JP3584744B2 - Bathtub water circulation purification device - Google Patents

Bathtub water circulation purification device Download PDF

Info

Publication number
JP3584744B2
JP3584744B2 JP23960298A JP23960298A JP3584744B2 JP 3584744 B2 JP3584744 B2 JP 3584744B2 JP 23960298 A JP23960298 A JP 23960298A JP 23960298 A JP23960298 A JP 23960298A JP 3584744 B2 JP3584744 B2 JP 3584744B2
Authority
JP
Japan
Prior art keywords
water
electrolytic cell
circulation
diaphragm
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23960298A
Other languages
Japanese (ja)
Other versions
JP2000070948A (en
Inventor
孝啓 井上
由香 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP23960298A priority Critical patent/JP3584744B2/en
Publication of JP2000070948A publication Critical patent/JP2000070948A/en
Application granted granted Critical
Publication of JP3584744B2 publication Critical patent/JP3584744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、浴槽内の浴槽水を循環して浄化することで、浴槽水の長期使用を可能とする浴槽水循環浄化装置に関するものである。
【0002】
【従来の技術】
近年、家庭用の風呂において24時間の入浴を可能としたものが提供されている。この場合、浴槽内の浴槽水を長期間使用可能とするために浴槽水を常時もしくは周期的に浄化・殺菌する必要がある。このために、浴槽水を循環水路に循環させる循環ポンプと、浴槽水の流れをろ過するろ過槽とを備え、循環水路中にバイパス路を設け、バイパス路中に一対の電極を内蔵した無隔膜電解槽を設け、バイパス路の下流側をろ過槽の1次側に接続し、無隔膜電解槽の上流側に弁を設けた浴槽水循環浄化装置が提案されている。このものはろ過槽により浴槽水中の細菌や浮遊物をろ過して浄化するのであるが、殺菌に当っては、無隔膜電解槽に食塩水を投入して塩素水を生成し、この塩素水を循環水路に流すことで、浴槽水や装置内の病原性細菌を抑制し、不快感を与えるヌメリを取り除くようになっている。
【0003】
ろ過槽のろ材はろ過性能を維持するために、定期的に洗浄する。ろ材の洗浄後、ろ材の1次側(上流側)から塩素水の投入を行うと、ろ材のろ過性能の維持に役立つものである。
【0004】
このように、ろ過性能を維持するためにろ材を定期的に洗浄するが、その洗浄性能は長期的には低下し、ついには洗浄しても、ろ過性能が回復しなくなり、ろ材の交換が必要となる。このろ材の交換の判定にはろ過能力を測定する流量センサや流量スイッチ等の装置が必要であった。
【0005】
【発明が解決しようとする課題】
本発明は上記の従来例の問題点に鑑みて発明したものであって、流量センサや流量スイッチ等のろ過性能を測定する装置を別途必要とすることなくろ材が交換時期であるかどうかを簡単に判定することが可能な浴槽水循環浄化装置を提供することを課題とするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明に係る浴槽水循環浄化装置は、浴槽水を循環水路1に循環させる循環ポンプ2と、浴槽水の流れをろ過するろ過槽3とを備え、循環水路1中にバイパス路4を設け、バイパス路4中に一対の電極5を内蔵した無隔膜電解槽6を設け、バイパス路4の下流側をろ過槽3の1次側に接続し、無隔膜電解槽6の上流側に弁7を設けた浴槽水循環浄化装置において、無隔膜電解槽6で生成した塩素水を循環水路1に投入する際に無隔膜電解槽6内の水の電気伝導度が所定値に低下するまでの時間を測定することを特徴とするものである。このような構成とすることで、塩素水をろ過槽3側に投入して殺菌する際、ろ過槽3における中空糸膜のようなろ材3aが目詰まりしていると無隔膜電解槽6内における塩素水の濃度の低下が遅く、したがって電気伝導度の低下が遅くなり、これにより、ろ過槽3の目詰まり状態を判断でき、ろ過槽3のろ材3aの交換時期を知ることができるものである。
