JP3590454B2 - Oxide core material for high frequency - Google Patents

Oxide core material for high frequency Download PDF

Info

Publication number
JP3590454B2
JP3590454B2 JP17399195A JP17399195A JP3590454B2 JP 3590454 B2 JP3590454 B2 JP 3590454B2 JP 17399195 A JP17399195 A JP 17399195A JP 17399195 A JP17399195 A JP 17399195A JP 3590454 B2 JP3590454 B2 JP 3590454B2
Authority
JP
Japan
Prior art keywords
mhz
core material
frequency
magnetic core
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17399195A
Other languages
Japanese (ja)
Other versions
JPH097815A (en
Inventor
元 大学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP17399195A priority Critical patent/JP3590454B2/en
Publication of JPH097815A publication Critical patent/JPH097815A/en
Application granted granted Critical
Publication of JP3590454B2 publication Critical patent/JP3590454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Description

【0001】
【産業上の利用分野】
本発明は、高周波用酸化物磁芯材料に関し、特に、高周波域で使用されるスピネル型フェライト磁芯材料に関するものである。
【0002】
【従来の技術】
近年、電子機器技術の進歩により、電子機器内で扱われる信号の周波数帯域が高周波側に広がり、その帯域は、10MHz〜数GHzまで及んでいる。
【0003】
従来、このような高周波域で使用されるインダクタンス素子用の軟磁性材料には、金属に比べ電気抵抗が高く、周波数特性が優れていることから、Mn−Zn系フェライト、Ni−Zn系フェライト、Mg−Mn系フェライトで代表されるようなスピネル型フェライトが使用されてきた。
【0004】
【発明が解決しようとする課題】
しかし、高周波帯域用インダクタンス素子に用いられる従来のNi−Zn,Ni−Zn−Cu系フェライトは、通常、約10MHz以下の周波数を対象にした磁芯材料であり、それ以上の周波数帯域では、実効透磁率の温度変化、及び損失が極めて大きく、磁芯材料としては、使用が不可能であるという欠点を有していた。そのため、電子機器の駆動周波数の高周波化への対応が困難であった。
【0005】
そこで、本発明の課題は、これらの欠点を排除し、実効透磁率の温度変化、及び損失が小さく、30MHz以上での適用を可能とした高周波酸化物磁芯材料を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、検討を重ねた結果、Ni,Zn,Cu,Fe,Bi,Coの酸化物を主成分として含有するスピネル型フェライトにおいて、その組成比をa[Ni(1-x)・Cux]O・bZnO・cFe23・dBi23・eCoOとし、かつ、その範囲をa+b+c+d+e=100,0.1≦x≦0.8,0≦b≦14,23≦c≦46,0<d≦1,0<e≦0.5,b+c+d+e≦47とすることにより、30MHz以上の周波数帯に適用できるスピネル型フェライト磁芯材料を工業的に有用に製造できることを見い出した。
【0007】
即ち、本発明は、Ni,Zn,Cu,Fe,Bi,Coの酸化物を主成分として含有する高周波用酸化物磁芯材料において、その組成比がa[Ni(1-x)・Cux]O・bZnO・cFe23・dBi23・eCoO(但し、a+b+c+d+e=100,0.1≦x≦0.8,0≦b≦14,23≦c≦46,0<d≦1,0<e≦0.5,b+c+d+e≦47)で表されることを特徴とする高周波用酸化物磁芯材料である。
【0008】
本発明では、材料特性の評価をμ30MHz,Qmax,fQmax,△μで行っている。μ30MHzは、30MHzにおける実効透磁率を表し、この値はインダクタンスを高くとれることから、高い方がよいが、一般的には、高すぎると、高周波特性が低下するという関係にある。又、Qmaxは、Q(損失係数tanδの逆数)の最大値を示すものである。fQmaxは、Qmaxが最大値を示した周波数を示し、この周波数前後が磁芯材料としては有効に動作できる範囲となる。又、△μは、20℃でのμ値を基準とした場合の0〜80℃におけるμの温度変化率を示し、次式より求めた。
【0009】
△μ=(μ80−μ)/μ20/80×100
ここで、μ,μ20,μ80は、各々0℃,20℃,80℃におけるμの値を示している。
【0010】
【作用】
本発明の酸化物磁芯材料の組成比a[Ni(1−x)・Cu]O・bZnO・cFe・dBi・eCoO(但し、a+b+c+d+e=100)において、0.1≦x≦0.8と限定したのは、この範囲を超えると、μの温度特性が著しく劣化し、このような磁芯材料を用いてインダクタンス素子を作製した場合、温度に対するインダクタンスの変動が大きくなり、信頼性という点で不利益となるからである。
