JP2816946B2 - Oxide magnetic material for high frequency - Google Patents

Oxide magnetic material for high frequency

Info

Publication number
JP2816946B2
JP2816946B2 JP7064821A JP6482195A JP2816946B2 JP 2816946 B2 JP2816946 B2 JP 2816946B2 JP 7064821 A JP7064821 A JP 7064821A JP 6482195 A JP6482195 A JP 6482195A JP 2816946 B2 JP2816946 B2 JP 2816946B2
Authority
JP
Japan
Prior art keywords
mhz
relationship
fqmax
magnetic material
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7064821A
Other languages
Japanese (ja)
Other versions
JPH08236337A (en
Inventor
元 大学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP7064821A priority Critical patent/JP2816946B2/en
Publication of JPH08236337A publication Critical patent/JPH08236337A/en
Application granted granted Critical
Publication of JP2816946B2 publication Critical patent/JP2816946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高周波帯域で使用され
る酸化物磁性材料に関し、特に、スピネル型フェライト
磁性材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide magnetic material used in a high frequency band, and more particularly to a spinel ferrite magnetic material.

【0002】[0002]

【従来の技術】近年、電子機器技術の進歩により、電子
機器内で扱われる信号の周波数帯域が、高周波側に広が
り、その帯域は数10MHz〜数GHzにまで及んでい
る。
2. Description of the Related Art In recent years, with the advance of electronic equipment technology, the frequency band of signals handled in electronic equipment has been extended to the high frequency side, and the band has been extended from several tens of MHz to several GHz.

【0003】従来、このような高周波域で使用されるイ
ンダクタンス素子用の軟磁性材料には、金属に比べ電気
抵抗が高く、周波数特性が高周波化できることから、M
n−Zn系フェライト、Ni−Zn系フェライト、Mn
−Mg系フェライトで代表されるようなスピネル型フェ
ライト焼結体が使用されてきた。
Conventionally, a soft magnetic material for an inductance element used in such a high-frequency region has a higher electric resistance than a metal and can have a higher frequency characteristic.
n-Zn ferrite, Ni-Zn ferrite, Mn
-A spinel-type ferrite sintered body represented by Mg-based ferrite has been used.

【0004】[0004]

【発明が解決しようとする課題】このような高周波域で
使用される材料として、特開昭55−136172に開
示されているものがある。しかしながら、ここで示され
ている組成範囲の材料は、μが高く、通常、約10MH
z以下の周波数に適応した磁芯用材料であり、それ以上
の周波数帯域では、損失が極めて大きく磁芯用材料とし
ては、使用が不可能であるという欠点を有していた。そ
のため、電子機器の駆動周波数の高周波化への対応が困
難であった。
As a material used in such a high frequency range, there is a material disclosed in Japanese Patent Application Laid-Open No. 55-136172. However, materials in the composition ranges shown here have high μ, typically around 10 MH
It is a material for a magnetic core adapted to a frequency equal to or lower than z, and has a disadvantage that loss is extremely large in a frequency band higher than z and cannot be used as a material for a magnetic core. Therefore, it has been difficult to cope with a higher driving frequency of the electronic device.

【0005】そこで、本発明の課題は、これらの欠点を
排除し、30MHz以上でも磁気損失が小さく、しかも
実効透磁率の温度変化が小さい高周波用酸化物磁性材料
を提供することにある。
It is an object of the present invention to eliminate these drawbacks and to provide a high-frequency oxide magnetic material having a small magnetic loss even at 30 MHz or more and a small change in effective magnetic permeability with temperature.