【0007】
また、無隔膜電解槽6の電極5間に電圧を印加して無隔膜電解槽6内の水の電気伝導度が所定値に低下するまでの時間を測定することが好ましい。このような構成とすることで、塩素を発生させて塩素水を生成するための電極5を利用して水の電気伝導度を測定してろ過槽3のろ材3aの交換時期を知ることができるものである。
【0008】
【発明の実施の形態】
以下、本発明を添付図面に示す実施形態に基づいて説明する。
【0009】
図1には本発明の装置の配管構成図が示してある。循環水路1は一端に吸い込み口8を設けると共に他端に吐出口9を設けてあり、上記吸い込み口8と吐出口9とが浴槽10内の浴槽水中に浸漬させてある。
【0010】
循環水路1には上流側から下流側にかけて順に循環ポンプ2、ヒータ12、弁13が設けてあり、また、循環水路1は循環ポンプ2よりも下流側で通水水路1aと浄化水路1bとの2つの水路に分岐し、この通水水路1aと浄化水路1bはヒータ12の上流側において再び合流している。なお、通水水路1aにヒータ12を設け、浄化水路1bをヒータ12よりも下流側で合流させるようにしてもよいものである。
【0011】
循環水路1の一部を構成する浄化水路1bにはろ過槽3が設けてあり、浄化水路1bのろ過槽3よりも上流側に弁14が設けてあり、また、浄化水路1bのろ過槽3よりも下流側に弁15が設けてある。
【0012】
浄化水路1bの弁14よりも上流側にバイパス路4の一端部が接続してあり、バイパス路4の他端部が浄化水路1bの弁14とろ過槽3との間に接続してある。このバイパス路4の途中は第1分岐路16と第2分岐路17とに分岐しており、第1分岐路16には上流側から下流側にかけて順に弁7、無隔膜電解槽6が設けてある。また、第2分岐路17は上流側から下流側にかけて順に弁18、塩溶解槽19が設けてあり、第2分岐路17の下流側の端部が無隔膜電解槽6に連通接続してある。塩溶解槽19には食塩が収納される。また、無隔膜電解槽6は一対の不溶性電極板よりなる電極5を隔膜を介することなく対向配置した無隔膜タイプのものとして形成してある。ここで、電極5を構成する電極板の形状は無隔膜電解槽6の下方まで達する長方形である。電極5には直流電圧が印加されるようになっており、電極5への電圧の印加は制御部20の制御により行われる。塩溶液には塩素イオン(Cl)が含まれているが、無隔膜電解槽6で電極5に直流電圧を印加して塩素イオン(Cl)の一部を電気分解すると、塩素イオン(Cl)は塩素(Cl)や次亜塩素酸イオン(ClO)に交換され、浴槽水に殺菌力を持たせることができるようになっている。
【0013】
ろ過槽3内には中空糸膜のような精密ろ過材よりなるろ材3aが設けてある。ろ過槽3内には浄化水路1bから供給される浴槽水の噴出口21が設けてあり、この噴出口21から噴出水がろ材3aの上流側の面に向けて噴出するようになっている。ろ過槽3の底部と循環水路1の循環ポンプ2よりも上流側とを水路22により接続してあり、この水路22の途中から弁部a、b、cを有する3方弁よりなる弁23を介して排水路24が設けてある。
【0014】
上記のような構成の浴槽水循環浄化装置は「通常循環」モード、「食塩水供給」モード、「電解」モード、「塩素水供給」モード、「膜洗浄」モード、「すすぎ、排水」モード等の諸モードを切り替えて運転することができるようになっている。これらのモード切り換えによる各弁の切り換え、循環ポンプ2の運転は制御部20による制御により行われるものである。また、電解時における電極5への電圧の印加も制御部20による制御により行われる。ここで、本発明においては、「塩素水供給」モードの際に電極5に電圧を印加して、無隔膜電解槽6内における電気伝導度を検出するように制御部20により制御されるようになっている。また、ヒータ11の制御も制御部20により行われる。
【0015】
ここで、本発明の浴槽水循環浄化装置は通常運転時には、弁13、弁14、弁15をいずれも開、弁18、弁7、弁23をいずれも閉にして循環ポンプ2を運転するように制御されるものであり、この場合、循環ポンプ2の運転により吸い込み口8から循環水路1に吸い込まれた浴槽水の一部がろ過槽3を通過する際にろ材3aによりろ過されて浄化され、ヒータ11で加温されて、吐出口9から浴槽10中に返送されるものである。ここで、循環水路1は循環ポンプ2よりも下流側で通水水路1aと浄化水路1bとの2つの水路に分岐しているので、浄化水路1b中に設けたろ過槽3内のろ材3aが目詰まりして浄化水路1bを流れる水量が減っても、この場合には通水水路1aを流れる水量が増えることで、循環水路1全体を流れる浴槽水の水量は変わらず、ヒータ11による加温された浴槽水の返送により浴槽10内における浴槽水の温度低下を防いでいる。