【0011】
又、0≦b≦14,23≦c≦46,b+c+d+e≦47と限定したのは、b=14,c=46,b+c+d+e=47を越えると、fQmaxが30MHz以下となり、本発明の課題である30MHz以上に適用できる高周波磁芯材料とならなくなるためである。又、cが23より小さくなると、Qmaxが減少し、工業的に不利益となるからである。
【0012】
0<d≦1としたのは、その範囲では△μが小さくなるからである。又、dが1.0を越えると、Qmaxが減少し、工業的に不利益となるからである。0<e≦0.5としたのは、その範囲ではQmaxが増加するからである。又、eが0.5を越えると、△μが大きくなり、工業的に不利益となるからである。
【0013】
なお、Biについての効果は、一般に、△μの改善及びQmaxの向上が認められており、又、CoOについても、Qmaxの向上及びfQmaxの高周波化に寄与することは認められているが、本発明では、前記組成に対して添加することにより、更に、改善が見られた。
【0014】
【実施例】
以下に、本発明の実施例について説明する。
【0015】
(実施例1)
原料として、酸化鉄(α−Fe)、酸化ニッケル(NiO)、酸化第二銅(CuO)、酸化亜鉛(ZnO)、酸化ビスマス(Bi)、三二酸化コバルト(Co)を、化学組成比が60[Ni(1−x)・Cu]O・5ZnO・34Fe・0.5Bi・0.5CoO(但し、x=0,0.1,0.2,03.,0.4,0.5,0.6,0.7,0.8,0.9)となるように調整し、ボールミルにて20時間湿式混合した。ここで、原料粉末は、粒度が全て0.5μm以下のものを使用した。
【0016】
次に、これらの原料混合粉末を大気中800℃で2時間仮焼した後、ボールミルにて3時間湿式粉砕し、成形用粉末とした。
【0017】
次いで、これらの成形用粉末を外径10mm、内径2mmの金型を用いて、高さ10mmの成形体となるように、成形圧2ton/cmで圧縮成形した。
【0018】
更に、これらの成形体を大気中、徐熱、炉冷にて、930℃で4時間保持し、焼結した。これらの焼結体は、外径約8.5mm、内径約1.7mm、高さ約7.5mmであった。
次に、これらの焼結体の磁芯特性を測定した。その結果を図1に示す。
【0019】
図1に示すように、x=0.1〜0.8の範囲を越えると、△μが著しく大きくなることがわかる。従って、この範囲が有用な組成であることがわかる。
【0020】
(実施例2)
実施例1と同様にして、化学組成比がa(Ni0.7・Cu0.3)O・bZnO・23Fe・0.5Bi・0.5CoO(但し、a+b=52,b=0,2,4,6,8,10,12,14,16,18,20)となるように、成形用粉末を作製し、成形体を得た。
次に、これらの成形体を930℃で2時間焼結し、磁芯特性を測定した。その結果を図2に示す。
【0021】
図2に示すように、b=14を越えると、fQmaxが30MHzより小さくなることがわかる。従って、b=0〜8の組成範囲が有用であることがわかる。
【0022】
(実施例3)
実施例1と同様にして、化学組成比がa(Ni0.7・Cu0.3)O・cFe・0.5Bi・0.5CoO(但し、a+c=99,c=22,23,24,26,28,42,44,46,47,48)となるように、成形用粉末を作製し、成形体を得た。
次に、これらの成形体を930℃で2時間焼結し、磁芯特性を測定した。その結果を図3に示す。
【0023】
図3に示すように、c=23より小さくなると、Qmaxが著しく低下することがわかる。又、c=46を越えると、fQmaxが30MHz以下となることがわかる。従って、c=23〜46の範囲が有用な組成であることがわかる。
【0024】
(実施例4)
実施例1と同様にして、化学組成比がa(Ni0.7・Cu0.3)O・5ZnO・34Fe・dBi・0.5CoO(但し、a+d=60.5,d=0,0.2,0.4,0.6,0.8,1.0,1.2)となるように、成形用粉末を作製し、成形体を得た。
次に、これらの成形体を930℃で2時間焼結し、磁芯特性を測定した。その結果を図4に示す。
【0025】
図4に示すように、d>0とすることにより、△μが著しく低下している。又、d=1.0を越えると、Qmaxが低下し、fQmaxも30MHz以下となっている。従って、d=0〜1.0(但し、0は含まず)の範囲が有用な組成であることがわかる。
【0026】
(実施例5)
実施例1と同様にして、化学組成比がa(Ni0.7・Cu0.3)O・5ZnO・34Fe・0.5Bi・eCoO(但し、a+e=60.5,e=0,0.1,0.2,0.3,0.4,0.5,0.6)となるように、成形用粉末を作製し、成形体を得た。
次に、これらの成形体を930℃で2時間焼結し、磁芯特性を測定した。その結果を図5に示す。
【0027】
図5に示すように、e>0とすることにより、Qmaxの増加が認められる。又、e=0.5を越えると、△μが著しく大きくなっている。従って、e=0〜0.5(但し、0は含まず)の範囲が有用な組成であることがわかる。
【0028】
(実施例6)
実施例1と同様にして、化学組成比がa(Ni0.7・Cu0.3)O・bZnO・cFe・dBi・eCoO(但し、a+b+c+d+e=100,b=0,2,4,6,8,10,12,14,c=34,36,38,40,42,44,46,48,d=0.5,e=0.5)となるように、成形用粉末を作製し、成形体を得た。
次に、これらの成形体を930℃で2時間焼結し、磁芯特性を測定した。その結果を表1及び表2に示す。
【0029】
【表1】

Figure 0003590454
【0030】
【表2】
Figure 0003590454
【0031】
表1より、b+c+d+e≦47でfQmaxが30MHz以上となるとことがわかる。従って、b+c+d+e≦47の範囲が有用な組成であることがわかる。
【0032】
以上、各実施例で示すように、μ30MHzを15程度確保しても、Qmaxが約150から200得られ、従来のこの系の材料に得られない特性が得られている。
【0033】
なお、本実施例においては、NiO,CuO,ZnO,α−Fe,Bi,Coを原料として使用したフェライト焼結体のみについて述べているが、必ずしも、これら酸化物に限定されるものではなく、焼結体がスピネル型フェライトを形成するものであれば、本発明の範囲にある。
【0034】
又、粉末の予備焼成、及び成形体の焼結を大気中で行っているが、焼結後の生成物がスピネル型フェライトであれば、成形用粉末の製造方法が予備焼成なし、共沈法、水熱合成法、噴霧焙焼法を適用しても、又、焼成雰囲気が大気中に比べ酸化性であっても、還元性であっても、本発明の範囲にある。
【0035】
【発明の効果】
本発明によれば、30MHz以上でも、実効透磁率の温度変化が小さく、磁気損失が小さい高周波用酸化物磁芯材料を提供できた。
【図面の簡単な説明】
【図1】実施例1における化学組成比60[Ni(1−x)・Cu]O・5ZnO・34Fe・0.5Bi・0.5CoOのxと磁芯特性μ30MHz,△μ,fQmax,Qmaxとの関係を示す図。
【図2】実施例2における化学組成比a(Ni0.7・Cu0.3)O・bZnO・23Fe・0.5Bi・0.5CoOのbと磁芯特性μ30MHz,fQmax,Qmaxとの関係を示す図。
【図3】実施例3における化学組成比a(Ni0.7・Cu0.3)O・cFe・0.5Bi・0.5CoOのcと磁芯特性μ30MHz,fQmax,Qmaxとの関係を示す図。
【図4】実施例4における化学組成比a(Ni0.7・Cu0.3)O・5ZnO・34Fe・dBi・0.5CoOのdと磁芯特性μ30MHz,△μ,fQmax,Qmaxとの関係を示す図。
【図5】実施例5における化学組成比a(Ni0.7・Cu0.3)O・5ZnO・34Fe・0.5Bi・eCoOのeと磁芯特性μ30MHz,△μ,fQmax,Qmaxとの関係を示す図。[0001]
[Industrial applications]
The present invention relates to a high frequency oxide core material, and more particularly to a spinel ferrite core material used in a high frequency range.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the advance of electronic device technology, the frequency band of a signal handled in the electronic device has been expanded to a higher frequency side, and the band extends from 10 MHz to several GHz.
[0003]
Conventionally, a soft magnetic material for an inductance element used in such a high-frequency region has a higher electric resistance than a metal, and has excellent frequency characteristics. Therefore, Mn-Zn-based ferrite, Ni-Zn-based ferrite, Spinel type ferrite represented by Mg-Mn type ferrite has been used.
[0004]
[Problems to be solved by the invention]
However, the conventional Ni-Zn, Ni-Zn-Cu ferrite used for the high frequency band inductance element is usually a magnetic core material intended for a frequency of about 10 MHz or less, and in a frequency band higher than that, the effective frequency is less than about 10 MHz. The temperature change and the loss of the magnetic permeability are extremely large, so that it has a drawback that it cannot be used as a magnetic core material. Therefore, it has been difficult to cope with a higher driving frequency of the electronic device.
[0005]
An object of the present invention is to provide a high-frequency oxide magnetic core material which eliminates these drawbacks, has a small change in effective magnetic permeability with temperature and loss, and can be applied at 30 MHz or higher.
[0006]
[Means for Solving the Problems]
As a result of repeated studies, the present inventors have found that the composition ratio of a spinel-type ferrite containing oxides of Ni, Zn, Cu, Fe, Bi, and Co as a main component is a [Ni (1-x). Cu x] and O · bZnO · cFe 2 O 3 · dBi 2 O 3 · eCoO, and its scope a + b + c + d + e = 100,0.1 ≦ x ≦ 0.8,0 ≦ b ≦ 14,23 ≦ c ≦ 46 , 0 <d ≦ 1, 0 <e ≦ 0.5, b + c + d + e ≦ 47, it has been found that a spinel ferrite magnetic core material applicable to a frequency band of 30 MHz or more can be industrially usefully manufactured.
[0007]
That is, the present invention provides a high-frequency oxide magnetic core material containing an oxide of Ni, Zn, Cu, Fe, Bi, and Co as a main component, the composition ratio of which is a [Ni (1-x) .Cu x ] O · bZnO · cFe 2 O 3 · dBi 2 O 3 · eCoO ( however, a + b + c + d + e = 100,0.1 ≦ x ≦ 0.8,0 ≦ b ≦ 14,23 ≦ c ≦ 46, 0 <d ≦ 1 , 0 <e ≦ 0.5, b + c + d + e ≦ 47).
[0008]
In the present invention, 30 MHz to evaluate material properties mu, is carried out by Q max, f Qmax, △ μ T. μ30 MHz represents the effective magnetic permeability at 30 MHz, and this value is preferably higher because the inductance can be made higher. However, in general, if it is too high, the high-frequency characteristics are degraded. Q max indicates the maximum value of Q (the reciprocal of the loss coefficient tan δ). f Qmax indicates the frequency at which the Q max is the maximum value, the frequency before and after the range that can operate effectively as a magnetic core material. Further, the △ mu T, indicates the temperature change rate of the mu at 0 to 80 ° C. in the case relative to the mu value at 20 ° C., was determined from the following equation.
[0009]
△ μ T = (μ 80 -μ 0) / μ 20/80 × 100
Here, μ 0 , μ 20 , and μ 80 indicate the values of μ at 0 ° C., 20 ° C., and 80 ° C., respectively.
[0010]
[Action]
In the composition ratio of the oxide magnetic core material of the present invention a [Ni (1-x) · Cu x] O · bZnO · cFe 2 O 3 · dBi 2 O 3 · eCoO ( however, a + b + c + d + e = 100), 0.1 The reason for limiting to ≦ x ≦ 0.8 is that, when the temperature exceeds this range, the temperature characteristic of μ is significantly deteriorated, and when an inductance element is manufactured using such a magnetic core material, the variation of the inductance with respect to the temperature is large. This is disadvantageous in terms of reliability.
[0011]
Also, the limitation of 0 ≦ b ≦ 14, 23 ≦ c ≦ 46 , b + c + d + e ≦ 47 is that if b = 14, c = 46 , and b + c + d + e = 47, f Qmax becomes 30 MHz or less, which is an object of the present invention. This is because it will not be a high-frequency magnetic core material applicable to a certain 30 MHz or higher. On the other hand, if c is smaller than 23, Qmax decreases, which is industrially disadvantageous.
[0012]
0 <had a d ≦ 1 is, in the range because there is △ mu T decreases. Also, when d exceeds 1.0, Q max is decreased, because the industrial disadvantage. The reason why 0 <e ≦ 0.5 is set is that Q max increases in that range. Also, when e exceeds 0.5, △ mu T increases, because the industrial disadvantage.
[0013]
The effect of Bi 2 O 3 is generally recognized as improving △ μ T and improving Q max , and CoO also contributes to improving Q max and increasing the frequency of f Qmax. Although recognized, in the present invention, further improvement was observed by adding to the above composition.
[0014]
【Example】
Hereinafter, examples of the present invention will be described.
[0015]
(Example 1)
As raw materials, iron oxide (α-Fe 2 O 3 ), nickel oxide (NiO), cupric oxide (CuO), zinc oxide (ZnO), bismuth oxide (Bi 2 O 3 ), cobalt sesquioxide (Co 2 O) 3), the chemical composition ratio of 60 [Ni (1-x) · Cu x] O · 5ZnO · 34Fe 2 O 3 · 0.5Bi 2 O 3 · 0.5CoO ( where, x = 0, 0.1, 0.2, 03., 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and wet-mixed in a ball mill for 20 hours. Here, the raw material powder used had a particle size of 0.5 μm or less.
[0016]
Next, these raw material mixed powders were calcined in air at 800 ° C. for 2 hours, and then wet-pulverized in a ball mill for 3 hours to obtain molding powder.
[0017]
Next, these molding powders were compression molded at a molding pressure of 2 ton / cm 2 using a mold having an outer diameter of 10 mm and an inner diameter of 2 mm so as to form a molded body having a height of 10 mm.
[0018]
Further, these compacts were sintered at 930 ° C. for 4 hours in the atmosphere, gradually heated, and furnace cooled. These sintered bodies had an outer diameter of about 8.5 mm, an inner diameter of about 1.7 mm, and a height of about 7.5 mm.
Next, the magnetic core characteristics of these sintered bodies were measured. The result is shown in FIG.
[0019]
As shown in FIG. 1, exceeds the range of x = 0.1~0.8, △ μ T it can be seen that significantly increases. Therefore, it is understood that this range is a useful composition.
[0020]
(Example 2)
In the same manner as in Example 1, the chemical composition ratio of a (Ni 0.7 · Cu 0.3) O · bZnO · 23Fe 2 O 3 · 0.5Bi 2 O 3 · 0.5CoO ( however, a + b = 52, A molding powder was prepared so that b = 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) to obtain a molded body.
Next, these compacts were sintered at 930 ° C. for 2 hours, and the magnetic core characteristics were measured. The result is shown in FIG.
[0021]
As shown in FIG. 2, when b exceeds 14, f Qmax becomes smaller than 30 MHz. Therefore, it is understood that the composition range of b = 0 to 8 is useful.
[0022]
(Example 3)
In the same manner as in Example 1, the chemical composition ratio of a (Ni 0.7 · Cu 0.3) O · cFe 2 O 3 · 0.5Bi 2 O 3 · 0.5CoO ( however, a + c = 99, c = 22, 23, 24, 26, 28, 42, 44, 46, 47, 48), a molding powder was produced to obtain a molded body.
Next, these compacts were sintered at 930 ° C. for 2 hours, and the magnetic core characteristics were measured. The result is shown in FIG.
[0023]
As shown in FIG. 3, when c is smaller than 23, it can be seen that Q max is significantly reduced. Also, it can be seen that when c exceeds 46 , f Qmax becomes 30 MHz or less. Therefore, it is understood that the range of c = 23 to 46 is a useful composition.
[0024]
(Example 4)
In the same manner as in Example 1, the chemical composition ratio of a (Ni 0.7 · Cu 0.3) O · 5ZnO · 34Fe 2 O 3 · dBi 2 O 3 · 0.5CoO ( however, a + d = 60.5, A molding powder was prepared so that d = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2) to obtain a molded body.
Next, these compacts were sintered at 930 ° C. for 2 hours, and the magnetic core characteristics were measured. The result is shown in FIG.
[0025]
As shown in FIG. 4, when d> 0, Δμ T is significantly reduced. Further, if it exceeds d = 1.0, Q max is lowered, f Qmax also has a 30MHz or less. Therefore, it is understood that the range of d = 0 to 1.0 (however, 0 is not included) is a useful composition.
[0026]
(Example 5)
In the same manner as in Example 1, the chemical composition ratio of a (Ni 0.7 · Cu 0.3) O · 5ZnO · 34Fe 2 O 3 · 0.5Bi 2 O 3 · eCoO ( however, a + e = 60.5, e = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6), a molding powder was produced to obtain a molded body.
Next, these compacts were sintered at 930 ° C. for 2 hours, and the magnetic core characteristics were measured. The result is shown in FIG.
[0027]
As shown in FIG. 5, when e> 0, an increase in Q max is recognized. On the other hand, when e exceeds 0.5, △ μ T becomes extremely large. Therefore, it is understood that the range of e = 0 to 0.5 (however, 0 is not included) is a useful composition.
[0028]
(Example 6)
In the same manner as in Example 1, the chemical composition ratio of a (Ni 0.7 · Cu 0.3) O · bZnO · cFe 2 O 3 · dBi 2 O 3 · eCoO ( however, a + b + c + d + e = 100, b = 0, 2,4,6,8,10,12,14, c = 34,36,38,40,42,44,46,48, d = 0.5, e = 0.5) A powder was prepared to obtain a molded body.
Next, these compacts were sintered at 930 ° C. for 2 hours, and the magnetic core characteristics were measured. The results are shown in Tables 1 and 2.
[0029]
[Table 1]
Figure 0003590454
[0030]
[Table 2]
Figure 0003590454
[0031]
From Table 1, it can be seen that fQmax becomes 30 MHz or more when b + c + d + e ≦ 47. Therefore, it is understood that the range of b + c + d + e ≦ 47 is a useful composition.
[0032]
As described above, as shown in each embodiment, even if about 30 μm is secured, Qmax is obtained from about 150 to 200, which is a characteristic that cannot be obtained by the conventional material of this type.
[0033]
In this embodiment, only ferrite sintered bodies using NiO, CuO, ZnO, α-Fe 2 O 3 , Bi 2 O 3 , and Co 2 O 3 as raw materials are described, but these oxides are not necessarily used. The present invention is not limited to a material, and is within the scope of the present invention as long as the sintered body forms a spinel type ferrite.
[0034]
In addition, pre-firing of the powder and sintering of the compact are performed in the air. If the product after sintering is a spinel-type ferrite, the manufacturing method of the compacting powder is no pre-firing, and the coprecipitation method is used. Even if a hydrothermal synthesis method or a spray roasting method is applied, and the firing atmosphere is oxidizing or reducing as compared with the atmosphere, it is within the scope of the present invention.
[0035]
【The invention's effect】
According to the present invention, even at 30 MHz or more, a high-frequency oxide magnetic core material having a small temperature change in effective magnetic permeability and a small magnetic loss can be provided.
[Brief description of the drawings]
[1] Example Chemical composition ratio 60 at 1 [Ni (1-x) · Cu x] O · 5ZnO · 34Fe 2 O 3 · 0.5Bi 2 O 3 · 0.5CoO x and core properties mu 30 MHz , Δμ T , f Qmax , Q max .
FIG. 2 shows the chemical composition ratio a (Ni 0.7 · Cu 0.3 ) O · bZnO · 23Fe 2 O 3 · 0.5Bi 2 O 3 · 0.5CoO in Example 2 and the magnetic core characteristics μ 30 MHz. , F Qmax , and Q max . FIG.
[3] The chemical composition ratio a (Ni 0.7 · Cu 0.3) in Example 3 O · cFe 2 O 3 · 0.5Bi 2 O 3 · 0.5CoO c and core properties mu 30 MHz, f Qmax, diagram showing the relationship between the Q max.
FIG. 4 shows the d of the chemical composition ratio a (Ni 0.7 · Cu 0.3 ) O · 5ZnO · 34Fe 2 O 3 · dBi 2 O 3 · 0.5CoO and the magnetic core characteristics μ 30 MHz , △ in Example 4. μ T, f Qmax, diagram showing the relationship between the Q max.
[5] Example Chemical composition ratio in 5 a (Ni 0.7 · Cu 0.3 ) O · 5ZnO · 34Fe 2 O 3 · 0.5Bi 2 O 3 · eCoO of e and core properties mu 30 MHz, △ μ T, f Qmax, diagram showing the relationship between the Q max.

Claims (1)

Ni,Zn,Cu,Fe,Bi,Coの酸化物を主成分として含有する高周波用酸化物磁芯材料において、その組成比がa[Ni(1-x)・Cux]O・bZnO・cFe23・dBi23・eCoO(但し、a+b+c+d+e=100,0.1≦x≦0.8,0≦b≦14,23≦c≦46,0<d≦1,0<e≦0.5,b+c+d+e≦47)で表されることを特徴とする高周波用酸化物磁芯材料。Ni, Zn, Cu, Fe, Bi, in the high frequency oxide core material containing an oxide as the main component of Co, the composition ratio of a [Ni (1-x) · Cu x] O · bZnO · cFe 2 O 3 · dBi 2 O 3 · eCoO (however, a + b + c + d + e = 100, 0.1 ≦ x ≦ 0.8, 0 ≦ b ≦ 14, 23 ≦ c ≦ 46 , 0 <d ≦ 1, 0 <e ≦ 0 .5, b + c + d + e ≦ 47).
JP17399195A 1995-06-16 1995-06-16 Oxide core material for high frequency Expired - Fee Related JP3590454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17399195A JP3590454B2 (en) 1995-06-16 1995-06-16 Oxide core material for high frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17399195A JP3590454B2 (en) 1995-06-16 1995-06-16 Oxide core material for high frequency

Publications (2)

Publication Number Publication Date
JPH097815A JPH097815A (en) 1997-01-10
JP3590454B2 true JP3590454B2 (en) 2004-11-17

Family

ID=15970749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17399195A Expired - Fee Related JP3590454B2 (en) 1995-06-16 1995-06-16 Oxide core material for high frequency

Country Status (1)

Country Link
JP (1) JP3590454B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252112A (en) 1999-03-02 2000-09-14 Murata Mfg Co Ltd Magnetic ceramic composition and inductor part using the same
JP3449322B2 (en) * 1999-10-27 2003-09-22 株式会社村田製作所 Composite magnetic material and inductor element
JP4626413B2 (en) * 2005-06-14 2011-02-09 株式会社村田製作所 Composite magnetic material, coil antenna structure, and portable communication terminal

Also Published As

Publication number Publication date
JPH097815A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
KR102155356B1 (en) Ferrite composition and electronic device
KR101764422B1 (en) Ferrite composition and electronic device
US7034649B2 (en) Ferrite material, ferrite sintered body, and inductor
KR101886489B1 (en) Ferrite composition and electronic component
US6669861B2 (en) Y-type hexagonal oxide magnetic material and inductor element
JP3590454B2 (en) Oxide core material for high frequency
JP2858091B2 (en) Oxide magnetic material for high frequency
JP2816946B2 (en) Oxide magnetic material for high frequency
JPH07272919A (en) Oxide magnetic material and inductor using the same
JP2708160B2 (en) Ferrite manufacturing method
JPH097814A (en) Oxide magnetic material and its manufacturing method
JP2003221232A (en) Ferrite material and its production method
JP2893302B2 (en) Oxide magnetic material
JPH11307336A (en) Manufacture of soft magnetic ferrite
JPH0737711A (en) Oxide magnetic material and inductor using same
JP3389937B2 (en) Manufacturing method of soft ferrite particles for low temperature sintering
JPH08288118A (en) High frequency oxide magnetic core material
JP3856722B2 (en) Manufacturing method of spinel type ferrite core
JPH06151146A (en) Oxide magnetic material and manufacture thereof
JP3300838B2 (en) Oxide magnetic material for inductor and its manufacturing method
JP5672974B2 (en) Ferrite sintered body and electronic parts
JP4074439B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JPH05335135A (en) Oxide magnetic material for high frequency
JPH10111184A (en) Magnetic oxide material for temperature-sensing element and temperature-sensing element using it
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041108

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20050125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees