JP3590526B2 - Composite - Google Patents

Composite Download PDF

Info

Publication number
JP3590526B2
JP3590526B2 JP18743698A JP18743698A JP3590526B2 JP 3590526 B2 JP3590526 B2 JP 3590526B2 JP 18743698 A JP18743698 A JP 18743698A JP 18743698 A JP18743698 A JP 18743698A JP 3590526 B2 JP3590526 B2 JP 3590526B2
Authority
JP
Japan
Prior art keywords
fiber
core material
composite sheet
reinforced composite
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18743698A
Other languages
Japanese (ja)
Other versions
JP2000015682A (en
Inventor
尚志 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP18743698A priority Critical patent/JP3590526B2/en
Publication of JP2000015682A publication Critical patent/JP2000015682A/en
Application granted granted Critical
Publication of JP3590526B2 publication Critical patent/JP3590526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は補強芯材の周囲に熱可塑性樹脂が押出被覆されてなる複合材に関する。特に、軒樋に好適な複合材に関する。
【0002】
【従来の技術】
本発明は、低伸縮性、耐熱性に優れた押出成形品に関するものである。ここで、雨樋を例にとってみると、従来、雨樋としては硬質の塩化ビニール樹脂を使用して押出成形して成形されるのが一般である。ところが、雨樋は軒先に取り付けられる関係上、特に低伸縮性や耐熱性が要求されるもので、上記雨樋では熱伸縮や熱変形を大きく、変形によるひび割れ等も発生して、雨樋としての機能を果して得なくなる恐れがある。そこで、熱可塑性樹脂と一方向または複数の方向に配向したガラス繊維よりなる繊維強化複合シートを雨樋の形状に成形した芯材を形成し、その表面に熱可塑性樹脂を押出被覆することにより、上記、問題を解決しようとする試みがなされている(例えば、特公平6−98691号公報、特公平7−110514号公報)。
【0003】
【発明が解決しようとする課題】
しかし、複合シートとして空隙率が0に近いものを用いた場合には、繊維強化複合シートを雨樋の形状に成形して芯材を形成する際に曲折部で割れや折れが発生したり、また、得られる雨樋の耐衝撃強度が弱い等の問題が発生している。
【0004】
従って、本発明の目的は、上記の如き従来の問題点を解消し、補強芯材中の繊維が、繊維強化複合シートを異形断面に成形する際に割れたり破断されることなく、耐衝撃強度に優れた複合材を提供することである。
【0005】
【課題を解決するための手段】
請求項1記載の本発明の複合材においては、補強芯材の周囲に熱可塑性樹脂が押出被覆されてなる複合材であって、前記補強芯材が、未発泡の熱可塑性樹脂とランダムに配向されたカーボン繊維からなり、空隙率が10〜60%の繊維強化複合シートを異形断面形状に成形したものである。
【0006】
本発明に使用される繊維強化複合シートは、空隙率が10〜60%のものである必要がある。空隙率が10%未満のものと60%を越えるものを異形断面形状に成形して補強芯材とする際に、本発明において繊維強化複合シートの曲折部分で割れや折れが発生する。
上記空隙率とは、繊維強化複合シート中の空隙部分の占有率を示し、内部に形成された空隙部分の体積の繊維強化複合シートの全体積に占める比率である。
本発明に使用される繊維強化複合シートを構成する繊維としては、カーボン繊維が使用され、繊維長さが100μm〜100mm、繊維径が5〜50μmからなるものが好ましい。又、本発明に使用される繊維強化複合シートを構成する熱可塑性樹脂としては種々な熱可塑性樹脂が使用できるが、例えば、塩化ビニル系樹脂、アクリル系樹脂、ポリエチレンテレフタレート、塩化ビニルと他のモノマーとの共重合体、アクリル系モノマーと他のモノマーとの共重合体等が挙げられる。又、補強芯材に被覆される熱可塑性樹脂としては、補強芯材との融着性や成形性から適宜選択されるが、例えば、塩化ビニール樹脂、アクリル樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリエチレン(PE)樹脂、ポリエチレン(PE)樹脂、ナイロン樹脂等が挙げられる。
【0007】
(作用)
本発明の複合材においては、前記補強芯材が、未発泡の熱可塑性樹脂とランダムに配向されたカーボン繊維からなり、空隙率が10〜60%の繊維強化複合シートを異形断面形状に成形したものであることにより、繊維強化複合シート中でカーボン繊維がいずれの方向に対しても均一に配向して補強しており、且つ多くの空隙の存在により熱可塑性樹脂により固定されておらず変形自由度が大きいので、繊維強化複合シートを異形断面形状に成形する際に、異形に曲折した部分でカーボン繊維の割れや破断が発生せず、又、補強芯材の成形安定性が優れている。
【0008】
【発明の実施の形態】
以下、本発明の実施例について説明する。
図1、図2は本発明の複合材の一例の一部を示すもので、図1(イ)は複合材の一部切欠斜視図、(ロ)は芯材の補強芯材の基材となる繊維強化複合シートの一部を示す斜視図、図2は本発明の複合材の一例を示す、断面を示す説明図である。
【0009】
図1及び図2において、1は複合材であり、この複合材1は補強芯材2と、この補強芯材2の周囲を被覆している熱可塑性樹脂3とからなるものである。
補強芯材2の基材となる繊維強化複合シート20は、粉体含浸の方法では、カーボン繊維21と熱可塑性樹脂22を繊維状にして、エアーで飛ばして層状に堆積させ、あるいは液状含浸等の方法では攪拌等により混合して、その後に加熱加圧して、シート状に一体に成形したものである。この繊維強化複合シート20は、図1(ロ)に示すように、未発泡の熱可塑性樹脂22中にカーボン繊維21がランダムに配向され、10〜60%の空隙を有するように、帯状に形成されている。
【0010】
空隙50は、その大きさ、配置はランダムに形成されている。空隙50は、カーボン繊維21と熱可塑性樹脂22を粉体含浸、液状含浸等の方法で繊維強化複合シート20を生成する過程で内部に取り込まれる気泡である。そして、空隙の含有量は加熱加圧時の圧力によって左右される。従って、圧力を上げると空隙50の繊維強化複合シート20の空隙率は下がり、密度の高い繊維強化複合シート20が生成される。一方、圧力を下げると、空隙50の繊維強化複合シート20の空隙率は上がり、密度の低い繊維強化複合シート20が生成されることになる。
【0011】
補強芯材2は、図2に示すように、軒樋形状(異形断面形状)に成形されている。補強芯材2の周囲に熱可塑性樹脂3が被覆されて軒樋形状に成形した複合材1とされている。
【0012】
以下、本発明の複合材の製造方法の一例を図3及び図4を参照して説明する。
【0013】
図3に示すように、6は繊維強化複合シート20を補強芯材2に成形するプレフォーミング装置である。
押出機5は、ホッパー51と、バレルと、このバレルの中に設けられているスクリューとからなる。7はクロスヘッドダイからなる金型であり、この金型7は押出機5の先端に取り付けられている。この金型7は軒樋1とほぼ同じ形状の隙間71を有している。
【0014】
図4に示すように、65は金型7からほぼ軒樋形状に押し出される複合材1を冷却するサイジング装置である。