【0016】
殺菌(または制菌)に当っては、「食塩水供給」モード→「電解」モード→「塩素水供給」モードの順で運転するものである。すなわち、弁13、弁14、弁15、弁18をいずれも開、弁7、弁23をいずれも閉にした状態で循環ポンプ2を運転することで、塩溶解槽19から食塩水が無隔膜電解槽6に供給される(これが「食塩水供給」モードである)。このようにして無隔膜電解槽6に食塩水を供給した後、弁13、弁14、弁15をいずれも開、弁18、弁7、弁23をいずれも閉とした状態で電極5に電圧を印加して電気分解することで、塩素を発生させる(これが「電解」モードである)。この場合循環ポンプ2は運転しておく。次に、弁13、弁14、弁15、弁7をいずれも開、弁18、弁23をいずれも閉とし、この状態で循環ポンプ2を運転すると無隔膜電解槽6内の塩素水がろ過槽3に供給され、ろ材3aを通過して浴槽水と一緒に浴槽10に流れ込む(これが「塩素水供給」モードである)。このように塩素水を循環水路1に流すことで、浴槽水や装置内の病原性細菌を抑制し、不快感を与えるヌメリを取り除くものである。上記の無隔膜電解槽6内の塩素水をろ過槽3側に供給する「塩素水供給」モード時に本発明においては電極5間に電圧を印加して、無隔膜電解槽6中の水の電気伝導度を測定するように制御部20により制御される。この場合、実施形態においては無隔膜電解槽6中の水の電気伝導度の減少時間を測定し、これによりろ材3aの目詰まり状態を知り、ろ材3aが交換時期なのか、否かを判断するようにしている。つまり、無隔膜電解槽6中の塩素水はろ過槽3内のろ材3aが目詰まりしていないとろ材3aを早く通過することで、多くの塩素水が流れ、これにより無隔膜電解槽6中の水の電気伝導度が所定値に低下するまでの時間が短いが、ろ過槽3内のろ材3aが目詰まりしているとろ材3aを通過する単位時間あたりの塩素水が流れる水量が少ないため、これにより無隔膜電解槽6中の水の電気伝導度が所定値に低下するまでの時間が長くなる。
【0017】
図2には電極5間に電圧を印加した場合における電流値と塩素水供給の経過時間との関係を示すグラフが示してある。図2においてイはろ過槽3内のろ材3aが目詰まりせず正常な場合を示しており、塩素水の供給からt1時間経過すると塩素が排出されたと判断される電流値となる。一方、ロはろ過槽3内のろ材3aが目詰まりした場合を示し、塩素水の供給からt2時間経過すると塩素が排出されたと判断される電流値となる。ここで、ろ材3aの交換の時期(つまりろ材3aのろ過性能が維持できなくなる時期)を塩素水の供給からt0時間以上経過した場合であると予め設定しておくことで、上記塩素水の供給から塩素が排出されたと判断される電流値になるまでの経過時間によりろ材3aが交換時期となっているのか、今だ交換時期に至っていないのかが判断できるものである。
【0018】
なお、膜洗浄に当っては、「膜洗浄」モード→「すすぎ、排水」モードの順に運転するものである。すなわち、弁14を開とし、弁23をろ過槽3と循環ポンプ2側が連通するように図1における弁23の弁部aと弁部bとを開とするとともに弁部cを閉とし、弁13、弁15、弁7、弁18をいずれも閉とすることで閉循環流路を形成し、この状態で循環ポンプ2を運転することで閉循環流路を水が流れながら、噴出口21から水をろ材3a噴出してろ材3aを洗浄し(これが「膜洗浄」モードである)、その後、弁14を開、弁23をの弁部aと弁部cとを開とするとともに弁部bを閉とし、弁13、弁15、弁7、弁18をいずれも閉として循環ポンプ2を運転することで、洗浄により汚れた水及びすすぎ水を排水路24から外部に排水するものである。
【0019】
【発明の効果】
上記の請求項1記載の本発明にあっては、浴槽水を循環水路に循環させる循環ポンプと、浴槽水の流れをろ過するろ過槽とを備え、循環水路中にバイパス路を設け、バイパス路中に一対の電極を内蔵した無隔膜電解槽を設け、バイパス路の下流側をろ過槽の1次側に接続し、無隔膜電解槽の上流側に弁を設けた浴槽水循環浄化装置において、無隔膜電解槽で生成した塩素水を循環水路に投入する際に無隔膜電解槽内の水の電気伝導度が所定値に低下するまでの時間を測定するので、別途流量センサや流量スイッチ等を設けることなく無隔膜電解槽内の水の電気伝導度を測定するという簡単な構成で、ろ過槽の目詰まり状態を判断でき、ろ過槽のろ材の交換時期を知ることができるものである。
【0020】
