部
43 駆動機構
A 調圧エア機構
SD 弁部のシール部の直径距離
MD 膜部最大径と膜部最小径を2分した位置における直径距離
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a check valve structure that restricts the flow of a fluid only in a forward direction by a valve body and prevents the flow in the reverse direction.
[0002]
[Prior art]
For example, in a pipeline in a factory that handles ultrapure water or chemicals, such as a semiconductor manufacturing factory, a non-return that prevents a backflow by restricting the flow of a fluid flowing through the pipeline to only one direction (forward direction). Valves may be provided.
[0003]
Conventionally, a check valve 50 as shown in FIG. The check valve 50 includes a valve chamber 51 having an inlet 52 and an outlet 53 for a controlled fluid, a spherical valve body 55 that opens and closes the inlet 52 and receives fluid pressure from the outlet 53. And a spring 60 provided in the valve chamber 51 and constantly biasing the valve body 55 in the inflow port closing direction. In the illustrated example, the valve chamber 51 is formed by a first block 51a having an inlet 52 formed therein, and a second block 51b screwed to the first block 51a and having an outlet 53 formed therein. . In the drawing, reference numeral 54 denotes a valve seat, and 61 denotes a seal member such as packing interposed between the first block 51a and the second block 51b.
[0004]
In the check valve 50, when the fluid pressure on the inflow port 52 side (primary side) becomes equal to or more than a predetermined value, the valve body 55 is separated from the valve seat 54 by overcoming the urging force of the spring 60, and the inflow port 52 is closed. By opening, the controlled fluid flows to the outlet 53. On the other hand, when the fluid pressure on the outlet 53 side (secondary side) becomes higher than the fluid pressure on the inlet 52 side, the controlled fluid on the outlet 53 side tends to flow back to the inlet 52 side. The valve body 55 is seated on the valve seat 54 by the flow and pressure of the fluid to close the inflow port 52, thereby preventing the controlled fluid from flowing back to the inflow port 52 side.
[0005]
However, in the conventional check valve 50, since the spring 60 for urging the valve body 55 is disposed in the valve chamber 51, the spring 60 comes into contact with the fluid. When the spring 60 comes in contact with the fluid to be controlled in this way, there is a concern that fine dust or debris called particles are mixed into the fluid to be controlled due to corrosion or deterioration of the spring 60. In particular, when ultrapure water or a high-purity chemical is used as the fluid to be controlled, the above problem becomes a serious problem. Further, the check valve 50 cannot open and close the inflow port 52, that is, cannot control the valve element 55 freely, but there is a demand from the user to freely control the valve element.
[0006]
[Problems to be solved by the invention]
The present invention has been proposed in view of the above points, has no risk of generating fine dust, and can be used optimally when ultra-pure water or a high-purity chemical is used as a controlled fluid, and can be freely used. It is an object of the present invention to provide a novel check valve structure capable of controlling a valve element.
[0007]
[Means for Solving the Problems]
That is, according to the invention of claim 1, the inlet of the controlled fluid (21) and the outlet (22) have a said inlet valve chamber in which the valve seat (23) is formed between the outlet (20 ) , A valve shaft (31) , a sealing portion (33) formed in a bulging shape on the valve shaft and opening and closing the valve seat on the front side, and a pressure receiving portion (34) receiving fluid pressure from the outlet on the rear side. ) and a valve portion (32) having said valve shaft and is formed integrally the valve diaphragm mounted in the room on the opposite side of the valve portion (35) poppet (30 to have a and), and a pressure regulating means for opening the sealing portion of the valve portion by the inflow pressure of the constantly advancing direction regulating pressure and the controlled fluid the poppet valve body provided in the valve chamber outside of the diaphragm portion (40), said poppet valve body The diameter distance (SD) of the seal part of the valve part is determined by comparing the maximum diameter of the diaphragm part with the diaphragm part. The diameter is formed to be larger than the diameter distance (MD) at the position where the small diameter is divided into two, and a force acting on the valve portion from the controlled fluid in the valve body forward direction (X) is applied to the membrane of the diaphragm portion from the controlled fluid. The present invention relates to a check valve structure characterized in that a force acting on a portion in a valve body retreating direction (Y) is made larger .
[0008]
According to a second aspect of the present invention, in the first aspect, the pressure adjusting means comprises a piston formed integrally with the valve shaft, a cylinder portion into which the piston is inserted, and a drive mechanism for adjusting the pressure of the piston. Related to stop valve structure.