8は上下にキャタピラー81、81が設けられている引取装置であり、複合材1を上下のキャタピラー81、81で挟んで引き取るようになっている。
【0015】
繊維強化複合シート20をプレフォーミング装置6でほぼ軒樋形状に成形して補強芯材を得て、この補強芯材を金型7の隙間71の中を通過させる。
一方、押出機5のホッパー51に熱可塑性樹脂3を入れて押出機5を稼働させる。すると、スクリューの回転により、このホッパー51の中の熱可塑性樹脂3がバレルの中を金型7の方向に進む。
【0016】
この熱可塑性樹脂3はバレルの中を進んでいる間にバレルの周囲に取り付けられているヒーターにより溶融され、金型7内の樹脂通路72を通って補強芯材2の上下から押し出され、補強芯材2の周囲を被覆する。その結果、補強芯材2の周囲が熱可塑性樹脂3で被覆され、ほぼ軒樋形状に成形された複合材1となって押し出される。
【0017】
このようにして押し出された複合材1は、前記補強芯材2が、未発泡の熱可塑性樹脂22とランダムに配向されたカーボン繊維21からなり、カーボン繊維21がいずれの方向に対しても均一に配向して芯材を補強している。更に、空隙率が10〜60%の繊維強化複合シート20を異形断面形状に成形したものであるので、繊維強化複合シート20は、多くの空隙の存在により熱可塑性樹脂22により固定されておらず変形自由度が大きい。その為に、繊維強化複合シート20を異形断面形状に成形する際に、異形に曲折した部分でカーボン繊維21の割れや破断が発生せず、又、補強芯材2の成形安定性が優れている。
【0018】
実施例
ポリエチレンテレフタレートと、ランダムに配向されたカーボン繊維からなり、空隙率40%の図1(ロ)に示す如き繊維強化複合シート20を用いて、図3を参照して説明した工程により、補強芯材2を形成し、その両面にポリエチレン樹脂を押出被覆して、図2に示す如き複合材1を得た。
比較例
空隙率が50%の繊維強化複合シートを用いたこと以外は実施例と同様にして複合材1を得た。
実施例及び比較例で得られた複合材についてデュポン衝撃試験を行って複合材1の安定性と衝撃強度を比較した。
その結果、複合材のデュポン衝撃試験(23°C、重り200g)は、実施例では、落下距離380ミリ、比較例では、落下距離150ミリであった。
又、実施例及び比較例における成形時の補強芯材2の成形安定性を評価した。その結果実施例では、カーボン繊維21の割れ、裂けは無かったが、比較例では、裂けが発生した。
【0019】
【発明の効果】
請求項1記載の本発明の複合材においては、上記の通りとされているので、繊維強化複合シートを異形断面形状に成形して補強芯材を形成する際に、異形に曲折した部分でカーボン繊維の割れや破断が発生せず、又、補強芯材の成形安定性が優れており、又、補強芯材中にはカーボン繊維が方向性なく均一に配向しており、この補強芯材を中間に存しているので耐衝撃強度に優れている。
【図面の簡単な説明】
【図1】本発明の複合材の一例の一部を示すもので、(イ)は複合材の一部切欠斜視図、(ロ)は補強芯材の基材となる繊維強化複合シートの一部を示す斜視図である。
【図2】本発明の複合材の一実施例の断面図である。
【図3】本発明の複合材の工程を説明する説明図である。
【図4】クロスヘッドダイ部分の断面図である。
【符号の説明】
1 複合材(軒樋)
2 補強芯材
3 熱可塑性樹脂
20 繊維強化複合シート
21 カーボン繊維
22 熱可塑性樹脂
5 押出機
6 プレフォーミング装置
65 サイジング装置
7 クロスヘッドダイ
8 引取装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite material in which a thermoplastic resin is extrusion-coated around a reinforcing core material. In particular, it relates to a composite material suitable for an eaves gutter.
[0002]
[Prior art]
The present invention relates to an extruded product excellent in low elasticity and heat resistance. Here, taking a rain gutter as an example, conventionally, a rain gutter is generally formed by extrusion molding using hard vinyl chloride resin. However, rain gutters are particularly required to have low elasticity and heat resistance because they are attached to the eaves.The above-mentioned rain gutters have large thermal expansion and contraction and thermal deformation, and cracks due to deformation also occur. There is a possibility that the function of the above will not be achieved. Therefore, by forming a core material formed by molding a thermoplastic resin and a fiber reinforced composite sheet made of glass fibers oriented in one direction or a plurality of directions into the shape of a rain gutter, by extrusion-coating the surface with the thermoplastic resin, Attempts have been made to solve the above problems (for example, Japanese Patent Publication No. Hei 6-98691 and Japanese Patent Publication No. Hei 7-110514).
[0003]
[Problems to be solved by the invention]
However, when a porosity close to 0 is used as the composite sheet, cracks or breaks occur at the bent portion when the fiber reinforced composite sheet is formed into a rain gutter shape to form a core material, In addition, there is a problem that the obtained gutter has low impact resistance.
[0004]
Therefore, an object of the present invention is to solve the conventional problems as described above, and the fiber in the reinforcing core material is not cracked or broken when the fiber-reinforced composite sheet is formed into an irregular cross-section, and the impact strength is improved. It is to provide an excellent composite material.
[0005]
[Means for Solving the Problems]
In the composite material of the present invention described in claim 1, a composite thermoplastic resin is formed by extrusion coated around the reinforcing core, the reinforcing core material, randomly oriented thermoplastic resin unfoamed A fiber-reinforced composite sheet having a porosity of 10 to 60%, which is made of a carbon fiber prepared as described above, and formed into an irregular cross-sectional shape.
[0006]
The fiber reinforced composite sheet used in the present invention needs to have a porosity of 10 to 60%. In the present invention, when a material having a porosity of less than 10% and a material having a porosity of more than 60% are formed into a modified cross-sectional shape to form a reinforcing core material, cracks and breaks occur in the bent portion of the fiber-reinforced composite sheet.
The porosity indicates the occupancy of voids in the fiber-reinforced composite sheet, and is the ratio of the volume of voids formed therein to the total volume of the fiber-reinforced composite sheet.
As the fibers constituting the fiber-reinforced composite sheet used in the present invention, carbon fibers are used, and those having a fiber length of 100 μm to 100 mm and a fiber diameter of 5 to 50 μm are preferable. As the thermoplastic resin constituting the fiber-reinforced composite sheet used in the present invention, various thermoplastic resins can be used. For example, vinyl chloride resin, acrylic resin, polyethylene terephthalate, vinyl chloride and other monomers And a copolymer of an acrylic monomer and another monomer. The thermoplastic resin to be coated on the reinforcing core material is appropriately selected from the fusing property with the reinforcing core material and moldability. Examples thereof include vinyl chloride resin, acrylic resin, polyethylene terephthalate (PET) resin, and polyethylene. (PE) resin, polyethylene (PE) resin, nylon resin and the like.
[0007]
(Action)
In the composite material of the present invention, the reinforcing core material is formed of a non-foamed thermoplastic resin and randomly oriented carbon fibers, and a porosity of 10 to 60% is formed into a fiber-reinforced composite sheet having an irregular cross-sectional shape. The carbon fibers are uniformly oriented in any direction in the fiber reinforced composite sheet and reinforced in the fiber reinforced composite sheet, and because there are many voids, they are not fixed by the thermoplastic resin and are free to deform. Since the degree is large, when forming the fiber reinforced composite sheet into an irregular cross-sectional shape, the carbon fiber is not cracked or broken at a portion bent in an irregular shape, and the molding stability of the reinforcing core material is excellent.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, examples of the present invention will be described.
1 and 2 show a part of an example of the composite material of the present invention. FIG. 1A is a partially cutaway perspective view of the composite material, and FIG. FIG. 2 is a perspective view showing a part of the fiber-reinforced composite sheet of FIG. 2, and FIG. 2 is an explanatory view showing a cross section of an example of the composite material of the present invention.
[0009]
1 and 2, reference numeral 1 denotes a composite material. The composite material 1 is composed of a reinforcing core material 2 and a thermoplastic resin 3 covering the periphery of the reinforcing core material 2.