また、請求項2記載の発明にあっては、上記請求項1記載の発明の効果に加えて、無隔膜電解槽の電極間に電圧を印加して電解槽内の水の電気伝導度が所定値に低下するまでの時間を測定するので、ろ材の交換の判定に当って、塩素水の生成で用いた電極を用いることができて、ろ材のろ過能力を測定するために別途流量センサや流量スイッチ等の特別な装置が必要でなく、より安価で浴槽水浄化循環装置を提供できるものである。
【図面の簡単な説明】
【図1】本発明の配管構成図である。
【図2】同上の電極間に電圧を印加した場合における電流値と塩素水供給の経過時間との関係を示すグラフである。
【符号の説明】
1 循環水路
2 循環ポンプ
3 ろ過槽
3a ろ材
4 バイパス路
5 電極
6 無隔膜電解槽
7 弁
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a bathtub water circulation / purification device that circulates and purifies bathtub water in a bathtub, thereby enabling long-term use of bathtub water.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a bath that can be used for 24 hours in a home bath has been provided. In this case, it is necessary to purify and sterilize the bathtub water constantly or periodically so that the bathtub water in the bathtub can be used for a long time. To this end, a circulation pump that circulates bath water in the circulation water channel and a filtration tank that filters the flow of the bath water are provided, a bypass channel is provided in the circulation water channel, and a diaphragm that incorporates a pair of electrodes in the bypass channel. A bath tub water circulation purification device has been proposed in which an electrolytic cell is provided, a downstream side of a bypass is connected to a primary side of a filtration tank, and a valve is provided on an upstream side of the non-diaphragm electrolytic cell. This filter purifies bacteria and suspended matter in the bathtub water by a filtration tank and purifies it.In sterilization, a saline solution is introduced into a non-diaphragm electrolytic cell to generate chlorine water, and this chlorine water is removed. By flowing into the circulation channel, the water in the bathtub and the pathogenic bacteria in the device are suppressed, and the slime that causes discomfort is removed.
[0003]
The filter media in the filter tank is periodically washed to maintain the filtration performance. When chlorine water is introduced from the primary side (upstream side) of the filter medium after washing the filter medium, it is useful for maintaining the filtration performance of the filter medium.