[0009]
Further, the invention according to claim 3 relates to the check valve structure according to claim 2, wherein the drive mechanism for adjusting the pressure of the piston is a spring body that constantly biases the piston in the forward direction.
[0010]
Still further, the invention according to claim 4 relates to the check valve structure according to claim 2 or 3, further comprising a pressure adjusting air mechanism capable of adjusting the movement of the piston of the pressure adjusting means in the forward and backward directions.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view showing an open state of a check valve according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view showing a closed state of the check valve, and FIG. 3 is a check section according to another embodiment. It is a longitudinal section showing a valve.
[0012]
The check valve 10 shown in FIG. 1 and FIG. 2 relates to an embodiment of the present invention, and is disposed in a pipe or the like in a semiconductor manufacturing plant or the like, and controls the flow of a controlled fluid flowing through the pipe or the like. The backflow is prevented by restricting only in the direction (forward direction). The check valve 10 includes a valve chamber 20, a poppet valve body 30, and a pressure adjusting unit 40. In the embodiment, the valve chamber 20 is formed inside the body 11 made of a resin having high corrosion resistance and high chemical resistance such as fluororesin.
[0013]
The valve chamber 20 has an inlet 21 and an outlet 22 for a controlled fluid, and a valve seat 23 is formed between the inlet 21 and the outlet 22.
[0014]
The poppet valve body 30 is formed of a resin having high corrosion resistance and chemical resistance, such as a fluororesin, similarly to the body body 11, and has a valve shaft 31, a valve portion 32, and a diaphragm portion 35. The valve portion 32 is formed in a bulging shape on one end side (front side) of the valve shaft 31, and a seal portion 33 for opening and closing the valve seat 23 is formed on the front side, and the outlet port is provided on the rear side. A pressure receiving portion 34 that receives the fluid pressure from 22 is formed. In this embodiment, as can be understood from the figure, the front side of the valve portion 32 is formed in a tapered shape tapering toward the front end, and a part of the inclined surface 32a obtained thereby is seated on and separated from the valve seat 23. It is a seal portion 33 that can be seated. Further, in the embodiment, a flat rear end face of the valve portion 32 is the pressure receiving portion 34.
[0015]
The diaphragm portion 35 is formed integrally with the valve shaft 31 on the opposite side (rear side) of the valve shaft 31 from the valve portion 32, and is mounted in the valve chamber 20. The diaphragm portion 35 has a thin film portion (movable portion) 36 that is a diaphragm surface and an outer peripheral portion 37 on the outer peripheral side. Further, in the embodiment, the outer peripheral portion 37 of the diaphragm portion 35 is sandwiched and fixed between the body 11 and a cylinder portion 42 of the pressure adjusting means 40 described later.
[0016]
In the check valve 10 according to the present invention, the diameter distance (the distance equal to the opening diameter (orifice diameter) inside the valve seat 23 in the illustrated example) SD of the seal part 33 of the valve part 32 is equal to the diaphragm part. A diameter distance MD at a position where the maximum diameter L1 of the film portion 36 and the minimum diameter L2 of the film portion 36 of the diaphragm portion 35, which is the effective diameter 35, is divided into two, is formed. The diameter distance MD at a position obtained by dividing the maximum diameter L1 of the membrane portion 36 of the diaphragm portion 35 and the minimum diameter L2 of the membrane portion 36 into two can be considered as a so-called effective pressure receiving diameter of the membrane portion 36 of the diaphragm portion 35. If the diameter distance SD of the seal portion 33 is made larger than the diameter distance MD of the diaphragm portion 35 based on the diameter distance MD (SD> MD), the valve body is moved from the controlled fluid to the film portion 36 of the diaphragm portion 35. The force acting on the valve portion 32 in the valve body forward direction (downward in the figure) X from the controlled fluid becomes larger than the force acting in the backward direction (upward in the figure) Y. Therefore, when the fluid pressure on the outlet 22 side (secondary side) becomes higher than the fluid pressure on the inlet 21 side and the controlled fluid on the outlet 22 side tries to flow back to the inlet 21 side, the valve 30 force acts in X (downward in the drawing) the valve body forward direction, the valve unit 32 it is possible to prevent backflow of the controlled fluid seated on the valve seat 23.
[0017]
The pressure adjusting means 40 is provided outside the valve chamber 20 of the diaphragm portion 35, constantly adjusts the pressure of the poppet valve body 30 in the forward direction X (pressurizes in the embodiment), and controls the valve portion by the inflow pressure of the fluid to be controlled. It is configured to open 32 seal portions 33, that is, the inflow port 21. In this embodiment, the pressure adjusting means 40 adjusts the pressure of the piston 41 integrally formed with the valve shaft 31 of the poppet valve body 30, the cylinder portion 42 into which the piston 41 is inserted, and the piston 41. And a driving mechanism 43 for applying pressure in the embodiment. In the illustrated example, the piston 41 is screwed to a rear portion (an upper portion in the illustrated example) of the valve shaft 31. Needless to say, the method of connecting the piston 41 and the valve shaft 31 is not limited to the screw connection described above. For example, the piston 41 and the valve shaft 31 may be integrally formed. The cylinder portion 42 is fixed to the body 11 by appropriate means.
[0018]
Further, in the embodiment, a spring receiving portion 41d is provided on the rear side (upper side in the figure) of the piston 41, and a spring which constantly urges the piston 41 in the forward direction (downward direction in the figure) X by the spring receiving portion 41d. The body is provided as a drive mechanism 43 that regulates (presses in this example) the piston 41. Further, in this embodiment, a pressure adjusting air mechanism (in this example, a pressurized air mechanism) capable of arbitrarily adjusting the movement of the piston 41 in a backward direction (upward in the figure) and a forward direction (downward in the figure). A) is provided. The pressure regulating air mechanism A includes a supply source A1 for supplying a pressure regulating gas (in this example, a pressurized gas) and an adjustment / control of an electropneumatic converter or an electropneumatic regulator for regulating / controlling the pressure of the pressure regulating gas. It has the device A2. Reference numeral P1 in the drawing denotes a first pressure supply gas to a space between a rear portion (large-diameter portion) 41a of the piston 41 and the inner wall of the cylinder portion 42 and a discharge pressure gas from the space. A port P2 is a second port 44 for supplying a pressure-regulated gas to a space between the central portion (small diameter portion) 41b of the piston 41 and the inner wall of the cylinder portion 42 and discharging the pressure-regulated gas from the space. Sealing member such as packing interposed between the rear portion 41a of the piston 41 and the inner wall of the cylinder portion 42, sealing member 45 such as packing interposed between the front portion 41c of the piston 41 and the inner wall of the cylinder portion 42, 46 It is a breathing hole formed to allow air in the rear (outer) space of the diaphragm 35 to enter and exit outside.
[0019]
The drive mechanism 43 for adjusting the pressure of the piston 41 is not limited to a spring body. The drive mechanism 43 may adjust the pressure of the piston 41 only with the pressure-adjusted gas by the pressure-adjusted air mechanism A, or may adjust the load. The pressure of the piston 41 may be adjusted by a spring device or a solenoid. When a load-adjustable spring device is used as the driving mechanism 43, a servo motor or the like may be connected to the load-adjustable spring device so that the spring constant can be automatically controlled.
[0020]
Next, an operation example of the check valve 10 having the above structure will be described.
In the check valve 10, when the fluid pressure on the inflow port 21 side (primary side) becomes a predetermined value or more, as shown in FIG. The seal portion 33 of the valve portion 32 of the valve body 30 is separated from the valve seat 23, and the seal portion 33 of the valve portion 32 is opened (more specifically, fluid flow between the seal portion 33 and the valve seat 23). By forming a space), the controlled fluid flows from the inlet 21 to the outlet 22 (forward direction).
[0021]
On the other hand, if the fluid pressure on the outlet 22 side (secondary side) becomes higher than the fluid pressure on the inlet 21 side, the controlled fluid on the outlet 22 side tends to flow back to the inlet 21 side. As described above, the diameter distance SD of the seal portion 33 of the valve portion 32 is formed to be larger than the diameter distance MD at a position where the maximum diameter L1 of the membrane portion 36 and the minimum diameter L2 of the membrane portion 36 of the diaphragm portion 35 are divided into two. Therefore, the force acting on the pressure receiving portion 34 of the valve portion 32 in the valve body forward direction X from the controlled fluid acts on the membrane portion 36 of the diaphragm portion 35 from the controlled fluid in the valve body retreating direction Y. 2, the valve portion 32 is seated on the valve seat 23 and the seal portion 33 of the valve portion 32 is closed, thereby preventing the controlled fluid from flowing backward.
[0022]