The fiber-reinforced composite sheet 20 serving as the base material of the reinforcing core material 2 is formed into a fibrous carbon fiber 21 and a thermoplastic resin 22 by a method of powder impregnation, and is blown by air to be deposited in a layer form, or is impregnated with a liquid. In the method (2), the mixture is mixed by stirring or the like, and then heated and pressurized to be integrally formed into a sheet. The fiber-reinforced composite sheet 20, as shown in FIG. 1 (b), the carbon fibers 21 are oriented randomly in the unfoamed thermoplastic resin 22, so as to have 10 to 60% voids, formed in a strip Have been.
[0010]
The size and arrangement of the voids 50 are randomly formed. The void 50 is a bubble that is taken in during the process of producing the fiber-reinforced composite sheet 20 by a method such as powder impregnation or liquid impregnation of the carbon fiber 21 and the thermoplastic resin 22. The content of the voids depends on the pressure at the time of heating and pressing. Therefore, when the pressure is increased, the porosity of the fiber-reinforced composite sheet 20 in the void 50 is reduced, and the fiber-reinforced composite sheet 20 having a high density is generated. On the other hand, when the pressure is reduced, the porosity of the fiber-reinforced composite sheet 20 in the void 50 increases, and the fiber-reinforced composite sheet 20 having a low density is generated.
[0011]
As shown in FIG. 2, the reinforcing core material 2 is formed in an eaves gutter shape (irregular sectional shape). The composite material 1 has a reinforcing core 2 covered with a thermoplastic resin 3 and molded into an eaves gutter shape.
[0012]
Hereinafter, an example of the method for producing a composite material of the present invention will be described with reference to FIGS .
[0013]
As shown in FIG. 3, reference numeral 6 denotes a preforming device for forming the fiber-reinforced composite sheet 20 into the reinforcing core material 2.
The extruder 5 includes a hopper 51, a barrel, and a screw provided in the barrel. Reference numeral 7 denotes a mold composed of a crosshead die. The mold 7 is attached to the tip of the extruder 5. The mold 7 has a gap 71 having substantially the same shape as the eaves gutter 1.
[0014]
As shown in FIG. 4, reference numeral 65 denotes a sizing device for cooling the composite material 1 extruded from the mold 7 into a substantially eaves gutter shape.
Reference numeral 8 denotes a take-up device provided with upper and lower caterpillars 81, 81, and is configured to pick up the composite material 1 between the upper and lower caterpillars 81, 81.
[0015]
The fiber reinforced composite sheet 20 is formed into a substantially eaves gutter shape by the preforming device 6 to obtain a reinforcing core material, and the reinforcing core material is passed through the gap 71 of the mold 7.
On the other hand, the thermoplastic resin 3 is put into the hopper 51 of the extruder 5, and the extruder 5 is operated. Then, the rotation of the screw causes the thermoplastic resin 3 in the hopper 51 to move in the barrel toward the mold 7.
[0016]
The thermoplastic resin 3 is melted by a heater attached around the barrel while traveling through the barrel, and is extruded from above and below the reinforcing core 2 through a resin passage 72 in the mold 7 to reinforce the thermoplastic resin. The periphery of the core material 2 is covered. As a result, the periphery of the reinforcing core material 2 is covered with the thermoplastic resin 3, and is extruded as a composite material 1 formed into a substantially eaves gutter shape.