[0004]
In this way, the filter media is periodically cleaned to maintain the filtration performance, but the cleaning performance deteriorates in the long term, and even after cleaning, the filtration performance does not recover, and the filter media needs to be replaced. It becomes. In order to determine the replacement of the filter medium, a device such as a flow sensor or a flow switch for measuring the filtration capacity was required.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the problems of the conventional example described above, and it is easy to determine whether or not the filter medium is to be replaced without requiring a separate device for measuring filtration performance such as a flow sensor or a flow switch. It is an object of the present invention to provide a bath tub water circulation purifying device capable of making a determination as follows.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a bathtub water circulation / purification device according to the present invention includes a circulation pump 2 that circulates bathtub water to a circulation channel 1 and a filtration tank 3 that filters the flow of bathtub water. A bypass channel 4 is provided, a non-diaphragm electrolytic cell 6 having a pair of electrodes 5 built therein is provided in the bypass channel 4, and the downstream side of the bypass channel 4 is connected to the primary side of the filtration tank 3. In a bathtub water circulation purifying apparatus provided with a valve 7 on the upstream side, when the chlorine water generated in the diaphragmless electrolytic cell 6 is introduced into the circulation channel 1, the electric conductivity of water in the diaphragmless electrolytic cell 6 decreases to a predetermined value. This is characterized by measuring the time until the operation is completed. With such a configuration, when chlorine water is supplied to the filtration tank 3 for sterilization, if the filter medium 3a such as a hollow fiber membrane in the filtration tank 3 is clogged, the filtration medium 3 The decrease in the concentration of the chlorinated water is slow, and thus the decrease in the electrical conductivity is slow, whereby the clogging state of the filter tank 3 can be determined, and the time for replacing the filter medium 3a of the filter tank 3 can be known. .
[0007]
Further, it is preferable that a voltage is applied between the electrodes 5 of the diaphragm-free electrolytic cell 6 to measure the time until the electric conductivity of water in the diaphragm-free electrolytic cell 6 decreases to a predetermined value . With such a configuration, it is possible to measure the electric conductivity of water by using the electrode 5 for generating chlorine water by generating chlorine to know the replacement time of the filter medium 3a of the filtration tank 3. Things.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.
[0009]
FIG. 1 shows a piping configuration diagram of the apparatus of the present invention. The circulation channel 1 has a suction port 8 at one end and a discharge port 9 at the other end, and the suction port 8 and the discharge port 9 are immersed in bath water in a bathtub 10.
[0010]
The circulating water channel 1 is provided with a circulating pump 2, a heater 12, and a valve 13 in this order from the upstream side to the downstream side. It branches into two water channels, and the water flow channel 1a and the purification water channel 1b join again on the upstream side of the heater 12. Note that the heater 12 may be provided in the water passage 1a, and the purified water passage 1b may be merged downstream of the heater 12.
[0011]
A filtration tank 3 is provided in the purification water channel 1b constituting a part of the circulation water channel 1, a valve 14 is provided on the purification water channel 1b on the upstream side of the filtration tank 3, and a filtration tank 3 of the purification water channel 1b is provided. A valve 15 is provided on the downstream side.
[0012]
One end of the bypass 4 is connected to the upstream side of the valve 14 of the purified water passage 1b, and the other end of the bypass 4 is connected between the valve 14 of the purified water passage 1b and the filtration tank 3. The middle of the bypass 4 is branched into a first branch 16 and a second branch 17, and the first branch 16 is provided with a valve 7 and a diaphragm-free electrolytic cell 6 in order from the upstream side to the downstream side. is there. Further, the second branch 17 is provided with a valve 18 and a salt dissolving tank 19 in order from the upstream side to the downstream side, and the downstream end of the second branch 17 is connected to the diaphragm-free electrolytic cell 6. . Salt is stored in the salt dissolving tank 19. Further, the non-diaphragm electrolytic cell 6 is formed as a non-diaphragm type in which the electrodes 5 each composed of a pair of insoluble electrode plates are arranged to face each other without interposing a diaphragm. Here, the shape of the electrode plate constituting the electrode 5 is a rectangle reaching below the diaphragm-free electrolytic cell 6. A DC voltage is applied to the electrode 5, and the application of the voltage to the electrode 5 is performed under the control of the control unit 20. The salt solution contains chlorine ions (Cl ). When a DC voltage is applied to the electrode 5 in the non-diaphragm electrolytic cell 6 to electrolyze a part of the chlorine ions (Cl ), the chlorine ions (Cl ) are obtained. ) Is exchanged for chlorine (Cl 2 ) or hypochlorite ion (ClO ), so that the bath water can have a sterilizing power.
[0013]
In the filtration tank 3, a filter medium 3a made of a precision filtration medium such as a hollow fiber membrane is provided. A jet port 21 for bath water supplied from the purification water channel 1b is provided in the filtration tank 3, and jet water is jetted from the jet port 21 toward the upstream surface of the filter medium 3a. The bottom of the filtration tank 3 and the upstream side of the circulating pump 2 of the circulating water channel 1 are connected by a water channel 22, and a valve 23, which is a three-way valve having valve portions a, b, and c, is provided in the middle of the water channel 22. A drainage channel 24 is provided through the intermediary.
[0014]
The bath tub water circulation purifier having the above-described configuration includes a “normal circulation” mode, a “salt water supply” mode, an “electrolysis” mode, a “chlorine water supply” mode, a “membrane washing” mode, a “rinse, drain” mode, and the like. The vehicle can be operated in various modes. The switching of each valve by the mode switching and the operation of the circulation pump 2 are performed under the control of the control unit 20. Further, the application of the voltage to the electrode 5 during the electrolysis is also performed by the control of the control unit 20. Here, in the present invention, a voltage is applied to the electrode 5 in the “chlorine water supply” mode, so that the control unit 20 controls the electric conductivity in the diaphragm-free electrolytic cell 6 to be detected. Has become. The control of the heater 11 is also performed by the control unit 20.
[0015]
Here, the bath water circulation purifying apparatus of the present invention operates the circulation pump 2 by opening all the valves 13, 14, and 15 and closing all the valves 18, 7, and 23 during the normal operation. In this case, when the circulation pump 2 is operated, a part of the bathtub water sucked into the circulation channel 1 from the suction port 8 by the operation of the circulation pump 2 is filtered and purified by the filter medium 3a when passing through the filtration tank 3, It is heated by the heater 11 and returned from the discharge port 9 into the bathtub 10. Here, the circulating water channel 1 is branched downstream of the circulating pump 2 into two water channels of a water passing water channel 1a and a purification water channel 1b, so that the filter medium 3a in the filtration tank 3 provided in the purification water channel 1b is removed. Even if the amount of water flowing through the purified water passage 1b is reduced due to clogging, the amount of water flowing through the water passage 1a increases in this case, so that the amount of bathtub water flowing through the entire circulation water passage 1 does not change. The returned bathtub water prevents a decrease in the temperature of the bathtub water in the bathtub 10.
[0016]
In sterilization (or bacteriostatic), the operation is performed in the order of “salt water supply” mode → “electrolysis” mode → “chlorine water supply” mode. That is, by operating the circulating pump 2 in a state in which all of the valves 13, 14, 14, 15 and 18 are open, and all of the valves 7 and 23 are closed, the salt solution is separated from the salt dissolving tank 19 into the diaphragm. It is supplied to the electrolytic cell 6 (this is the “salt water supply” mode). After the saline solution is supplied to the non-diaphragm electrolytic cell 6 in this manner, the voltage is applied to the electrode 5 in a state where all of the valves 13, 14, and 15 are open and all the valves 18, 7, and 23 are closed. To generate chlorine by electrolysis (this is the “electrolysis” mode). In this case, the circulation pump 2 is operated. Next, when the valves 13, 14, 14, 15 and 7 are all opened and the valves 18 and 23 are all closed and the circulating pump 2 is operated in this state, the chlorine water in the diaphragm-free electrolytic cell 6 is filtered. The water is supplied to the tank 3, passes through the filter medium 3a, and flows into the bathtub 10 together with the bathtub water (this is a "chlorine water supply" mode). By flowing chlorine water in the circulation channel 1 in this manner, bath water and pathogenic bacteria in the apparatus are suppressed, and slime that gives discomfort is removed. In the "chlorine water supply" mode in which the chlorine water in the diaphragm-free electrolytic cell 6 is supplied to the filtration tank 3 side, in the present invention, a voltage is applied between the electrodes 5 and the water in the diaphragm-free electrolytic cell 6 is charged. The control unit 20 controls the conductivity to be measured. In this case, in the embodiment, the decrease time of the electric conductivity of the water in the diaphragm-free electrolytic cell 6 is measured, whereby the clogging state of the filter medium 3a is known, and it is determined whether or not the filter medium 3a is time to replace. Like that. In other words, the chlorine water in the diaphragm-free electrolytic cell 6 passes through the filter medium 3a quickly unless the filter medium 3a in the filter tank 3 is clogged, so that a large amount of chlorine water flows. Although the time required for the electric conductivity of water to drop to a predetermined value is short, if the filter medium 3a in the filter tank 3 is clogged, the amount of chlorine water flowing per unit time passing through the filter medium 3a is small. Thus, the time required for the electric conductivity of water in the diaphragm-free electrolytic cell 6 to drop to a predetermined value becomes longer.
[0017]
FIG. 2 is a graph showing the relationship between the current value when a voltage is applied between the electrodes 5 and the elapsed time of chlorine water supply. FIG. 2A shows a case where the filter medium 3a in the filter tank 3 is normal without clogging, and when the time t1 has elapsed from the supply of the chlorine water, the current value becomes a value at which it is determined that chlorine has been discharged. On the other hand, B shows the case where the filter medium 3a in the filtration tank 3 is clogged, and becomes a current value at which it is determined that chlorine has been discharged when the time t2 has elapsed from the supply of the chlorine water. Here, by setting in advance that the time of replacement of the filter medium 3a (that is, the time when the filtration performance of the filter medium 3a cannot be maintained) is more than t0 hours after the supply of the chlorine water, the supply of the chlorine water is performed. It is possible to determine whether the filter medium 3a has reached the replacement time or has not yet reached the replacement time, based on the elapsed time until the current value at which it is determined that chlorine has been discharged.
[0018]
In the membrane cleaning, the operation is performed in the order of “membrane cleaning” mode → “rinse and drain” mode. That is, the valve 14 is opened, the valve portion a and the valve portion b of the valve 23 in FIG. 1 are opened and the valve portion c is closed so that the valve 23 communicates with the filtration tank 3 and the circulation pump 2. 13, the valve 15, the valve 7, and the valve 18 are all closed to form a closed circulation flow path. By operating the circulation pump 2 in this state, water flows through the closed circulation flow path, , Water is spouted from the filter medium 3a to wash the filter medium 3a (this is a "membrane washing" mode). Thereafter, the valve 14 is opened, the valve portions a and c of the valve 23 are opened, and the valve portion is opened. By closing the valve b and closing the valves 13, 15, 15, and 18 to operate the circulating pump 2, water contaminated by washing and rinsing water are drained from the drain 24 to the outside. .
[0019]
【The invention's effect】
In the present invention according to the first aspect of the present invention, there is provided a circulating pump for circulating bath water in the circulating water channel, and a filtration tank for filtering the flow of the bath water, wherein a bypass is provided in the circulating water, and a bypass is provided. In a bath tub water circulation purification device, a non-diaphragm electrolytic cell having a pair of electrodes built therein is provided, a downstream side of a bypass is connected to a primary side of a filtration tank, and a valve is provided upstream of the non-diaphragm electrolytic cell. When the chlorine water generated in the diaphragm electrolyzer is charged into the circulation channel, the time until the electric conductivity of water in the diaphragm-free electrolyzer falls to a predetermined value is measured, so a separate flow sensor or flow switch is provided. With a simple configuration of measuring the electric conductivity of water in a diaphragm-free electrolytic cell without any problem, it is possible to judge the clogged state of the filter tank and to know when to replace the filter medium in the filter tank.
[0020]
According to the second aspect of the present invention, in addition to the effect of the first aspect, a voltage is applied between the electrodes of the non-diaphragm electrolytic cell so that the electric conductivity of water in the electrolytic cell becomes a predetermined value. Since the time until the value decreases is measured, the electrode used for the generation of chlorine water can be used to determine the replacement of the filter medium. A special device such as a switch is not required, and a bathtub water purification and circulation device can be provided at a lower cost.
[Brief description of the drawings]
FIG. 1 is a piping configuration diagram of the present invention.
FIG. 2 is a graph showing a relationship between a current value and an elapsed time of chlorine water supply when a voltage is applied between the electrodes of the above.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circulation water channel 2 Circulation pump 3 Filtration tank 3a Filter medium 4 Bypass path 5 Electrode 6 Non-diaphragm electrolytic cell 7 Valve

Claims (2)

浴槽水を循環水路に循環させる循環ポンプと、浴槽水の流れをろ過するろ過槽とを備え、循環水路中にバイパス路を設け、バイパス路中に一対の電極を内蔵した無隔膜電解槽を設け、バイパス路の下流側をろ過槽の1次側に接続し、無隔膜電解槽の上流側に弁を設けた浴槽水循環浄化装置において、無隔膜電解槽で生成した塩素水を循環水路に投入する際に無隔膜電解槽内の水の電気伝導度が所定値に低下するまでの時間を測定することを特徴とする浴槽水循環浄化装置。、A circulation pump that circulates bath water in the circulation water channel, a filtration tank that filters the flow of the bath water, a bypass channel is provided in the circulation water channel, and a non-diaphragm electrolytic cell that incorporates a pair of electrodes is provided in the bypass channel. In a bath tub water circulation purification device in which the downstream side of the bypass is connected to the primary side of the filtration tank and a valve is provided on the upstream side of the diaphragm-free electrolytic cell, chlorine water generated in the diaphragm-free electrolytic cell is introduced into the circulation path. A bathtub water circulation / purification device, wherein a time until the electric conductivity of water in the diaphragm-free electrolytic cell decreases to a predetermined value is measured. , 無隔膜電解槽の電極間に電圧を印加して電解槽内の水の電気伝導度が所定値に低下するまでの時間を測定することを特徴とする請求項1記載の浴槽水循環浄化装置。2. The bathtub water circulation purification device according to claim 1, wherein a voltage is applied between the electrodes of the non-diaphragm electrolytic cell to measure the time until the electric conductivity of water in the electrolytic cell decreases to a predetermined value .
JP23960298A 1998-08-26 1998-08-26 Bathtub water circulation purification device Expired - Fee Related JP3584744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23960298A JP3584744B2 (en) 1998-08-26 1998-08-26 Bathtub water circulation purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23960298A JP3584744B2 (en) 1998-08-26 1998-08-26 Bathtub water circulation purification device

Publications (2)

Publication Number Publication Date
JP2000070948A JP2000070948A (en) 2000-03-07
JP3584744B2 true JP3584744B2 (en) 2004-11-04

Family

ID=17047206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23960298A Expired - Fee Related JP3584744B2 (en) 1998-08-26 1998-08-26 Bathtub water circulation purification device

Country Status (1)

Country Link
JP (1) JP3584744B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716617B2 (en) * 2001-07-31 2011-07-06 三洋電機株式会社 Water treatment equipment

Also Published As

Publication number Publication date
JP2000070948A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
US6841058B2 (en) Redox bipolar cell fabric washer system
JP2001286698A (en) Washing machine
KR101876214B1 (en) Water treatment apparatus and sterilizing method thereof
JP3584744B2 (en) Bathtub water circulation purification device
KR101897563B1 (en) Water treatment apparatus and sterilizing method thereof
KR20170087842A (en) Water treatment apparatus and sterilizing method thereof
JPH10174973A (en) Method for washing and sterilizing continuous water passing type electrolytic water making apparatus, electrolytic water-making apparatus equipped with mechanism executing the method and passage changeover valve device used therein
JP4481047B2 (en) Ionized water generator
KR100666559B1 (en) Ion water purifier
JP3656122B2 (en) Bath water purification equipment
JP3791158B2 (en) Water purification equipment
JP3210912B2 (en) Bathtub water purification equipment
JP3572662B2 (en) Electrolyzed water generator
JP3671684B2 (en) Bath water purification device
JP3465611B2 (en) Sterilizer and bath tub water circulation purifier equipped with sterilizer
JP3584765B2 (en) Sterilizer and bath tub water circulation purifier equipped with sterilizer
JP3210913B2 (en) Bathtub water purification equipment
JP3733476B2 (en) Cleaning method for continuous electrolyzed water generating device and continuous electrolyzed water generating device provided with mechanism for carrying out this method
JP3835019B2 (en) Electrolytic control method for chlorine production
KR101886237B1 (en) Water treatment apparatus and sterilizing method thereof
JP3584745B2 (en) Bathtub water circulation purification device
JP3587153B2 (en) Bath water purification system
JP3210909B2 (en) Bathtub water purification equipment
JP3714031B2 (en) Bath water quality modifier
JP3584764B2 (en) Bathtub water circulation purification device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

LAPS Cancellation because of no payment of annual fees