【0006】[0006]

【課題を解決するための手段】本発明者は、検討を重ね
た結果、Ni、Cu、Zn、Fe、Vの酸化物を主成分
として含有するスピネル型フェライトの組成比をa[N
(1-x)・Cux]O・bZnO・cFe23・dV25
し、かつその範囲をa+b+c+d=100、0.1≦
x≦0.8、0≦b≦8、23≦c≦40、0≦d≦
3、b+c≦40とすることにより、30MHz以上の
周波数帯に適用できるスピネル型フェライト材料を工業
的に製造できることを見い出した。
As a result of repeated studies, the present inventor has found that the composition ratio of a spinel ferrite containing oxides of Ni, Cu, Zn, Fe and V as a main component is a [N
i (1-x) · Cu x ] O · bZnO · cFe 2 O 3 · dV 2 O 5 , and the range is a + b + c + d = 100, 0.1 ≦
x ≦ 0.8, 0 ≦ b ≦ 8, 23 ≦ c ≦ 40, 0 ≦ d ≦
3. It has been found that by setting b + c ≦ 40, a spinel-type ferrite material applicable to a frequency band of 30 MHz or more can be industrially manufactured.

【0007】即ち、本発明は、Ni、Cu、Zn、F
e、Vの酸化物を主成分として含有する高周波用酸化物
磁性材料において、主成分の組成比がa[Ni(1-x)・C
x]O・bZnO・cFe23・dV25(但し、a+b
+c+d=100、0.1≦x≦0.8、0≦b≦8、2
3≦c≦40、0≦d≦3、b+c≦40)で表わされ
ることを特徴とする高周波用酸化物磁性材料である。
That is, the present invention relates to Ni, Cu, Zn, F
In a high frequency oxide magnetic material containing an oxide of e and V as a main component, the composition ratio of the main component is a [Ni (1-x) · C
u x ] O.bZnO.cFe 2 O 3 .dV 2 O 5 (however, a + b
+ C + d = 100, 0.1 ≦ x ≦ 0.8, 0 ≦ b ≦ 8, 2
3 ≦ c ≦ 40, 0 ≦ d ≦ 3, b + c ≦ 40).

【0008】ここで、本発明において、材料特性の評価
はμ30MHz、Qmax、fQmax、△μTで行っている。μ
30MHzは30MHzにおける実効透磁率を表し、この値
はL素子を作製した場合、インダクタンスを高くとれる
ことから、一般的には高い方がよいが、高過ぎると高周
波特性が低下するという関係にある。また、QmaxはQ
{損失係数(tanδ)の逆数}の最大値を示すもので
あり、磁芯用材料としては、この値が高い程、高性能と
なる。また、fQmaxはQmaxが最大値を示した周波数を
示し、この周波数の前後が磁芯用材料としては有効に作
動できる周波数帯域となる。また、△μTは20℃を基
準とした場合の0℃から80℃におけるμの温度変化率
を表し、次式より求めた。 △μT=(μ80−μ0)/μ20×100/80 ここで、μ0、μ20、μ80はそれぞれ0℃、20℃、8
0℃におけるμの値を示している。
[0008] In the present invention, the evaluation of material properties is carried out in μ 30MHz, Qmax, fQmax, △ μ T. μ
30 MHz indicates the effective magnetic permeability at 30 MHz, and this value is generally better, since the inductance can be increased when an L element is manufactured. However, if the value is too high, the high frequency characteristics deteriorate. Qmax is Q
It indicates the maximum value of {the reciprocal of the loss coefficient (tan δ)}, and the higher the value, the higher the performance of the magnetic core material. Further, fQmax indicates a frequency at which Qmax shows the maximum value, and a frequency band before and after this frequency is a frequency band in which the magnetic core material can operate effectively. Also, △ mu T represents the temperature change rate of the mu at 80 ° C. from 0 ℃ when referenced to 20 ° C., was determined from the following equation. Δμ T = (μ 800 ) / μ 20 × 100/80 Here, μ 0 , μ 20 , and μ 80 are 0 ° C., 20 ° C., 8
The value of μ at 0 ° C. is shown.

【0009】[0009]

【作用】本発明の酸化物磁性材料の組成比a[Ni
(1-x)・Cux]O・bZnO・cFe23・dV25、a+
b+c+d=100において、0.1≦x≦0.8及び0
≦d≦3と限定したのは、この範囲を越えるとμの温度
特性が著しく劣化し、このような磁芯用材料を用いてイ
ンダクタンス素子を作製した場合、温度に対するL(イ
ンダクタンス)の変動が大きくなり、信頼性という点で
不利益となるからである。
The composition ratio of the oxide magnetic material of the present invention, a [Ni
(1-x) .Cu x ] O.bZnO.cFe 2 O 3 .dV 2 O 5 , a +
For b + c + d = 100, 0.1 ≦ x ≦ 0.8 and 0
The reason for limiting to ≦ d ≦ 3 is that if it exceeds this range, the temperature characteristic of μ will be significantly deteriorated, and when an inductance element is manufactured using such a material for a magnetic core, the variation of L (inductance) with respect to temperature will vary. This is because it becomes large and disadvantageous in terms of reliability.

【0010】また、0≦b≦8、23≦c≦40、b+
c≦40と限定したのは、b=8、c=40、b+c=
40を上回るとfQmaxが30MHz以下となり、30M
Hz以上に適用できる高周波用の磁芯用材料とならなく
なるためである。
Also, 0 ≦ b ≦ 8, 23 ≦ c ≦ 40, b +
The reason for limiting c ≦ 40 is that b = 8, c = 40, b + c =
If it exceeds 40, fQmax becomes 30 MHz or less, and 30M
This is because it will not be a material for magnetic cores for high frequencies that can be applied at Hz or higher.

【0011】また、cが23を下回るとQmaxが減少
し、工業的に不利益となるからである。
On the other hand, if c is less than 23, Qmax decreases, which is industrially disadvantageous.

【0012】また、本発明において、V25を含有させ
ているが、その効果はμの温度特性を向上できることで
あり、温度変化率がV25無添加の場合の約1/2とな
っている。
In the present invention, V 2 O 5 is contained. The effect is that the temperature characteristics of μ can be improved, and the temperature change rate is about 1/2 that of the case where V 2 O 5 is not added. It has become.

【0013】[0013]

【実施例】以下実施例について述べる。Embodiments will be described below.

【0014】(実施例1)化学組成比が60[Ni
(1-x)・Cux]O・5ZnO・34Fe23・1V25(但
し、x=0、0.1、0.2、0.3、0.4、0.5、0.
6、0.7、0.8、0.9)となるように、酸化鉄(α
−Fe23)、酸化ニッケル(NiO)、酸化第二銅
(CuO)、酸化亜鉛(ZnO)及び五酸化バナジウム
(V25)を原料として調製し、ボールミルにて20時
間湿式混合した。ここで、使用した原料粉末の粒度は、
全て0.5μm以下のものである。次にこれらの原料混
合粉末を大気中800℃で2時間仮焼した後、ボールミ
ルにて3時間湿式粉砕し、成形用粉末とした。
Example 1 A chemical composition ratio of 60 [Ni
(1-x) .Cu x ] O.5ZnO.34Fe 2 O 3 .1V 2 O 5 (where x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0 .
6, 0.7, 0.8, 0.9) so that iron oxide (α
-Fe 2 O 3 ), nickel oxide (NiO), cupric oxide (CuO), zinc oxide (ZnO) and vanadium pentoxide (V 2 O 5 ) were prepared as raw materials and wet-mixed in a ball mill for 20 hours. . Here, the particle size of the raw material powder used is
All are 0.5 μm or less. Next, these raw material mixed powders were calcined in the air at 800 ° C. for 2 hours, and then wet-pulverized in a ball mill for 3 hours to obtain molding powders.

【0015】次に、これらの成形用粉末を外径10m
m、内径2mmの金型を用いて、高さ10mmの成形体
となるように成形圧2ton/cm2で圧縮成形した。
更にこれらの成形体を大気中、徐熱、炉冷にて、950
℃で4時間保持し、焼結した。これらの焼結体は、外径
約8.5mm、内径約1.7mm、高さ約7.5mmであ
った。これらの焼結体の磁芯特性を測定した。その結果
を図1に示す。
Next, these molding powders were prepared with an outer diameter of 10 m.
Using a mold having a diameter of 2 mm and an inner diameter of 2 mm, compression molding was performed at a molding pressure of 2 ton / cm 2 so as to obtain a molded body having a height of 10 mm.
Further, these compacts are heated to 950 in the air, gradually heated, and cooled in a furnace.
C. for 4 hours and sintered. These sintered bodies had an outer diameter of about 8.5 mm, an inner diameter of about 1.7 mm, and a height of about 7.5 mm. The magnetic core characteristics of these sintered bodies were measured. The result is shown in FIG.

【0016】図1に示すように、x=0.1〜0.8の範
囲を越えると△μTが著しく大きくなることがわかる。
従ってx=0.1〜0.8の範囲が有用な組成であること
がわかる。
As shown in FIG. 1, when x exceeds the range of 0.1 to 0.8, Δμ T becomes significantly large.
Therefore, it is understood that the range of x = 0.1 to 0.8 is a useful composition.

【0017】(実施例2)化学組成比以外は、実施例1
と同様な条件、手順にて、焼結体を作製した。即ち、化
学組成比がa(Ni0.7・Cu0.3)O・bZnO・23F
23・1V25(但し、a+b=76、b=0、1、
2、3、4、5、6、7、8、9、10)となるよう
に、成形用粉末を作製し、成形体を得た後、これらの成
形体を950℃で2時間焼結し、磁芯特性を測定した。
その結果を図2に示す。
Example 2 Example 1 except for the chemical composition ratio
Under the same conditions and procedures as in the above, a sintered body was produced. That is, when the chemical composition ratio is a (Ni 0.7 · Cu 0.3 ) O · bZnO · 23F
e 2 O 3 .1V 2 O 5 (however, a + b = 76, b = 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, 10), a molding powder was prepared, and after obtaining molded bodies, these molded bodies were sintered at 950 ° C. for 2 hours. And the magnetic core characteristics were measured.
The result is shown in FIG.

【0018】b=8を上回ると、fQmaxが30MHzを
下回ることがわかる。従ってb=0〜8の組成が有用で
あることがわかる。
It can be seen that when b = 8, fQmax falls below 30 MHz. Therefore, it is understood that the composition of b = 0 to 8 is useful.

【0019】(実施例3)化学組成比以外は、実施例1
と同様な条件、手順にて、焼結体を作製した。即ち、化
学組成比がa(Ni0.7・Cu0.3)O・cFe23・1V2
5(但し、a+c=99、c=22、23、24、2
6、28、36、38、40、41、42)となるよう
に、成形用粉末を作製し、成形体を得た後、これらの成
形体を950℃で2時間焼結し、磁芯特性を測定した。
その結果を図3に示す。
Example 3 Example 1 except for the chemical composition ratio
Under the same conditions and procedures as in the above, a sintered body was produced. That is, when the chemical composition ratio is a (Ni 0.7 · Cu 0.3 ) O · cFe 2 O 3 .1V 2
O 5 (however, a + c = 99, c = 22, 23, 24, 2
6, 28, 36, 38, 40, 41, 42), powders for molding were prepared, and after obtaining compacts, these compacts were sintered at 950 ° C. for 2 hours to obtain magnetic core properties. Was measured.
The result is shown in FIG.

【0020】c=23を下回るとQmaxが著しく低下す
ることがわかる。また、c=40を越えると、fQmaxが
30MHz以下となる。従って、c=23〜40の範囲
が有用な組成であることがわかる。
It can be seen that when c is less than 23, Qmax is significantly reduced. When c exceeds 40, fQmax becomes 30 MHz or less. Therefore, it is understood that the range of c = 23 to 40 is a useful composition.

【0021】(実施例4)化学組成比以外は、実施例1
と同様な条件、手順にて、焼結体を作製した。即ち、化
学組成比がa(Ni0.7・Cu0.3)O・5ZnO・35F
23・dV25(但し、a+d=60、d=0、0.
5、1、1.5、2、2.5、3、3.5)となるよう
に、成形用粉末を作製し、成形体を得た後、これらの成
形体を950℃で2時間焼結し、磁芯特性を測定した。
その結果を図4に示す。
Example 4 Example 1 except for the chemical composition ratio
Under the same conditions and procedures as in the above, a sintered body was produced. That is, when the chemical composition ratio is a (Ni 0.7 .Cu 0.3 ) O.5ZnO.35F
e 2 O 3 .dV 2 O 5 (however, a + d = 60, d = 0, 0.
5, 1, 1.5, 2, 2.5, 3, 3.5), a molding powder was prepared, and a compact was obtained. The compact was fired at 950 ° C. for 2 hours. And magnetic core characteristics were measured.
FIG. 4 shows the results.

【0022】d=3を越えると、△μTが著しく大きく
なることがわかる。従って、0≦d≦3の範囲が有用な
組成であることがわかる。
When d exceeds 3, it can be seen that △ μ T becomes extremely large. Therefore, it is understood that the range of 0 ≦ d ≦ 3 is a useful composition.

【0023】(実施例5)化学組成比以外は、実施例1
と同様な条件、手順にて、焼結体を作製した。即ち、化
学組成比がa(Ni0.7・Cu0.3)O・bZnO・cFe2
3・dV25(但し、a+b+c+d=100、b=
0、2、4、6、8、c=32、34、36、38、4
0、d=1、3)となるように、成形用粉末を作製し、
成形体を得た後、これらの成形体を950℃で2時間焼
結し、磁芯特性(fQmax)を測定した。その結果を表1
及び表2に示す。表1にはd=1の場合、表2にはd=
3の場合を示した。
(Example 5) Example 1 was repeated except for the chemical composition ratio.
Under the same conditions and procedures as in the above, a sintered body was produced. That is, when the chemical composition ratio is a (Ni 0.7 · Cu 0.3 ) O · bZnO · cFe 2
O 3 · dV 2 O 5 (however, a + b + c + d = 100, b =
0, 2, 4, 6, 8, c = 32, 34, 36, 38, 4
0, d = 1, 3) to prepare a molding powder,
After obtaining the compacts, these compacts were sintered at 950 ° C. for 2 hours, and the magnetic core characteristics (fQmax) were measured. Table 1 shows the results.
And Table 2. In Table 1, when d = 1, and in Table 2, d =
3 is shown.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】b+c=40を越えるとfQmaxが30MH
z以下となる。従って、b+c≦40の範囲が有用な組
成であることがわかる。
When b + c exceeds 40, fQmax becomes 30 MH
z or less. Therefore, it is understood that the range of b + c ≦ 40 is a useful composition.

【0027】尚、本実施例においては、NiO・CuO・
ZnO・α−Fe23・V25を原料として使用したフェ
ライト焼結体のみについて述べているが、必ずしもこれ
らの酸化物原料に限定されるものではなく、焼結体がス
ピネル型フェライトを形成するものであれば、他の原料
系、例えば、炭酸塩等を使用しても差し支えない。
In this embodiment, NiO.CuO.
Although only a ferrite sintered body using ZnO · α-Fe 2 O 3 · V 2 O 5 as a raw material is described, the present invention is not necessarily limited to these oxide raw materials, and the sintered body may be a spinel type ferrite. May be used as long as it forms the other raw materials, for example, carbonates.

【0028】また、粉末の予備焼成、及び成形体の焼結
を大気中で行っているが、焼結後の焼結体がスピネル型
フェライトであれば、成形用粉末の製造方法が予備焼成
なし、共沈法、水熱合成法、噴霧焙焼法を適用しても、
また、予備焼成及び焼成雰囲気が大気中に比べ酸化性で
あっても還元性であってもよい。
The pre-firing of the powder and the sintering of the compact are performed in the air. However, if the sintered compact after sintering is a spinel-type ferrite, the method for producing the compacting powder is not pre-baked. , Coprecipitation method, hydrothermal synthesis method, spray roasting method,
Further, the pre-firing and firing atmosphere may be oxidizing or reducing as compared with the atmosphere.