[0017]
In the composite material 1 extruded in this manner, the reinforcing core material 2 is composed of an unfoamed thermoplastic resin 22 and randomly oriented carbon fibers 21, and the carbon fibers 21 are uniform in any direction. Orientation to reinforce the core material. Furthermore, since the fiber reinforced composite sheet 20 having a porosity of 10 to 60% is formed into an irregular cross-sectional shape, the fiber reinforced composite sheet 20 is not fixed by the thermoplastic resin 22 due to the presence of many voids. Large degree of freedom of deformation. Therefore, when the fiber reinforced composite sheet 20 is formed into an irregular cross-sectional shape, the carbon fiber 21 does not crack or break at the irregularly bent portion, and the molding stability of the reinforcing core material 2 is excellent. I have.
[0018]
EXAMPLE A fiber reinforced composite sheet 20 made of polyethylene terephthalate and randomly oriented carbon fibers and having a porosity of 40% as shown in FIG. 1B was reinforced by the process described with reference to FIG. A core material 2 was formed, and a polyethylene resin was extrusion-coated on both surfaces thereof to obtain a composite material 1 as shown in FIG.
Comparative Example 1 A composite material 1 was obtained in the same manner as in Example except that a fiber reinforced composite sheet having a porosity of 50% was used.
The composite materials obtained in the examples and comparative examples were subjected to a DuPont impact test to compare the stability and impact strength of the composite material 1.
As a result, in the DuPont impact test (23 ° C., weight 200 g) of the composite material, the drop distance was 380 mm in the example and the drop distance was 150 mm in the comparative example.
In addition, the molding stability of the reinforcing core material 2 at the time of molding in Examples and Comparative Examples was evaluated. As a result, the carbon fibers 21 were not cracked or torn in the example, but torn in the comparative example.
[0019]
【The invention's effect】
In the composite material according to the first aspect of the present invention, when the fiber-reinforced composite sheet is formed into an irregular cross-sectional shape to form a reinforcing core material, carbon is formed at an irregularly bent portion. No cracking or breakage of the fiber occurs, and the molding stability of the reinforcing core material is excellent, and carbon fibers are uniformly oriented in the reinforcing core material without any directionality. It has excellent impact resistance because it exists in the middle.
[Brief description of the drawings]
FIG. 1 shows a part of an example of a composite material of the present invention, (a) is a partially cutaway perspective view of the composite material, and (b) is a fiber-reinforced composite sheet serving as a base material of a reinforcing core material. It is a perspective view which shows a part.
FIG. 2 is a cross-sectional view of one embodiment of the composite material of the present invention.
FIG. 3 is an explanatory view illustrating a process of the composite material of the present invention.
FIG. 4 is a cross-sectional view of a crosshead die portion.
[Explanation of symbols]
1 Composite material (eave gutter)
2 Reinforcement core material 3 Thermoplastic resin 20 Fiber reinforced composite sheet 21 Carbon fiber 22 Thermoplastic resin 5 Extruder 6 Preforming device 65 Sizing device 7 Crosshead die 8 Take-off device