In the check valve 10, when the inflow port 21 is in the open state, the pressure adjusting air mechanism A causes the rear portion (large diameter portion) 41 a of the piston 41 to communicate with the inner wall of the cylinder portion 42 via the first port P 1. The piston 41 is pushed in the forward direction X, and the poppet valve body 30 moves forward, and the inflow port 21, more precisely, the seal portion 33 of the valve portion 32 is closed. On the other hand, when the inflow port 21 is in the closed state, the pressure adjusting gas is supplied to the space between the central portion (small diameter portion) 41b of the piston 41 and the inner wall of the cylinder portion 42 through the second port P2 by the pressure adjusting air mechanism A. By causing the inflow, the piston 41 is pushed in the retreating direction Y, and the poppet valve body 30 retreats, and the inflow port 21, or more precisely, the seal portion 33 of the valve portion 32 is opened. That is, in the check valve 10, the poppet valve body 30 can be freely controlled, and the inflow port 21 can be arbitrarily opened and closed.
[0023]
The present invention is not limited to the above-described embodiment, and can be implemented by appropriately changing a part of the configuration without departing from the spirit of the invention. For example, as in a check valve 10A shown in FIG. 3, a seal portion 33A of a valve portion 32A of a poppet valve body 30A is formed by a protrusion formed on a front end surface (outside of the front end surface in the figure) of the valve portion 32A. May be done. In this case, the diameter distance SD of the seal portion 33A of the valve portion 32A is equal to or larger than the opening diameter (orifice diameter) OD inside the valve seat 23. In FIG. 3, the same members as those in the embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted.
[0024]
Further, in the check valve 10 of the above embodiment, two ports P1 and P2 are provided between the piston 41 and the inner wall of the cylinder portion 42 for sending the pressure-regulated gas from the pressure-regulating air mechanism A. The movement of the piston 41 is adjusted by flowing the pressure-regulated gas between the piston 41 and the inner wall of the cylinder portion 42 from the ports P1 and P2. However, the present invention is not limited to this, and any one of the ports P1 and P2 is used. The pressure control gas from the pressure control air mechanism A flows in and out between the piston 41 and the inner wall of the cylinder portion 42 through the port, and pressurizes and depressurizes the piston 41, thereby moving the piston 41. Adjustment may be performed.
[0025]
【The invention's effect】
As described above, in the check valve structure according to the present invention, since there is no biasing means for biasing the valve element such as a spring in the valve chamber, fine dust is generated in the controlled fluid. And the liquid contacting part of the check valve can be made only of a material having high corrosion resistance or high chemical resistance. You can use it optimally.
[0026]
Further, as in the second and third aspects of the present invention, the pressure adjusting means for adjusting the pressure of the poppet valve element includes a piston formed integrally with the valve shaft of the poppet valve element, a cylinder portion into which the piston is inserted, and the piston. With a driving mechanism for adjusting the pressure, the poppet valve can be operated by adjusting the pressure of the poppet with a simple structure and efficiently. In particular, if the driving mechanism for adjusting the pressure of the piston is a spring body that constantly urges the piston in the forward direction, the structure can be further simplified and the cost is also advantageous. is there.
[0027]
Furthermore, if a pressure adjusting air mechanism that allows the piston of the pressure adjusting means to move and adjust in the forward and backward directions is provided as in the invention of claim 4, the poppet valve body can be freely controlled, and can be arbitrarily controlled. Since the inflow port can be opened and closed, a completely new use mode that has been impossible with the conventional check valve of this type is created, and the convenience of the check valve of this type is greatly improved. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a check valve according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a closed state of the check valve.
FIG. 3 is a longitudinal sectional view showing a check valve according to another embodiment.
FIG. 4 is a longitudinal sectional view showing an example of a conventional check valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Check valve 20 Valve room 21 Inflow port 22 Outflow port 30 Poppet valve element 31 Valve shaft 32 Valve part 33 Seal part 34 Pressure receiving part 35 Diaphragm part 36 Membrane part 40 Pressure control means 41 Piston 42 Cylinder part 43 Drive mechanism A Pressure control Air mechanism SD Diameter distance of the seal part of the valve part MD Diameter distance at the position where the maximum diameter of the membrane part and the minimum diameter of the membrane part are divided into two

Claims (4)

被制御流体の流入口(21)と流出口(22)を有し前記流入口と流出口との間に弁座(23)が形成された弁室(20)と、
弁軸(31)と、前記弁軸に膨出状に形成され前側に前記弁座を開閉するシール部(33)及び後側に前記流出口からの流体圧力を受ける受圧部(34)とを有する弁部(32)と、前記弁部の反対側に前記弁軸と一体に形成され前記弁室内に装着されダイヤフラム部(35)とを有するポペット弁体(30)と、
前記ダイヤフラム部の弁室外側に設けられ前記ポペット弁体を常時前進方向に調圧しかつ被制御流体の流入圧によって弁部のシール部を開く調圧手段(40)とを備え
前記ポペット弁体の弁部のシール部の直径距離(SD)を前記ダイヤフラム部の膜部最大径と膜部最小径を2分した位置における直径距離(MD)よりも大きく形成し、被制御流体から前記弁部に対して弁体前進方向(X)に作用する力が、被制御流体から前記ダイヤフラム部の膜部に対して弁体後退方向(Y)に作用する力よりも大となるようにした
ことを特徴とする逆止弁構造。
The inlet of the controlled fluid (21) and the outlet (22) Yes and the valve seat (23) is formed a valve chamber between the inlet and the outlet (20),
A valve shaft (31) , a seal portion (33) formed in a bulging shape on the valve shaft to open and close the valve seat on the front side, and a pressure receiving portion (34) on the rear side for receiving fluid pressure from the outlet. the valve unit having a (32), the valve shaft and is formed integrally the valve diaphragm mounted in the room on the opposite side of the valve portion (35) poppet valve body (30) which have a and,
Pressure regulating means (40) provided outside the valve chamber of the diaphragm section to constantly regulate the pressure of the poppet valve body in the forward direction and to open the seal section of the valve section by the inflow pressure of the controlled fluid ;
A diameter distance (SD) of the seal portion of the valve portion of the poppet valve body is formed to be larger than a diameter distance (MD) at a position where the maximum diameter and the minimum diameter of the membrane portion of the diaphragm portion are divided into two. Thus, the force acting on the valve portion in the valve body forward direction (X) is greater than the force acting on the membrane portion of the diaphragm portion from the controlled fluid in the valve body retreat direction (Y). check valve structure, characterized in that <br/> you.
請求項1において、前記調圧手段が、前記弁軸と一体に形成されたピストンと該ピストンが嵌挿されるシリンダ部と前記ピストンを調圧する駆動機構からなる逆止弁構造。2. The check valve structure according to claim 1, wherein the pressure adjusting means comprises a piston formed integrally with the valve shaft, a cylinder portion into which the piston is inserted, and a drive mechanism for adjusting the pressure of the piston. 請求項2において、前記ピストンを調圧する駆動機構が前記ピストンを常時前進方向に付勢するバネ体である逆止弁構造。3. The check valve structure according to claim 2, wherein the drive mechanism for adjusting the pressure of the piston is a spring that constantly biases the piston in the forward direction. 請求項2または3において、前記調圧手段のピストンを前進方向及び後退方向に移動調整可能とする調圧エア機構を有する逆止弁構造。The check valve structure according to claim 2 or 3, further comprising a pressure adjusting air mechanism that enables movement and adjustment of a piston of the pressure adjusting means in a forward direction and a backward direction.
JP2000270492A 2000-09-06 2000-09-06 Check valve structure Expired - Lifetime JP3590572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000270492A JP3590572B2 (en) 2000-09-06 2000-09-06 Check valve structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000270492A JP3590572B2 (en) 2000-09-06 2000-09-06 Check valve structure

Publications (2)

Publication Number Publication Date
JP2002081561A JP2002081561A (en) 2002-03-22
JP3590572B2 true JP3590572B2 (en) 2004-11-17

Family

ID=18756923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000270492A Expired - Lifetime JP3590572B2 (en) 2000-09-06 2000-09-06 Check valve structure

Country Status (1)

Country Link
JP (1) JP3590572B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755392B1 (en) * 2001-02-21 2007-09-04 플로우콘 인터내셔날 에이/에스 A membrane valve with regulation means
JP2012107695A (en) * 2010-11-17 2012-06-07 Advance Denki Kogyo Kk Air-operated valve
JP2016156397A (en) * 2015-02-23 2016-09-01 アドバンス電気工業株式会社 Valve energization structure of fluid control valve
KR20230142332A (en) 2022-03-31 2023-10-11 고후롯크 가부시키가이샤 flow control valve

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3756135B2 (en) * 2002-08-12 2006-03-15 アドバンス電気工業株式会社 Diaphragm valve structure
JP2008190543A (en) * 2007-01-31 2008-08-21 Tokiko Techno Kk Piping joint of liquid supply equipment
JP6446198B2 (en) * 2014-08-07 2018-12-26 日本電産サンキョー株式会社 Valve device
JP6193955B2 (en) * 2014-12-11 2017-09-06 Ckd株式会社 Fluid control valve
JP6950407B2 (en) * 2017-09-28 2021-10-13 株式会社アドヴィックス Vehicle braking control device
US11401955B2 (en) * 2018-02-09 2022-08-02 Vat Holding Ag Piston-cylinder unit
CN118517554B (en) * 2024-07-23 2024-09-13 浙江龙禹阀门有限公司 Check valve and check valve multi-pipeline circulation control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755392B1 (en) * 2001-02-21 2007-09-04 플로우콘 인터내셔날 에이/에스 A membrane valve with regulation means
JP2012107695A (en) * 2010-11-17 2012-06-07 Advance Denki Kogyo Kk Air-operated valve
US8678342B2 (en) 2010-11-17 2014-03-25 Advance Denki Kougyou Kabushiki Kaisha Air-operated valve
JP2016156397A (en) * 2015-02-23 2016-09-01 アドバンス電気工業株式会社 Valve energization structure of fluid control valve
KR20230142332A (en) 2022-03-31 2023-10-11 고후롯크 가부시키가이샤 flow control valve

Also Published As

Publication number Publication date
JP2002081561A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JP3467438B2 (en) Back pressure control valve
US7090190B2 (en) Flow control valve
JP3590572B2 (en) Check valve structure
JP5041427B2 (en) Flow control device
WO2004090402A1 (en) Fluid operating valve
WO2006025466A1 (en) Adjustment valve
JPH10153269A (en) Speed controller with pilot check valve
CN100383443C (en) Fluid control valve
WO2005064214A1 (en) Constant flow valve
WO2005074510A3 (en) Device for the regulation of flow applied to flow valves working under pressure differential
JP2004176812A (en) Constant flow rate valve
JP4536268B2 (en) Pressure control valve
US20030155541A1 (en) Pressure enhanced diaphragm valve
JP3301060B2 (en) Pressure reducing valve
US5947690A (en) Actuator valve for pressure switch for a fluidic system
JP2005129427A (en) Gas pressure reducing valve for fuel cell and fuel cell power generation system
JP5085404B2 (en) Flow control device
US6227241B1 (en) Actuator valve for pressure switch for a fluidic system
JP3160276U (en) Pressure control valve
JP4763936B2 (en) Gas purging method and structure in valve
JP2004028312A (en) Pneumatic valve with manual closing mechanism
JP3847132B2 (en) Mixing valve
KR200226696Y1 (en) Water flow control valve
JP2004069040A (en) Pressure reducing valve provided with manual closure mechanism
JP2004078347A (en) Valve with constant flow-rate bypass flow passage

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040623

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

R150 Certificate of patent or registration of utility model

Ref document number: 3590572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term