【0029】以上、実施例1〜5からわかるように、3
0MHz以上に適用できる磁性材料を工業的に有用に得
ることができる。
As can be seen from Examples 1 to 5, 3
A magnetic material applicable to 0 MHz or more can be industrially usefully obtained.

【0030】[0030]

【発明の効果】本発明によれば、30MHz以上でも、
磁気損失が小さく、しかも実効透磁率の温度変化が小さ
い高周波用酸化物磁性材料を提供することができた。
According to the present invention, even at 30 MHz or more,
It was possible to provide a high-frequency oxide magnetic material having a small magnetic loss and a small temperature change in the effective magnetic permeability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1におけるCuの組成値xに対するフェ
ライト焼結体の磁気特性μ30MH z、△μT、fQmax及びQ
maxの関係を示す図。図1(a)はxとμ30MHzとの関係
を示す図。図1(b)はxと△μTとの関係を示す図。
図1(c)はxとfQmaxの関係を示す図。図1(d)は
xとQmaxの関係を示す図。
[1] Magnetic properties mu 30 mH z of the ferrite sintered body with respect to the composition value x of Cu in Example 1, △ μ T, fQmax and Q
The figure which shows the relationship of max. FIG. 1A is a diagram showing the relationship between x and μ30 MHz . 1 (b) is diagram showing the relation between x and △ mu T.
FIG. 1C is a diagram showing a relationship between x and fQmax. FIG. 1D is a diagram showing a relationship between x and Qmax.

【図2】実施例2におけるZnOの組成値bに対するフ
ェライト焼結体の磁気特性μ30 MHz、fQmax及びQmaxの
関係を示す図。図2(a)はbとμ30MHzとの関係を示
す図。図2(b)はbとfQmaxの関係を示す図。図2
(c)はbとQmaxの関係を示す図。
FIG. 2 is a view showing a relationship among a magnetic property μ 30 MHz , fQmax and Qmax of a ferrite sintered body with respect to a composition value b of ZnO in Example 2. FIG. 2A is a diagram showing the relationship between b and μ30 MHz . FIG. 2B is a diagram showing a relationship between b and fQmax. FIG.
(C) is a diagram showing the relationship between b and Qmax.

【図3】実施例3におけるFe23の組成値cに対する
フェライト焼結体の磁気特性μ30MHz、fQmax及びQmax
の関係を示す図。図3(a)はcとμ30MHzとの関係を
示す図。図3(b)はcとfQmaxの関係を示す図。図3
(c)はcとQmaxの関係を示す図。
[3] Magnetic properties of the ferrite sintered body with respect to the composition value c of Fe 2 O 3 in Example 3 μ 30MHz, fQmax and Qmax
FIG. FIG. 3A is a diagram showing a relationship between c and μ30 MHz . FIG. 3B is a diagram showing a relationship between c and fQmax. FIG.
(C) is a diagram showing the relationship between c and Qmax.

【図4】実施例4におけるV25の組成値dに対するフ
ェライト焼結体の磁気特性μ30 MHz、△μT、fQmax及び
Qmaxの関係を示す図。図4(a)はdとμ30MHzとの関
係を示す図。図4(b)はdと△μTとの関係を示す
図。図4(c)はdとfQmaxの関係を示す図。図4
(d)はdとQmaxの関係を示す図。
FIG. 4 is a graph showing the relationship among the magnetic properties μ 30 MHz , Δμ T , fQmax and Qmax of a ferrite sintered body with respect to the composition value d of V 2 O 5 in Example 4. FIG. 4A is a diagram showing a relationship between d and μ30 MHz . FIG. 4 (b) shows the relationship between d and △ mu T. FIG. 4C is a diagram showing the relationship between d and fQmax. FIG.
(D) is a diagram showing the relationship between d and Qmax.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ni、Cu、Zn、Fe、Vの酸化物を
主成分として含有する高周波用酸化物磁性材料におい
て、主成分の組成比がa[Ni(1-x)・Cux]O・bZn
O・cFe23・dV25(但し、a+b+c+d=10
0、0.1≦x≦0.8、0≦b≦8、23≦c≦40、
0≦d≦3、b+c≦40)で表わされることを特徴と
する高周波用酸化物磁性材料。
1. A high-frequency oxide magnetic material containing an oxide of Ni, Cu, Zn, Fe, V as a main component, wherein the composition ratio of the main component is a [Ni (1-x) · Cu x ] O.・ BZn
O · cFe 2 O 3 · dV 2 O 5 ( where, a + b + c + d = 10
0, 0.1 ≦ x ≦ 0.8, 0 ≦ b ≦ 8, 23 ≦ c ≦ 40,
0 ≦ d ≦ 3, b + c ≦ 40) An oxide magnetic material for high frequency use characterized by the following formula:
JP7064821A 1995-02-27 1995-02-27 Oxide magnetic material for high frequency Expired - Fee Related JP2816946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7064821A JP2816946B2 (en) 1995-02-27 1995-02-27 Oxide magnetic material for high frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7064821A JP2816946B2 (en) 1995-02-27 1995-02-27 Oxide magnetic material for high frequency

Publications (2)

Publication Number Publication Date
JPH08236337A JPH08236337A (en) 1996-09-13
JP2816946B2 true JP2816946B2 (en) 1998-10-27

Family

ID=13269308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7064821A Expired - Fee Related JP2816946B2 (en) 1995-02-27 1995-02-27 Oxide magnetic material for high frequency

Country Status (1)

Country Link
JP (1) JP2816946B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101421455B1 (en) * 2007-04-17 2014-07-22 히타치 긴조쿠 가부시키가이샤 Low-loss ferrite, and electronic component using the same

Also Published As

Publication number Publication date
JPH08236337A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
KR102155356B1 (en) Ferrite composition and electronic device
TWI415819B (en) Ferrite compositions and electronic parts
KR101764422B1 (en) Ferrite composition and electronic device
US6669861B2 (en) Y-type hexagonal oxide magnetic material and inductor element
KR101886489B1 (en) Ferrite composition and electronic component
JP3492802B2 (en) Low loss ferrite material
JP2816946B2 (en) Oxide magnetic material for high frequency
JP3590454B2 (en) Oxide core material for high frequency
JP2858091B2 (en) Oxide magnetic material for high frequency
JPH097814A (en) Oxide magnetic material and its manufacturing method
JPH11307336A (en) Manufacture of soft magnetic ferrite
JPH0737711A (en) Oxide magnetic material and inductor using same
JP5105660B2 (en) Ferrite material and ferrite core using the same
JP2003221232A (en) Ferrite material and its production method
JP3856722B2 (en) Manufacturing method of spinel type ferrite core
JPH06151146A (en) Oxide magnetic material and manufacture thereof
JP3389937B2 (en) Manufacturing method of soft ferrite particles for low temperature sintering
JPH08288118A (en) High frequency oxide magnetic core material
JP3300838B2 (en) Oxide magnetic material for inductor and its manufacturing method
JP2893302B2 (en) Oxide magnetic material
JP3545438B2 (en) Method for producing Ni-Zn ferrite powder
JP2004143042A (en) Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts
JP6005920B2 (en) Ferrite composition, ferrite sintered body, and noise filter
JPH08124732A (en) Oxide magnetic material and inductor using same
JPWO2020158519A1 (en) Ferrite composite powder, method for manufacturing ferrite molded body, method for manufacturing ferrite sintered body, molded body, and sintered body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980715

LAPS Cancellation because of no payment of annual fees