Claims (1)

補強芯材の周囲に熱可塑性樹脂が押出被覆されてなる複合材であって、前記補強芯材が、未発泡の熱可塑性樹脂とランダムに配向されたカーボン繊維からなり、空隙率が10〜60%の繊維強化複合シートを異形断面形状に成形したものであることを特徴とする複合材。A composite material obtained by extrusion-coating a thermoplastic resin around a reinforcing core material, wherein the reinforcing core material is made of an unfoamed thermoplastic resin and randomly oriented carbon fibers, and has a porosity of 10 to 60. % Of a fiber-reinforced composite sheet formed into an irregular cross-sectional shape.
JP18743698A 1998-07-02 1998-07-02 Composite Expired - Fee Related JP3590526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18743698A JP3590526B2 (en) 1998-07-02 1998-07-02 Composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18743698A JP3590526B2 (en) 1998-07-02 1998-07-02 Composite

Publications (2)

Publication Number Publication Date
JP2000015682A JP2000015682A (en) 2000-01-18
JP3590526B2 true JP3590526B2 (en) 2004-11-17

Family

ID=16206037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18743698A Expired - Fee Related JP3590526B2 (en) 1998-07-02 1998-07-02 Composite

Country Status (1)

Country Link
JP (1) JP3590526B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI239289B (en) * 2000-07-11 2005-09-11 Araco Kk Resin laminate and methods and devices for making the same

Also Published As

Publication number Publication date
JP2000015682A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
EP1237711B1 (en) A reinforcing structure for composite articles
US4946738A (en) Non-woven fibrous product
KR20130088033A (en) Method for forming reinforced pultruded profiles
KR20130112710A (en) Reinforced hollow profiles
US6178277B1 (en) Multi-layer reinforced and stabilized cable construction
JP4405080B2 (en) Coated long fiber reinforced composite structure and method for producing the same
JP3590526B2 (en) Composite
JP3396401B2 (en) Composite molded products
JPH10315339A (en) Method and apparatus for manufacturing profile section composite material
JPH0249222B2 (en)
JPH079589A (en) Production of bamper beam
JPH02217231A (en) Fiber reinforced synthetic resin molded form and production thereof
JP2579568B2 (en) Method for producing glass fiber reinforced sheet
JP3884524B2 (en) Laminated molded product and manufacturing method thereof
JP3763918B2 (en) Fiber composite gutter and its manufacturing method
JP2702546B2 (en) Long composite molded article and method for producing the same
JPH0822566B2 (en) Method for manufacturing long composite molded body
JPH07112701B2 (en) Method for manufacturing long composite molded body
JP2000108190A (en) Fiber composite molding and its manufacture
JP3169493B2 (en) Rain gutter made of fiber composite resin and manufacturing method thereof
JPH10323878A (en) Long glass fiber reinforced thermoplastic resin profile extrusion molded product
JP2874951B2 (en) Eaves gutter manufacturing method
JPH10193486A (en) Composite material
JP2533662B2 (en) Manufacturing method of eaves gutter
JPH11324251A (en) Fiber composite rain gutter and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees