JP3587153B2 - Bath water purification system - Google Patents

Bath water purification system Download PDF

Info

Publication number
JP3587153B2
JP3587153B2 JP2000293052A JP2000293052A JP3587153B2 JP 3587153 B2 JP3587153 B2 JP 3587153B2 JP 2000293052 A JP2000293052 A JP 2000293052A JP 2000293052 A JP2000293052 A JP 2000293052A JP 3587153 B2 JP3587153 B2 JP 3587153B2
Authority
JP
Japan
Prior art keywords
cleaning
bath water
hollow fiber
membrane
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000293052A
Other languages
Japanese (ja)
Other versions
JP2002096063A (en
Inventor
茂 立田
彰一 山口
義弘 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000293052A priority Critical patent/JP3587153B2/en
Publication of JP2002096063A publication Critical patent/JP2002096063A/en
Application granted granted Critical
Publication of JP3587153B2 publication Critical patent/JP3587153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、浴水浄化システムに関し、詳しくは例えば、家庭用浴水或いは公共用浴水中の汚濁物質を中空糸膜によって濾過或いは微生物によって分解・除去する循環式浄化システムに関するものである。
【0002】
【従来の技術】
従来の中空糸膜を具備した浴水浄化システムは、人が入浴することにより浴水中に混入した垢等の固形物や、汗や垢等を資化して増殖する微生物由来の懸濁物質を、循環経路中に設けられた中空糸膜により濾過することで、清澄な水質へと浄化する。中空糸膜は懸濁物質を濾過するに従って、中空糸膜の孔が閉塞して濾過が不充分となるため、逆洗浄や洗浄ノズル噴射等の膜洗浄機構が設けられ、これによって中空糸膜の濾過能力の回復を行っている。従来では、中空糸膜の洗浄を1日に複数回、一定間隔で行われている。
【0003】
また、浴水中や循環経路中を殺菌・除菌するための機構として電解装置、オゾン発生装置等を具備しており、これにより浴水中に浮遊する微生物を殺菌して、衛生的に維持すると共に、浴槽壁等へのヌメリの発生を抑えることで快適な入浴を実現でき、また循環経路中に付着した生物膜の発生を抑えることで、レジオネラ属菌等の病原性微生物の繁殖を抑制している。
【0004】
【発明が解決しようとする課題】
ところで、中空糸膜による浴水の浄化は、図15に示すように、入浴時間帯Kの終了時を基準として、2時間経過後から浴水が濁り始め、4〜6時間経過後(入浴時間帯Kを18時〜24時と想定した場合には、翌日の4〜6時頃で、通常は非入浴時間帯L)にその濁度のピークを迎え、その後は徐々に減少して定常値となる。これは、浴水の懸濁が微生物に依るものであり、入浴による汗や垢等の有機物を微生物が資化して対数的に増殖し、中空糸膜による濾過能を上回り、浴水が懸濁する。そして、浴水中の有機物が微生物によって消費され、微生物の増殖速度が低下して中空糸膜の濾過能が上回った時に浴水の濁度のピークを迎え、その後は浴水の濁度は減少し、定常となる。
【0005】
しかしながら、従来の浴水浄化システムにあっては、中空糸膜の洗浄が1日に複数回、それも一定間隔で行われているため、前回の膜洗浄と次回の膜洗浄との間(特に入浴時間帯の終了時から4〜6時間経過後)では浴水の濁度の増加が著しく、この場合、中空糸膜の孔の閉塞が著しくなって、充分に除濁できなくなり、その結果、浴水の濁度のピーク並びに平均値が高くなり、浴水壁等にヌメリが生じやすくなる。また、浴水の濁度が減少して定常となった後に中空糸膜の洗浄を複数回行ったとしても、中空糸膜の洗浄効果がほとんどないものであった。しかも、1日の膜洗浄回数の頻度を増やすと、不必要な膜洗浄が行われるようになり、この結果、膜洗浄による中空糸膜の物理的劣化をきたすという問題があり、さらに膜洗浄が入浴時間帯とかち合うと、膜洗浄排水が洗い場に排水されて不快且つ不衛生になるという問題もある。
【0006】
本発明は、上記の従来例の問題点に鑑みて発明したものであって、その目的とするところは、必要時に膜洗浄回数を増やすことで、浴水中の濁度を低減すると同時に、膜洗浄による中空糸膜の物理的劣化を抑えることができるようにした浴水浄化システムを提供するにあり、他の目的とするところは、入浴時に膜洗浄排水の排出を抑えることができ、また、構造が簡便で、汚れの付着によるセンシング不良が起こりにくくなるのを防止でき、さらに予め設定された膜洗浄以降に閉塞した汚れの程度を的確に検知して洗浄することで、浴水中の濁度を一層低減することができる浴水浄化システムを提供するにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために本発明にあっては、浴槽1の吸・吐水口15に接続される循環経路2上に、ポンプ3と、浴水浄化手段を構成する中空糸膜4と、中空糸膜4を洗浄する膜洗浄機構5Aと、浴水殺菌手段6Aとが配設されている浴水浄化システムにおいて、入浴時間帯Kと非入浴時間帯Lとを設け、非入浴時間帯Lを、入浴時間帯Kの経過直後から所定時間が経過するまでの第1の時間帯L1と、それ以降の第2の時間帯L2とに分け、第1の時間帯L1における膜洗浄の回数の頻度を第2の時間帯L2における膜洗浄の回数よりも増やすように予め設定された時間おきに膜洗浄を行う設定洗浄モードと、中空糸膜4の孔の閉塞の程度をセンサーにより検知して中空糸膜4の閉塞の程度を示す値が一定値を超えたときに、非入浴時間帯L内で膜洗浄を行う検知洗浄モードとを備えていることを特徴としており、このように構成することで、入浴後(入浴時間帯Kの経過後)に浴水の濁度のピークを迎える時刻帯(第1の時間帯L1)において、効果的に浴水中の濁度を低減できるようになる。また中空糸膜4の閉塞を示すある一定値を超えた場合に膜洗浄の回数を増やすことによって、浴水中の濁度をより低減できると共に、不必要な膜洗浄をなくしつつ、膜洗浄による中空糸膜4の物理的劣化を効果的に抑えることができる。
【0008】
また上記入浴時間帯K内では膜洗浄を行わないようにするのが好ましく、この場合、入浴時に膜洗浄排水が洗い場に排水されるのを抑えることができる。
【0009】
また上記中空糸膜4の閉塞の程度を検知するセンサーが、中空糸膜4の二次側に設けられた流量センサー26であるのが好ましく、この場合、簡便な構造で、中空糸膜4の閉塞の程度を検知でき、また流量センサー26の汚れの付着によるセンシング不良が起こりにくくなる。
【0010】
また上記設定洗浄モードにおける膜洗浄と検知洗浄モードにおける膜洗浄とをタイミングをずらして行うのが好ましく、この場合、予め設定された膜洗浄以降に閉塞した汚れの程度を的確に検知して洗浄できるようになる。
【0011】
【発明の実施の形態】
以下、本発明を添付図面に示す実施形態に基づいて説明する。
【0012】
図1は、本実施形態における電解電極槽6と浴水浄化用の中空糸膜4とを具備した浴水浄化システムの配管構成を示す。浴槽1内の浴水中には吸・吐水口15を配設し、循環経路2の両端を吸・吐水口15に接続している。この循環経路2には上流側から下流側にかけて、順に、ポンプ3、濾過槽24、流量センサー26、第一開閉弁16を設けている。濾過槽24は循環経路2を流通する浴水の濾過を行うための浴水浄化手段である中空糸膜4が内装されている。この中空糸膜4は、濾過槽24内を循環経路2の上流側と下流側を仕切るように配設するものである。また、濾過槽24には中空糸膜4の上流側(一次側)に、膜洗浄機構5Aを構成する洗浄ノズル5が設けられている。洗浄ノズル5は複数の流水吐出口10を有しており、濾過槽24に設けられたモータ9の働きにより中空糸膜4の上流側の外周を回転するように構成されており、また回転と同時に流水吐出口10から浴水を中空糸膜4の上流側の表面に吐出して中空糸膜4を上流側において洗浄するようになっている。中空糸膜4の下流側(二次側)には流量センサー26が設けられており、この流量センサー26によって、中空糸膜4の孔の閉塞の程度が検知され、中空糸膜4の閉塞の程度を示す値が一定値を超えたときに膜洗浄が行われるようになっている。
【0013】
また循環経路2のポンプ3と濾過槽24との間からは、バイパス流路11を分岐しており、このバイパス流路11の下流側の端部を吸・吐水口15に接続している。バイパス流路11には、上流側から下流側にかけて、第二開閉弁17、第三開閉弁18、ヒータ8を順に設けている。またバイパス流路11の第二開閉弁17と第三開閉弁18との間からは、第一補助流路12を分岐して設けている。この第一補助流路12には、上流から下流にかけて、順に第一切替弁20、電解電極槽6、第四開閉弁19を設けている。また、第一切替弁20と電解電極槽6とを、別の分岐流路13にて接続し、この分岐流路13に塩溶解槽7を設けている。ここで塩溶解槽7は、内部に塩化ナトリウムが収容されるものである。また、第一補助流路12の下流側の他端は循環経路2の濾過槽24よりも上流側に連通接続している。ここで第一切替弁20は第一補助流路12と分岐流路13との分岐点において、第一補助流路12の上流側、第一補助流路12の下流側、分岐流路13の下流側のそれぞれへの流通を開閉するものである。
【0014】
上記の電解電極槽6は、容器内に一対の不溶性電極板からなる電極を、隔膜を介することなく対向配置した無隔膜タイプのものとして形成している。この容器内の水に、塩溶解槽7から供給された塩化ナトリウムが溶解している場合、一対の電極間に電圧を印加すると、塩化ナトリウムの電気分解により塩素(Cl)や次亜塩素酸イオン(ClO)が発生し、洗浄殺菌水を生成することができるものである。
【0015】
また上記濾過槽24には、中空糸膜4の上流側において、第二補助流路23の一端部を通連接続しており、この第二補助流路23の他端部は、ポンプ3よりも上流側の循環経路2に連通接続している。この第二補助流路23からは排水流路14を分岐して設けており、この第二補助流路23と排水流路14との分岐点には、第二切替弁21を設けている。ここで第二切替弁21は、第二補助流路23と排水流路14との分岐点において、第二補助流路23のポンプ3側、第二補助流路23の濾過槽24側、排水流路14の排水側のそれぞれへの流通を開閉するものである。ここで、第一開閉弁16、第二開閉弁17、第三開閉弁18、第四開閉弁19、第一切替弁20、第二切替弁21のそれぞれのものは、電磁弁、電動弁等にて形成することができる。
【0016】
上記構成の浴槽洗浄装置25には、図2に示すように、入力操作部27と制御回路28からなる制御部29が設けられ、制御回路28を、配管上のポンプ3、電解電極槽6、ヒータ8、各開閉弁16,17,18,19、各切替弁20,21、並びに濾過槽24のモータ9に接続してある。そして、使用者が入力操作部27に入力する指示内容に従って、制御回路28が配管上のポンプ3、電解電極槽6、ヒータ8、各開閉弁16,17,18,19、各切替弁20,21、並びに濾過槽24のモータ9の動作を制御するようにしたものである。
【0017】
図3は上記構成の浴水浄化システムにおいて、浴水の浄化時における浴槽洗浄装置25内の浴水の流れを矢印で示すと共に、第一開閉弁16、第二開閉弁17、第三開閉弁18、第四開閉弁19、第一切替弁20、第二切替弁21の各弁のうち、開状態となっている箇所を黒く塗りつぶすことで明示したものである。図3に示すように、浴水の洗浄時においては、第一開閉弁16を開状態、第二開閉弁17を開状態、第三開閉弁18を開状態、第四開閉弁19を閉状態とするものであり、また第一切替弁20においては第一補助流路12の上流側を開状態、第一補助流路12の下流側を開状態、分岐流路13の下流側を開状態とし、第二切替弁21においては、第二補助流路23のポンプ3側を開状態、第二補助流路23の濾過槽24側を閉状態、排水流路14の排水側を閉状態とするものである。この時、ポンプ3を作動させると、ポンプ3にて吸引された浴水の一部は循環経路2をそのまま流れ、濾過槽24内に設けられた中空糸膜4を通過する際に、浴水中の垢、微生物、微生物の代謝生産物等の懸濁物質や汚濁物質が除去された後、浴槽1内に返送させるものである。またポンプ3にて吸引された浴水の他の一部は、ポンプ3の下流側においてバイパス流路11に流れてヒータ8にて加熱され、浴槽1内へ返送されるものである。ここで、ヒータ8をバイパス流路11に設けることで、中空糸膜4が目詰まりを起こして中空糸膜4を通過する濾過流量が低下した場合でも、バイパス流路11に一定量の浴水が流れるため、浴水の温度低下を起こさない構成となっている。また上記のように浴水の浄化を行いながら、電解電極槽6の一対の電極間に電圧を印加することにより、電解電極槽6内において洗浄殺菌水を生成することができるものである。このときは、あらかじめ電解電極槽6中の塩化ナトリウムが供給されている状態で、一定時間一定電圧を印加することにより、無隔膜電極槽中に洗浄殺菌水を生成させるものである。
【0018】
図4は、濾過槽24の中空糸膜4の物理的洗浄時における浴槽洗浄装置25内の浴水の流れを矢印で示したものである。図4に示すように、中空糸膜4の物理的洗浄時においては、第一開閉弁16を閉状態、第二開閉弁17を閉状態、第三開閉弁18を閉状態、第四開閉弁19を閉状態とするものであり、また第一切替弁20においては第一補助流路12の上流側を閉状態、第一補助流路12の下流側を開状態、分岐流路13の下流側を開状態とし、第二切替弁21においては、第二補助流路23のポンプ3側を開状態、第二補助流路23の濾過槽24側を開状態、排水流路14の排水側を閉状態とするものである。このとき、濾過槽24に設けられた洗浄用洗浄ノズル5をモータ9にて回転させるものである。またこのとき、ポンプ3、中空糸膜4、及び濾過槽24に備えられた洗浄用洗浄ノズル5を含む閉流路が形成され、浴水がこの閉流路を循環するものである。すなわち循環経路2を通って濾過槽24へ達した浴水は、回転する洗浄用洗浄ノズル5の流水吐出口10から中空糸膜4の表面に向けて満遍なく吹き付けられ、水流の勢いにより中空糸膜4表面の付着物を除去し、更に第二補助流路23を通じて循環経路2のポンプ3よりも上流側に送られて、再ひ濾過槽24へと送られる。このようにして一定時間、中空糸膜4の物理洗浄を行った後、図5に示すように各開閉弁16,17,18,19を図4と同様の状態を維持したまま、第二切替弁21を、第二補助流路23のポンプ3側を閉状態、第二補助流路23の濾過槽24側を開状態、排水流路14の排水側を開状態とする。このようにすると、分離膜の物理洗浄に用いられ、懸濁物質や汚濁物質が混入した閉流路内の浴水が、排水流路14を通じて浴槽洗浄装置25外部へ排出されるものである。そしてこのようにして一定時間排水を行った後、各開閉弁16,17,18,19及び切替弁20,21を図3に示すような状態へと復帰させて、再び浴水の浄化を行うものである。
【0019】
図6は、中空糸膜4の殺菌洗浄時における浴槽洗浄装置25内の浴水の流れを矢印で示したものである。中空糸膜4の殺菌洗浄時においては、図3に示す状態で電解電極槽6にて殺菌洗浄水を生成した後、図6に示すように、第一開閉弁16を開状態、第二開閉弁17を開状態、第三開閉弁18を開状態、第四開閉弁19を開状態とするものであり、また第一切替弁20においては第一補助流路12の上流側を開状態、第一補助流路12の下流側を閉状態、分岐流路13の下流側を開状態とし、第二切替弁21においては、第二補助流路23のポンプ3側を開状態、第二補助流路23の濾過槽24側を閉状態、排水流路14の排水側を閉状態とするものである。このようにすると、図3に示す浴水の浄化時の流路に加えて、通常の循環経路2から分岐して塩溶解槽7、浴水殺菌手段6Aを構成する電解電極槽6の順に通り、再び循環経路2における濾過槽24よりも下流側に接続される流路が形成され、電解電極槽6にて生成された殺菌洗浄水が、分離膜を通過するようにするものであり、この殺菌洗浄水中の塩素(C1)、次亜塩素酸イオン(ClO)により、分離膜の付着物を分解すると共に、殺菌を行うものである。またこのとき同時に塩溶解槽7を通過して塩溶解槽7内の塩化ナトリウムが溶解した浴水が電解電極槽6に供給され、次回の分離膜の殺菌洗浄に用いるための殺菌洗浄水の生成に利用されるものである。そして続いて各開閉弁16,17,18,19及び各切替弁20,21を制御して図3に示す状態として、再び浴水の浄化を行うものである。
【0020】
本実施形態の一連の動作を図7〜図9のフローチャートと、図10のタイムスケジュールの一例に準じて詳述する。初期運転として図7のモード0に示すように、現在時刻並びに入浴時刻をそれぞれ入力操作部より入力し、浄化運転を開始する。一方、膜洗浄等を行うにあたっては、図8、図9の設定洗浄モードA,Bに設定する。ここでは図10に示すように、1日を入浴時間帯Kと非入浴時間帯Lとに分け、更に非入浴時間帯Lを、入浴時間帯Kの経過直後から所定時間が経過するまでの第1の時間帯L1と、それ以降の第2の時間帯L2とに分ける。図10の例では、入浴時間帯Kを18時〜24時と設定し、第1の時間帯L1を0時〜6時、第2の時間帯L2を6時〜18時とした場合を例示しているが、もちろんこれは一例にすぎず、適宜、設定変更自在であるものとする。
【0021】
図10に示す例では、入浴時間の2時間前の16時に設定洗浄モードB(殺菌+膜洗浄)が設定され、その時刻を基準として、0時、2時、7時、13時に設定洗浄モードA(膜洗浄),さらに4時に設定洗浄モードBが設定される。これにより、第1の時間帯L1(0時〜8時)の膜洗浄回数は4回、第2の時間帯L2(8時〜18時)の膜洗浄回数は2回となる。つまり、第1の時間帯L1における膜洗浄回数の頻度が第2の時間帯L2よりも多くなるように、予め設定された時間おきに膜洗浄が行われるようになっている。また入浴時間帯K内では膜洗浄が行われないようにしてある。ここでは、入力した現在時刻を基に各設定時刻に達すると、設定洗浄モードAにおいては、図8に示すフローチャートに従って、膜洗浄が開始され、既述した洗浄方法で一定時間(c分間)の洗浄が行われた後に、中空糸膜4の洗浄が終了し、濾過槽24内に貯留している膜洗浄水の排出を行う。また、設定洗浄モードBにおいては、図9に示すフローチャートに従って、電気分解が開始され、一定時間(a分間)の電気分解を行い、電気分解終了より一定時間(b分間)経過した後に、中空糸膜4の洗浄が開始され、既述した洗浄方法で一定時間(c分間)の洗浄が行われた後に、中空糸膜4の洗浄が終了し、濾過槽24内に貯留している膜洗浄水の排出を一定時間(d分間)行い、排水が完了した後に電解電極槽6で生成された殺菌洗浄水を一定時間(e分間)通水して、中空糸膜4に付着した有機物の殺菌洗浄水による酸化処理を行うと共に、浴水の殺菌を同時に行う。尚、ここでは、入力した入浴開始時刻から各設定洗浄モードA,Bの時刻設定を行ったが、非入浴時刻を入力して各設定洗浄モードA,Bの時刻設定を行っても構わない。また、各設定洗浄モードA,Bの時刻設定、制御フローの内容は一例であって、上述の条件(第1の時間帯L1における膜洗浄回数の頻度が第2の時間帯L2よりも多くなるように、予め設定された時間おきに膜洗浄が行われる)を満たしておれば、特に限定されないものである。
【0022】
図11は、中空糸膜4の二次側に配置した流量センサー26によって中空糸膜4の閉塞の程度を検知し、中空糸膜4の閉塞の程度を示す値が一定値を超えたときに、非入浴時間帯L内において膜洗浄を行う検知洗浄モードの一連の動作を示している。本例では、図11の場合と同様、入浴時間帯K内では膜洗浄は行われない。また設定洗浄モードにおける膜洗浄と検知洗浄モードにおける膜洗浄とをタイミングをずらして行うようにしている。なお、検知洗浄モードにおける膜洗浄は図8又は図9のいずれかのフローチャートに準じるものとしているが、もちろんこれらフローチャートに限られるものではない。ここでは、入浴時間帯Kを例えば、18時〜24時と設定した場合において、入浴時間の2時間前の16時に設定洗浄モードB(殺菌+膜洗浄)が設定され、その時刻を基準として、7時、13時に設定洗浄モードA,4時に設定洗浄モードB、更にこれら設定洗浄モードA,Bとタイミングをずらして、中空糸膜4の流量の検知が0時に行われる。もちろん、0時に限られるものではない。先ず、0時に流量センサー26により中空糸膜4の膜流量の検知を行い、検知された流量が一定値以下であれば、中空糸膜4の孔が閉塞していると判断して、0時と2時にそれぞれ検知洗浄モードに移行して中空糸膜4の洗浄が行われる。なお、中空糸膜4の流量の検知は、浴水中の濁度が上昇し始める入浴時間帯Kの終了時近傍、或いは、入浴前の濁度を低減させる観点から入浴時間帯Kの5〜10時間前が望ましい。
【0023】
しかして、入浴時間帯Kと非入浴時間帯Lとを設け、非入浴時間帯Lを、入浴時間帯Kの経過直後から所定時間が経過するまでの第1の時間帯L1と、それ以降の第2の時間帯L2とに分けて、第1の時間帯L1における膜洗浄の回数の頻度を第2の時間帯L2における膜洗浄の回数よりも増やすようにしたので、通常、入浴4時間後から6時間後に浴水の濁度のピークを迎える時刻帯(第1の時間帯L1)においてそれ以降の第2の時間帯L2よりも中空糸膜4の洗浄頻度が増えて、効果的に浴水中の濁度を低減できるようになる。さらに、中空糸膜4の閉塞の程度を流量センサー26にて検知して、中空糸膜4の閉塞を示すある一定値を超えた場合に膜洗浄の回数を増やすことによって、不必要な膜洗浄を抑えながら、浴水中の濁度を低減でき、しかも、膜洗浄による中空糸膜4の物理的劣化を抑えることができる。
【0024】
また本例では、入浴時間帯Kでの膜洗浄の回数をゼロにすることで、入浴時に膜洗浄排水が洗い場に排水されるのを抑えることができ、不快且つ不衛生となるのを防止できる。
【0025】
さらに中空糸膜4の二次側に流量センサー26を設けるだけで、中空糸膜4の閉塞の程度を検知するセンサーを構成でき、構造が簡便であり、また汚れの付着によるセンシング不良が起こりにくくなる。そのうえ図11に示すように、流量センサー26の検知のタイミングと、予め設定された膜洗浄のタイミングとをずらすことによって、予め設定された膜洗浄以降に閉塞した汚れの程度を的確に検知して洗浄することができ、浴水中の濁度を低減することができるものである。
【0026】
【実施例】
以下、本発明の実施例によって詳述する。
(実施例1)
浴水浄化システムとして、図1に示すものを用いた。ここで吐水量20リットル/minのポンプ3、消費電力600Wのヒータ8、φ120mm、h160mmの寸法の濾過槽24、φ3mmの流水吐出口10を5個具備する洗浄ノズル5、及びポリエチレン製の0.8mの中空糸膜4からなる浄化膜を具備する浴水浄化システムを、浴水水量200リットルの浴槽1に設置した。なお、この浴水浄化システムは図10で示したタイムスケジュールに従うものとし、洗浄時間を10分間、電解電極槽6で生成された洗浄殺菌水中の塩素量を500mg、膜洗浄排水量を5リットルとする。
(比較例1)
実施例1と同様の構成で、タイムスケジュールは図12に従うものとし、それ以外の設定は実施例1に準じるものとする。
(評価)
上記浴水浄化システムを連続運転しながら、設定された入浴時間帯Kに1日当たり5人の入浴をして浄化実験を行い、浴水の濁度の経時変化を計測して浄化性能を評価した。実施例1の評価結果を図13に、比較例1の評価結果を図14に、それぞれ示す。中空糸膜4の洗浄を一定間隔で行った比較例1では、入浴終了の6時間目から濁度が上昇し始め、それ以降は急激に上昇して約10〜11時間目でピーク濁度である0.6NTUを迎え、5時の洗浄を機に急激に減少した。
一方、実施例1においては、濁度の挙動は比較例1と同様であるが、濁度のピークは0.5NTUと比較例1に比して抑えることができ、それ以降も比較例1より低い濁度の推移を達成した。
(実施例2)
実施例1に示した構成で、タイムスケジュールは図11に従うものとし、それ以外の設定は実施例に準じるものとする。
(評価)
実施例2並びに比較例1の浴水浄化システムを連続運転しながら、設定された入浴時間帯Kに1日当たり5人の入浴をして3ヶ月間に亘る浄化実験を行い、その前後における中空糸膜4の引っ張り強度を計測した。引っ張り強度の計測は中空糸を周囲から任意の箇所より20本ずつ採取して行った。その結果は下記の通りで、実施例2では比較例1に比してその引っ張り強度は約30mg高く、中空糸膜4の洗浄による劣化を抑えることができ、長寿命化を図ることができた。
【0027】
【表1】

Figure 0003587153
【0028】
【発明の効果】
上述したように、請求項1記載の発明にあっては、浴槽の吸・吐水口に接続される循環経路上に、ポンプと、浴水浄化手段を構成する中空糸膜と、中空糸膜を洗浄する膜洗浄機構と、浴水殺菌手段とが配設されている浴水浄化システムにおいて、入浴時間帯と非入浴時間帯とを設け、非入浴時間帯を、入浴時間帯の経過直後から所定時間が経過するまでの第1の時間帯と、それ以降の第2の時間帯とに分け、第1の時間帯における膜洗浄の回数の頻度を第2の時間帯における膜洗浄の回数よりも増やすように予め設定された時間おきに膜洗浄を行う設定洗浄モードと、中空糸膜の孔の閉塞の程度をセンサーにより検知して中空糸膜の閉塞の程度を示す値が一定値を超えたときに、非入浴時間帯内で膜洗浄を行う検知洗浄モードとを備えているので、入浴時間帯の終了時を基準として浴水の濁度のピークを迎える第1の時間帯での洗浄回数の頻度をそれ以降の第2の時間帯での洗浄回数よりも増やすことによって、効果的に浴水中の濁度を低減できるものであり、また中空糸膜の閉塞を示すある一定値を超えた場合にはこれをセンサーで検知して膜洗浄の回数を増やすことによって、浴水中の濁度をより低減できると共に、不必要な膜洗浄をなくして、膜洗浄による中空糸膜の物理的劣化を抑えることができ、中空糸膜の長寿命化を図ることができる。
【0029】
また請求項2記載の発明は、請求項1記載の効果に加えて、入浴時間帯内では膜洗浄を行わないので、入浴時に膜洗浄排水が洗い場に排水されたりするのを抑えることができ、快適で且つ衛生的とすることができる。
【0030】
また請求項3記載の発明は、請求項1記載の効果に加えて、中空糸膜の閉塞の程度を検知するセンサーが、中空糸膜の二次側に設けられた流量センサーであるので、中空糸膜の二次側に流量センサーを設けるという簡便な構造で、中空糸膜の閉塞の程度を検知でき、また流量センサーを中空糸膜の二次側に配置することで、汚れの付着によるセンシング不良が起こりにくくなり、検知精度の向上を図ることができる。
【0031】
また請求項4記載の発明は、請求項1記載の効果に加えて、設定洗浄モードにおける膜洗浄と検知洗浄モードにおける膜洗浄とをタイミングをずらして行うことにより、予め設定された膜洗浄以降に閉塞した汚れの程度を的確に検知して洗浄することができ、浴水中の濁度を一層低減することができるものである。
【図面の簡単な説明】
【図1】本発明の実施形態の一例を示す概略図である。
【図2】同上のブロック図である。
【図3】同上の浴水浄化時の浴水の流れの説明図である。
【図4】同上の中空糸膜の洗浄時の浴水の流れの説明図である。
【図5】同上の膜洗浄排水時の浴水の流れの説明図である。
【図6】同上の殺菌・洗浄時の浴水の流れの説明図である。
【図7】同上の通常運転時のフローチャートである。
【図8】同上の膜洗浄のみを行う設定洗浄モードのフローチャートである。
【図9】同上の膜洗浄と殺菌とを行う設定洗浄モードのフローチャートである。
【図10】同上の実施例1のタイムスケジュールである。
【図11】同上の実施例2のタイムスケジュールである。
【図12】同上の比較例1のタイムスケジュールである。
【図13】同上の実施例1の評価結果を示すグラフである。
【図14】同上の比較例1の評価結果を示すグラフである。
【図15】従来例の入浴後の経過時間と濁度との関係を示すグラフである。
【符号の説明】
1 浴槽
2 循環経路
3 ポンプ
4 中空糸膜
5A 膜洗浄機構
6A 浴水殺菌手段
15 吸・吐水口
26 流量センサー
K 入浴時間帯
L 非入浴時間帯
L1 第1の時間帯
L2 第2の時間帯[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bath water purification system, and more particularly to, for example, a circulation purification system that filters or decomposes and removes pollutants in domestic bath water or public bath water by hollow fiber membranes or by microorganisms.
[0002]
[Prior art]
The conventional bath water purification system equipped with a hollow fiber membrane is a solid substance such as dirt mixed in the bath water when a person takes a bath, or a suspended substance derived from microorganisms which assimilates sweat and dirt and proliferates, By filtering through a hollow fiber membrane provided in the circulation path, the water is purified to clear water quality. As the hollow fiber membrane filters the suspended substance, the pores of the hollow fiber membrane are closed and the filtration becomes insufficient, so that a membrane washing mechanism such as back washing or jetting of a washing nozzle is provided. The filtration capacity is being restored. Conventionally, the hollow fiber membrane is washed several times a day at regular intervals.
[0003]
In addition, the system is equipped with an electrolyzer, an ozone generator, and the like as a mechanism for sterilizing and removing bacteria in the bath water and in the circulation path, thereby disinfecting microorganisms floating in the bath water and maintaining sanitation. In addition, it is possible to realize comfortable bathing by suppressing the generation of slime on the bathtub wall, etc., and to suppress the growth of pathogenic microorganisms such as Legionella spp. By suppressing the generation of biofilm attached in the circulation path. I have.
[0004]
[Problems to be solved by the invention]
By the way, as shown in FIG. 15, when the bath water is purified by the hollow fiber membrane, the bath water starts to become turbid after 2 hours, and after 4 to 6 hours (bathing time). Assuming that the band K is from 18:00 to 24:00, the turbidity peaks at around 4 to 6 o'clock the following day, usually during the non-bathing time zone L), and thereafter gradually decreases to a steady value. It becomes. This is because the suspension of the bath water depends on microorganisms, and the microorganisms assimilate organic substances such as sweat and dirt from bathing and multiply logarithmically, exceeding the filtration ability of the hollow fiber membrane, and suspending the bath water. I do. The organic matter in the bath water is consumed by the microorganisms, and the turbidity of the bath water reaches a peak when the growth rate of the microorganisms decreases and the filtration ability of the hollow fiber membrane exceeds the turbidity of the bath water. , Becomes steady.
[0005]
However, in the conventional bath water purification system, the cleaning of the hollow fiber membrane is performed several times a day at regular intervals. After 4 to 6 hours from the end of the bathing time, the turbidity of the bath water increases remarkably, and in this case, the pores of the hollow fiber membrane are significantly blocked, and the turbidity cannot be sufficiently reduced. The peak and average values of the turbidity of the bath water are increased, and slime is easily generated on the bath water wall and the like. Further, even if the washing of the hollow fiber membrane was performed a plurality of times after the turbidity of the bath water decreased and became steady, there was almost no effect of washing the hollow fiber membrane. In addition, if the frequency of the number of times of membrane cleaning per day is increased, unnecessary membrane cleaning is performed. As a result, there is a problem that the hollow fiber membrane is physically deteriorated by the membrane cleaning. When the bathing time is mixed, there is also a problem that the membrane washing drainage is drained to the washing place and becomes uncomfortable and unsanitary.
[0006]
The present invention has been made in view of the above-mentioned problems of the conventional example, and an object of the present invention is to increase the number of times of membrane cleaning when necessary, thereby reducing turbidity in bath water and simultaneously performing membrane cleaning. Another object of the present invention is to provide a bath water purification system capable of suppressing physical deterioration of a hollow fiber membrane due to the above-mentioned structure. Is simple, it is possible to prevent the occurrence of poor sensing due to the adhesion of dirt, and it is also possible to accurately detect the degree of dirt clogged after the preset membrane cleaning and to wash the turbidity in the bath water. It is an object of the present invention to provide a bath water purification system that can be further reduced.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, a pump 3, a hollow fiber membrane 4 constituting a bath water purifying means, a hollow fiber membrane 4 and a hollow fiber membrane 4 are provided on a circulation path 2 connected to a suction / water discharge port 15 of a bathtub 1. In a bath water purification system provided with a membrane washing mechanism 5A for washing the yarn membrane 4 and a bath water sterilizing means 6A, a bathing time zone K and a non-bathing time zone L are provided. The first time zone L1 from the time immediately after the bathing time zone K elapses until the predetermined time elapses, and the second time zone L2 thereafter, and the frequency of the number of times of membrane cleaning in the first time zone L1 Cleaning mode in which membrane cleaning is performed at preset intervals so as to increase the number of times of membrane cleaning in the second time zone L2, and the degree of blockage of the holes in the hollow fiber membrane 4 is detected by a sensor. When the value indicating the degree of occlusion of the fibrous membrane 4 exceeds a certain value, the non-bathing time It is characterized by having a detection cleaning mode for performing film cleaning in L. With this configuration, the turbidity of the bath water reaches a peak after bathing (after the lapse of the bathing time zone K). In the time zone (first time zone L1), the turbidity in the bath water can be effectively reduced. In addition, by increasing the number of times of membrane washing when a certain value indicating the blockage of the hollow fiber membrane 4 is exceeded, the turbidity in the bath water can be further reduced, and the hollow membrane by membrane washing can be eliminated while unnecessary membrane washing is eliminated. Physical deterioration of the thread film 4 can be effectively suppressed.
[0008]
Further, it is preferable not to perform the membrane washing during the bathing time zone K. In this case, it is possible to suppress the drainage of the membrane washing drainage to the washing place during the bathing.
[0009]
Further, the sensor for detecting the degree of blockage of the hollow fiber membrane 4 is preferably a flow sensor 26 provided on the secondary side of the hollow fiber membrane 4, and in this case, the hollow fiber membrane 4 has a simple structure. The degree of blockage can be detected, and sensing failure due to adhesion of dirt on the flow sensor 26 is less likely to occur.
[0010]
Further, it is preferable to perform the film cleaning in the set cleaning mode and the film cleaning in the detection cleaning mode at a shifted timing. In this case, it is possible to accurately detect the degree of dirt clogged after the preset film cleaning and perform cleaning. Become like
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.
[0012]
FIG. 1 shows a piping configuration of a bath water purification system including an electrolytic electrode tank 6 and a hollow fiber membrane 4 for purifying bath water in the present embodiment. An inlet / outlet port 15 is provided in the bath water in the bathtub 1, and both ends of the circulation path 2 are connected to the inlet / outlet port 15. The circulation path 2 is provided with a pump 3, a filtration tank 24, a flow sensor 26, and a first on-off valve 16 in this order from the upstream side to the downstream side. The filtration tank 24 is provided with a hollow fiber membrane 4 as a bath water purifying means for filtering bath water flowing through the circulation path 2. The hollow fiber membrane 4 is provided so as to partition the inside of the filtration tank 24 between the upstream side and the downstream side of the circulation path 2. The filtration tank 24 is provided with a cleaning nozzle 5 constituting a membrane cleaning mechanism 5A on the upstream side (primary side) of the hollow fiber membrane 4. The washing nozzle 5 has a plurality of flowing water discharge ports 10 and is configured to rotate around the upstream side of the hollow fiber membrane 4 by the action of a motor 9 provided in the filtration tank 24. At the same time, the bath water is discharged from the flowing water discharge port 10 to the surface on the upstream side of the hollow fiber membrane 4 to wash the hollow fiber membrane 4 on the upstream side. On the downstream side (secondary side) of the hollow fiber membrane 4, a flow sensor 26 is provided. The flow sensor 26 detects the degree of blockage of the hole of the hollow fiber membrane 4, and detects the blockage of the hollow fiber membrane 4. The film cleaning is performed when the value indicating the degree exceeds a certain value.
[0013]
In addition, a bypass flow path 11 is branched from between the pump 3 of the circulation path 2 and the filtration tank 24, and the downstream end of the bypass flow path 11 is connected to the suction / water discharge port 15. In the bypass passage 11, a second on-off valve 17, a third on-off valve 18, and a heater 8 are provided in order from the upstream side to the downstream side. In addition, the first auxiliary flow path 12 is branched from the second open / close valve 17 and the third open / close valve 18 of the bypass flow path 11. The first auxiliary flow path 12 is provided with a first switching valve 20, an electrolytic electrode tank 6, and a fourth on-off valve 19 in this order from upstream to downstream. In addition, the first switching valve 20 and the electrolytic electrode tank 6 are connected by another branch channel 13, and the salt channel 7 is provided in the branch channel 13. Here, the salt dissolving tank 7 contains sodium chloride therein. The other end of the first auxiliary flow path 12 on the downstream side is connected to the circulation path 2 on the upstream side of the filtration tank 24. Here, at the branch point between the first auxiliary flow path 12 and the branch flow path 13, the first switching valve 20 is located upstream of the first auxiliary flow path 12, downstream of the first auxiliary flow path 12, It opens and closes the flow to each downstream side.
[0014]
The above-mentioned electrolytic electrode tank 6 is formed as a non-diaphragm type in which electrodes formed of a pair of insoluble electrode plates are opposed to each other without a diaphragm in a container. When sodium chloride supplied from the salt dissolving tank 7 is dissolved in water in this container, when a voltage is applied between a pair of electrodes, chlorine (Cl 2 ) And hypochlorite ion (ClO) ) Is generated, and sterilizing water for washing can be generated.
[0015]
In addition, one end of the second auxiliary flow path 23 is connected to the filtration tank 24 on the upstream side of the hollow fiber membrane 4, and the other end of the second auxiliary flow path 23 is connected to the pump 3. Also communicates with the upstream circulation path 2. A drain passage 14 is branched from the second auxiliary passage 23, and a second switching valve 21 is provided at a branch point between the second auxiliary passage 23 and the drain passage 14. Here, at the branch point between the second auxiliary flow path 23 and the drain flow path 14, the second switching valve 21 is connected to the pump 3 side of the second auxiliary flow path 23, the filtration tank 24 side of the second auxiliary flow path 23, It opens and closes the flow to each drain side of the flow path 14. Here, each of the first on-off valve 16, the second on-off valve 17, the third on-off valve 18, the fourth on-off valve 19, the first switching valve 20, and the second switching valve 21 is a solenoid valve, an electric valve, or the like. Can be formed.
[0016]
As shown in FIG. 2, the bathtub cleaning device 25 having the above configuration is provided with a control unit 29 including an input operation unit 27 and a control circuit 28. The heater 8 is connected to the on-off valves 16, 17, 18 and 19, the switching valves 20 and 21, and the motor 9 of the filtration tank 24. Then, in accordance with the instruction input by the user to the input operation unit 27, the control circuit 28 controls the pump 3, the electrolytic electrode tank 6, the heater 8, the on / off valves 16, 17, 18, 19, the respective switching valves 20, 21 and the operation of the motor 9 of the filtration tank 24 is controlled.
[0017]
FIG. 3 shows the flow of the bath water in the bath tub cleaning device 25 at the time of purifying the bath water with arrows in the bath water purification system having the above configuration, and the first on-off valve 16, the second on-off valve 17, and the third on-off valve. 18, each of the fourth on-off valve 19, the first switching valve 20, and the second switching valve 21 is clearly indicated by blacking out an open portion. As shown in FIG. 3, when the bath water is washed, the first on-off valve 16 is opened, the second on-off valve 17 is opened, the third on-off valve 18 is opened, and the fourth on-off valve 19 is closed. In the first switching valve 20, the upstream side of the first auxiliary flow path 12 is open, the downstream side of the first auxiliary flow path 12 is open, and the downstream side of the branch flow path 13 is open. In the second switching valve 21, the pump 3 side of the second auxiliary channel 23 is opened, the filtration tank 24 side of the second auxiliary channel 23 is closed, and the drain side of the drain channel 14 is closed. Is what you do. At this time, when the pump 3 is operated, part of the bath water sucked by the pump 3 flows through the circulation path 2 as it is, and when passing through the hollow fiber membrane 4 provided in the filtration tank 24, the bath water After removing suspended substances and pollutants such as scales, microorganisms, and metabolites of microorganisms, they are returned to the bathtub 1. Another part of the bath water sucked by the pump 3 flows into the bypass channel 11 downstream of the pump 3, is heated by the heater 8, and is returned to the bathtub 1. Here, by providing the heater 8 in the bypass flow path 11, even when the hollow fiber membrane 4 is clogged and the filtration flow rate passing through the hollow fiber membrane 4 is reduced, a certain amount of bath water is supplied to the bypass flow path 11. Flows, so that the temperature of the bath water does not decrease. Further, by applying a voltage between the pair of electrodes of the electrolytic electrode tank 6 while purifying the bath water as described above, it is possible to generate cleaning sterilizing water in the electrolytic electrode tank 6. At this time, in a state where sodium chloride in the electrolytic electrode tank 6 is supplied in advance, a constant voltage is applied for a certain period of time to generate cleaning sterilizing water in the non-diaphragm electrode tank.
[0018]
FIG. 4 shows the flow of bath water in the bath tub cleaning device 25 at the time of physical cleaning of the hollow fiber membrane 4 in the filtration tank 24 by arrows. As shown in FIG. 4, when the hollow fiber membrane 4 is physically washed, the first on-off valve 16 is closed, the second on-off valve 17 is closed, the third on-off valve 18 is closed, and the fourth on-off valve is closed. In the first switching valve 20, the upstream side of the first auxiliary flow path 12 is closed, the downstream side of the first auxiliary flow path 12 is open, and the first switching valve 20 is downstream of the branch flow path 13. Side of the second switching valve 21, the pump 3 side of the second auxiliary channel 23 is open, the filtration tank 24 side of the second auxiliary channel 23 is open, and the drainage side of the drainage channel 14. Is closed. At this time, the cleaning nozzle 5 provided in the filtration tank 24 is rotated by the motor 9. At this time, a closed flow path including the pump 3, the hollow fiber membrane 4, and the cleaning washing nozzle 5 provided in the filtration tank 24 is formed, and bath water circulates through the closed flow path. That is, the bath water that has reached the filtration tank 24 through the circulation path 2 is evenly sprayed from the running water discharge port 10 of the rotating washing nozzle 5 toward the surface of the hollow fiber membrane 4, and the force of the water flow causes the hollow fiber membrane to flow. The adhering substances on the surface of the circulation path 4 are removed, and further sent to the upstream side of the pump 3 in the circulation path 2 through the second auxiliary flow path 23 and sent to the re-filtration tank 24. After performing the physical cleaning of the hollow fiber membrane 4 for a certain period of time in this way, as shown in FIG. 5, the second switching is performed while maintaining the on-off valves 16, 17, 18, and 19 in the same state as in FIG. The valve 21 is set such that the pump 3 side of the second auxiliary channel 23 is closed, the filtration tank 24 side of the second auxiliary channel 23 is open, and the drain side of the drain channel 14 is open. By doing so, the bath water used in the physical cleaning of the separation membrane and in which the suspended substance and the contaminated substance are mixed in the closed flow path is discharged to the outside of the bath tub cleaning device 25 through the drain flow path 14. After draining for a certain period of time in this manner, the on-off valves 16, 17, 18, and 19 and the switching valves 20, 21 are returned to the states shown in FIG. 3, and the bath water is purified again. Things.
[0019]
FIG. 6 shows the flow of bath water in the bath tub cleaning device 25 at the time of sterilization cleaning of the hollow fiber membrane 4 by arrows. At the time of sterilization cleaning of the hollow fiber membrane 4, sterilization cleaning water is generated in the electrolytic electrode tank 6 in the state shown in FIG. 3, and then, as shown in FIG. The valve 17 is opened, the third opening / closing valve 18 is opened, and the fourth opening / closing valve 19 is opened. In the first switching valve 20, the upstream side of the first auxiliary flow path 12 is opened. The downstream side of the first auxiliary flow path 12 is closed, the downstream side of the branch flow path 13 is open, and in the second switching valve 21, the pump 3 side of the second auxiliary flow path 23 is open, The flow path 23 is closed on the filtration tank 24 side, and the drainage side of the drain flow path 14 is closed. In this way, in addition to the flow path at the time of the purification of the bath water shown in FIG. 3, it branches off from the normal circulation path 2 and passes through the salt dissolution tank 7 and the electrolytic electrode tank 6 constituting the bath water sterilization means 6A in this order. A flow path connected to the circulation path 2 downstream of the filtration tank 24 is formed again, so that the germicidal washing water generated in the electrolytic electrode tank 6 passes through the separation membrane. Chlorine in sterile washing water (C1 2 ), Hypochlorite ion (ClO ) Decomposes the deposits on the separation membrane and sterilizes it. At the same time, the bath water in which the sodium chloride in the salt dissolving tank 7 is dissolved is simultaneously supplied through the salt dissolving tank 7 to the electrolytic electrode tank 6 to generate sterilizing washing water for use in the next sterilizing washing of the separation membrane. It is used for Subsequently, the on-off valves 16, 17, 18, 19 and the switching valves 20, 21 are controlled to bring the state shown in FIG. 3 to purify the bath water again.
[0020]
A series of operations of this embodiment will be described in detail with reference to the flowcharts of FIGS. 7 to 9 and an example of the time schedule of FIG. As the initial operation, as shown in mode 0 in FIG. 7, the current time and the bathing time are respectively input from the input operation unit, and the purification operation is started. On the other hand, when performing film cleaning or the like, the cleaning modes A and B shown in FIGS. 8 and 9 are set. Here, as shown in FIG. 10, one day is divided into a bathing time zone K and a non-bathing time zone L, and the non-bathing time zone L is further changed from the time immediately after the bathing time zone K elapses until a predetermined time elapses. One time zone L1 and a second time zone L2 thereafter. In the example of FIG. 10, the bathing time zone K is set to 18:00 to 24:00, the first time zone L1 is set to 0:00 to 6:00, and the second time zone L2 is set to 6:00 to 18:00. However, it is needless to say that this is only an example, and the setting can be freely changed as appropriate.
[0021]
In the example shown in FIG. 10, the set washing mode B (sterilization + membrane washing) is set at 16:00, two hours before the bathing time, and the set washing mode is set at 0, 2, 7, and 13:00 based on the time. A (film cleaning), and at 4:00, a set cleaning mode B is set. Thus, the number of times of film cleaning in the first time zone L1 (0:00 to 8:00) is four, and the number of times of film cleaning in the second time zone L2 (8:00 to 18:00) is two. That is, the film cleaning is performed at predetermined intervals so that the frequency of the number of times of film cleaning in the first time period L1 is higher than that in the second time period L2. Also, the membrane is not washed during the bathing time zone K. Here, when each set time is reached based on the input current time, in the set cleaning mode A, the film cleaning is started according to the flowchart shown in FIG. 1 (Minutes), the cleaning of the hollow fiber membrane 4 is completed, and the membrane cleaning water stored in the filtration tank 24 is discharged. In the set cleaning mode B, the electrolysis is started according to the flowchart shown in FIG. 9, the electrolysis is performed for a certain time (a minute), and after a certain time (b minute) has elapsed from the end of the electrolysis, the hollow fiber The cleaning of the film 4 is started, and for a certain period of time (c 2 ), The washing of the hollow fiber membrane 4 is completed, and the membrane washing water stored in the filtration tank 24 is discharged for a certain period of time (d minutes). The germicidal washing water generated in the tank 6 is passed for a certain period of time (e minutes) to oxidize the organic substances attached to the hollow fiber membranes 4 with the germicidal washing water and to sterilize the bath water at the same time. Here, the time setting of each set cleaning mode A and B is performed from the input bathing start time, but the time setting of each set cleaning mode A and B may be performed by inputting the non-bathing time. The time setting and the control flow in each of the set cleaning modes A and B are merely examples, and the above-described conditions (the frequency of the number of times of film cleaning in the first time zone L1 is larger than that in the second time zone L2). As described above, the film cleaning is performed at preset time intervals).
[0022]
FIG. 11 shows a case where the degree of blockage of the hollow fiber membrane 4 is detected by the flow rate sensor 26 arranged on the secondary side of the hollow fiber membrane 4 and the value indicating the degree of blockage of the hollow fiber membrane 4 exceeds a certain value. 4 shows a series of operations in a detection cleaning mode in which film cleaning is performed in the non-bathing time zone L. In this example, as in the case of FIG. 11, the membrane cleaning is not performed within the bathing time zone K. In addition, the film cleaning in the set cleaning mode and the film cleaning in the detection cleaning mode are performed at different timings. The film cleaning in the detection cleaning mode is based on either the flowchart of FIG. 8 or FIG. 9, but is not limited to these flowcharts. Here, when the bathing time zone K is set to, for example, 18:00 to 24:00, the set washing mode B (sterilization + membrane washing) is set at 16:00, which is two hours before the bathing time, and based on the time, At 7:00 and 13:00, the set washing mode A, at 4:00, set washing mode B, and further with the timing shifted from these set washing modes A, B, the flow rate of the hollow fiber membrane 4 is detected at 0 o'clock. Of course, it is not limited to midnight. First, the flow rate sensor 26 detects the membrane flow rate of the hollow fiber membrane 4 at 0 o'clock, and if the detected flow rate is equal to or less than a certain value, it is determined that the hole of the hollow fiber membrane 4 is closed, At 2 o'clock, the mode shifts to the detection washing mode, and the hollow fiber membrane 4 is washed. In addition, the detection of the flow rate of the hollow fiber membrane 4 is performed in the vicinity of the end of the bathing time zone K at which the turbidity in the bathing water starts to increase, or 5 to 10 times of the bathing time zone K from the viewpoint of reducing turbidity before bathing. Hours before is desirable.
[0023]
Thus, the bathing time zone K and the non-bathing time zone L are provided, and the non-bathing time zone L is defined as a first time zone L1 immediately after the bathing time zone K elapses and a predetermined time elapses, and thereafter. Divided into the second time zone L2, the frequency of the membrane cleaning in the first time zone L1 is set to be greater than the frequency of the membrane cleaning in the second time zone L2. In the time zone (first time zone L1) at which the turbidity of the bath water reaches the peak after 6 hours, the frequency of washing the hollow fiber membrane 4 is increased more than in the second time zone L2 thereafter, so that the bathing is effectively performed. Water turbidity can be reduced. Further, the degree of blockage of the hollow fiber membrane 4 is detected by the flow rate sensor 26, and when a certain value indicating the blockage of the hollow fiber membrane 4 is exceeded, the number of times of membrane cleaning is increased, whereby unnecessary membrane cleaning is performed. Turbidity in the bath water can be reduced while suppressing physical deterioration of the hollow fiber membrane 4 due to membrane washing.
[0024]
Further, in this example, by setting the number of times of membrane cleaning in the bathing time zone K to zero, it is possible to suppress the drainage of the membrane cleaning drainage to the washing place at the time of bathing, and to prevent unpleasant and unsanitary. .
[0025]
Further, by merely providing the flow rate sensor 26 on the secondary side of the hollow fiber membrane 4, a sensor for detecting the degree of blockage of the hollow fiber membrane 4 can be configured, the structure is simple, and the sensing failure due to the adhesion of dirt is hard to occur. Become. In addition, as shown in FIG. 11, by shifting the detection timing of the flow rate sensor 26 and the preset timing of membrane cleaning, the degree of dirt clogged after the preset membrane cleaning can be accurately detected. It can be washed and can reduce turbidity in bath water.
[0026]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
(Example 1)
The bath water purification system shown in FIG. 1 was used. Here, a pump 3 with a water discharge rate of 20 liters / min, a heater 8 with a power consumption of 600 W, a filtration tank 24 with dimensions of 120 mm and h160 mm, a washing nozzle 5 having five running water discharge ports 10 with a diameter of 3 mm, and a polyethylene nozzle. 8m 2 The bath water purification system provided with the purification membrane composed of the hollow fiber membrane 4 was installed in the bathtub 1 having a bath water volume of 200 liters. This bath water purifying system is based on the time schedule shown in FIG. 10, the cleaning time is 10 minutes, the chlorine amount in the cleaning sterilized water generated in the electrolytic electrode tank 6 is 500 mg, and the membrane cleaning drainage amount is 5 liters. .
(Comparative Example 1)
The configuration is the same as that of the first embodiment, and the time schedule is in accordance with FIG. 12, and the other settings are in accordance with the first embodiment.
(Evaluation)
While continuously operating the bath water purification system, a bathing experiment was conducted by bathing 5 persons per day in the set bathing time zone K, and the purification performance was evaluated by measuring the change over time in the turbidity of the bath water. . FIG. 13 shows the evaluation result of Example 1 and FIG. 14 shows the evaluation result of Comparative Example 1. In Comparative Example 1 in which the hollow fiber membranes 4 were washed at regular intervals, the turbidity started to increase from the sixth hour after the end of bathing, and thereafter increased sharply and reached a peak turbidity at about 10 to 11 hours. With the arrival of 0.6 NTU, the number decreased sharply at 5:00.
On the other hand, in Example 1, the behavior of turbidity is the same as that of Comparative Example 1, but the peak of turbidity can be suppressed to 0.5 NTU, which is lower than that of Comparative Example 1. A low turbidity transition was achieved.
(Example 2)
In the configuration shown in the first embodiment, the time schedule is based on FIG. 11, and the other settings are based on the embodiment.
(Evaluation)
While continuously operating the bath water purification systems of Example 2 and Comparative Example 1, a bathing experiment was carried out for three months by bathing 5 persons per day in a set bath time zone K, and hollow fibers before and after the bathing were performed. The tensile strength of the film 4 was measured. The measurement of the tensile strength was carried out by sampling 20 hollow fibers from an arbitrary location from the surroundings. The results are as follows. In Example 2, the tensile strength was about 30 mg higher than that in Comparative Example 1, the deterioration of the hollow fiber membrane 4 due to washing was suppressed, and the life was prolonged. .
[0027]
[Table 1]
Figure 0003587153
[0028]
【The invention's effect】
As described above, according to the first aspect of the present invention, the pump, the hollow fiber membrane constituting the bath water purifying means, and the hollow fiber membrane are provided on the circulation path connected to the suction / water discharge port of the bathtub. In a bath water purification system provided with a membrane cleaning mechanism for cleaning and a bath water sterilizing means, a bathing time period and a non-bathing time period are provided, and the non-bathing time period is set to a predetermined value immediately after the elapse of the bathing time period. It is divided into a first time period until the time elapses and a second time period thereafter, and the frequency of the number of times of membrane cleaning in the first time period is set to be smaller than the number of times of film cleaning in the second time period. A set cleaning mode in which the membrane is washed at preset intervals so as to increase the value, and a value indicating the degree of blockage of the hollow fiber membrane by detecting the degree of blockage of the holes in the hollow fiber membrane by a sensor exceeds a certain value. Sometimes equipped with a detection cleaning mode to perform membrane cleaning during non-bathing hours Then, by increasing the frequency of the number of washings in the first time period when the turbidity of the bath water reaches a peak based on the end of the bathing time period, compared with the number of washing times in the second time period thereafter. It can effectively reduce the turbidity in the bath water, and when it exceeds a certain value indicating the blockage of the hollow fiber membrane, it detects this with a sensor and increases the number of times of membrane washing, so that the bath water can be reduced. Turbidity can be further reduced, unnecessary membrane washing can be eliminated, physical deterioration of the hollow fiber membrane due to membrane washing can be suppressed, and the life of the hollow fiber membrane can be extended.
[0029]
According to the invention of claim 2, in addition to the effect of claim 1, since the membrane is not washed during the bathing time, it is possible to suppress drainage of the membrane washing drainage to the washing place during bathing. It can be comfortable and hygienic.
[0030]
According to the third aspect of the present invention, in addition to the effect of the first aspect, the sensor for detecting the degree of blockage of the hollow fiber membrane is a flow rate sensor provided on the secondary side of the hollow fiber membrane. A simple structure with a flow sensor on the secondary side of the fiber membrane can detect the degree of blockage of the hollow fiber membrane, and the flow sensor is located on the secondary side of the hollow fiber membrane for sensing by adhesion of dirt. Failures are less likely to occur, and detection accuracy can be improved.
[0031]
Further, in addition to the effect of claim 1, the invention according to claim 4 performs the film cleaning in the set cleaning mode and the film cleaning in the detection cleaning mode at different timings, so that the film cleaning is performed after the preset film cleaning. The degree of clogged dirt can be accurately detected and washed, and turbidity in the bath water can be further reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention.
FIG. 2 is a block diagram of the same.
FIG. 3 is an explanatory diagram of a flow of bath water at the time of bath water purification according to the first embodiment.
FIG. 4 is an explanatory diagram of a flow of bath water at the time of cleaning the hollow fiber membrane.
FIG. 5 is an explanatory diagram of a flow of bath water at the time of membrane cleaning drainage of the above.
FIG. 6 is an explanatory diagram of a flow of bath water at the time of sterilization and cleaning according to the first embodiment.
FIG. 7 is a flowchart at the time of normal operation of the embodiment.
FIG. 8 is a flowchart of a set cleaning mode in which only film cleaning is performed.
FIG. 9 is a flowchart of a set cleaning mode for performing the same membrane cleaning and sterilization.
FIG. 10 is a time schedule according to the first embodiment.
FIG. 11 is a time schedule according to the second embodiment.
FIG. 12 is a time schedule of Comparative Example 1 of the above.
FIG. 13 is a graph showing evaluation results of Example 1 of the above.
FIG. 14 is a graph showing evaluation results of Comparative Example 1 of the above.
FIG. 15 is a graph showing the relationship between the elapsed time after bathing and the turbidity of a conventional example.
[Explanation of symbols]
1 bathtub
2 circulation route
3 pump
4 Hollow fiber membrane
5A Membrane cleaning mechanism
6A Bath water sterilization means
15 Suction and spout
26 Flow sensor
K Bathing hours
L Non-bathing hours
L1 First time zone
L2 Second time zone

Claims (4)

浴槽の吸・吐水口に接続される循環経路上に、ポンプと、浴水浄化手段を構成する中空糸膜と、中空糸膜を洗浄する膜洗浄機構と、浴水殺菌手段とが配設されている浴水浄化システムにおいて、入浴時間帯と非入浴時間帯とを設け、非入浴時間帯を、入浴時間帯の経過直後から所定時間が経過するまでの第1の時間帯と、それ以降の第2の時間帯とに分け、第1の時間帯における膜洗浄の回数の頻度を第2の時間帯における膜洗浄の回数よりも増やすように予め設定された時間おきに膜洗浄を行う設定洗浄モードと、中空糸膜の孔の閉塞の程度をセンサーにより検知して中空糸膜の閉塞の程度を示す値が一定値を超えたときに、非入浴時間帯内で膜洗浄を行う検知洗浄モードとを備えていることを特徴とする浴水浄化システム。A pump, a hollow fiber membrane constituting a bath water purifying means, a membrane cleaning mechanism for cleaning the hollow fiber membrane, and a bath water sterilizing means are provided on a circulation path connected to the suction / water outlet of the bathtub. In the bath water purification system, a bathing time zone and a non-bathing time zone are provided, and the non-bathing time zone is defined as a first time zone immediately after the elapse of the bathing time until a predetermined time elapses, and thereafter. Set cleaning in which the film cleaning is performed every predetermined time so that the frequency of the film cleaning in the first time period is increased more than the frequency of the film cleaning in the second time period. Mode and a detection and cleaning mode in which the degree of blockage of the holes in the hollow fiber membrane is detected by a sensor, and when the value indicating the degree of blockage of the hollow fiber membrane exceeds a certain value, the membrane is cleaned within a non-bathing period. And a bath water purification system comprising: 入浴時間帯内では膜洗浄を行わないことを特徴とする請求項1記載の浴水浄化システム。The bath water purification system according to claim 1, wherein the membrane cleaning is not performed during a bathing time period. 中空糸膜の閉塞の程度を検知するセンサーが、中空糸膜の二次側に設けられた流量センサーであることを特徴とする請求項1記載の浴水浄化システム。The bath water purification system according to claim 1, wherein the sensor for detecting the degree of blockage of the hollow fiber membrane is a flow sensor provided on a secondary side of the hollow fiber membrane. 設定洗浄モードにおける膜洗浄と検知洗浄モードにおける膜洗浄とをタイミングをずらして行うことを特徴とする請求項1記載の浴水浄化システム。The bath water purification system according to claim 1, wherein the timing of the membrane cleaning in the set cleaning mode and the timing of the membrane cleaning in the detection cleaning mode are shifted.
JP2000293052A 2000-09-26 2000-09-26 Bath water purification system Expired - Fee Related JP3587153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000293052A JP3587153B2 (en) 2000-09-26 2000-09-26 Bath water purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000293052A JP3587153B2 (en) 2000-09-26 2000-09-26 Bath water purification system

Publications (2)

Publication Number Publication Date
JP2002096063A JP2002096063A (en) 2002-04-02
JP3587153B2 true JP3587153B2 (en) 2004-11-10

Family

ID=18775896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000293052A Expired - Fee Related JP3587153B2 (en) 2000-09-26 2000-09-26 Bath water purification system

Country Status (1)

Country Link
JP (1) JP3587153B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025952A (en) * 2018-08-17 2020-02-20 田村 善胤 Water purification treatment apparatus

Also Published As

Publication number Publication date
JP2002096063A (en) 2002-04-02

Similar Documents

Publication Publication Date Title
JP3587153B2 (en) Bath water purification system
KR20130127680A (en) Water treatment apparatus and water treatment method
KR101521937B1 (en) A washing kit for water purifier
JP5698630B2 (en) Central water purification system
JPH10174973A (en) Method for washing and sterilizing continuous water passing type electrolytic water making apparatus, electrolytic water-making apparatus equipped with mechanism executing the method and passage changeover valve device used therein
KR100859371B1 (en) Sterilizing Apparatus of Cleaning Nozzle in Bidet
JP3032751B1 (en) Bathtub water purification equipment
JP3791158B2 (en) Water purification equipment
JP3210912B2 (en) Bathtub water purification equipment
JP3210913B2 (en) Bathtub water purification equipment
JP3465611B2 (en) Sterilizer and bath tub water circulation purifier equipped with sterilizer
JP3584744B2 (en) Bathtub water circulation purification device
JP3210909B2 (en) Bathtub water purification equipment
JP3145986B2 (en) Bathtub water purification equipment
KR101803674B1 (en) Water purifier sterilization apparatus
KR20130016551A (en) Sterilization method of ice tank of water treatment apparatus
JP2003190965A (en) Bath water circulating cleaner
JP3572662B2 (en) Electrolyzed water generator
JP3671684B2 (en) Bath water purification device
JP3807123B2 (en) Bath water purification device
KR101907736B1 (en) Water purifier sterilization apparatus
JP2001205269A (en) Bathtub water cleaning apparatus
JP3210911B2 (en) Bathtub water purification equipment
JP2001120452A (en) Bath water cleaning system
JP3695086B2 (en) Circulating and purifying device for bath water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

LAPS Cancellation because of no payment of annual fees