JP3584745B2 - Bathtub water circulation purification device - Google Patents

Bathtub water circulation purification device Download PDF

Info

Publication number
JP3584745B2
JP3584745B2 JP23997998A JP23997998A JP3584745B2 JP 3584745 B2 JP3584745 B2 JP 3584745B2 JP 23997998 A JP23997998 A JP 23997998A JP 23997998 A JP23997998 A JP 23997998A JP 3584745 B2 JP3584745 B2 JP 3584745B2
Authority
JP
Japan
Prior art keywords
salt
water
dissolving tank
tank
salt dissolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23997998A
Other languages
Japanese (ja)
Other versions
JP2000070944A (en
Inventor
孝啓 井上
俊之 柿木
克彦 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP23997998A priority Critical patent/JP3584745B2/en
Publication of JP2000070944A publication Critical patent/JP2000070944A/en
Application granted granted Critical
Publication of JP3584745B2 publication Critical patent/JP3584745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Filtration Of Liquid (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、浴槽内の浴槽水を循環して浄化することで、浴槽水の長期使用を可能とする浴槽水循環浄化装置に関するものである。
【0002】
【従来の技術】
近年、家庭用の風呂において24時間の入浴を可能としたものが提供されている。この場合、浴槽10内の浴槽水を長期間使用可能とするために浴槽水を常時もしくは周期的に浄化・殺菌する必要がある。このために、図5に示すように、浴槽水を循環水路1に循環させる循環ポンプ2と、浴槽水の流れをろ過するろ過槽3とを備え、循環水路1中にバイパス路4を設け、バイパス路4中に塩溶解槽19と、その下流側に一対の電極5を内蔵した電解槽6とを設け、バイパス路4の下流側をろ過槽の1次側に接続し、電解槽6の上流側に弁7を設けた浴槽水循環浄化装置が提案されている。
【0003】
上記従来例において、塩素の生成は、まず電解槽6に塩溶解槽19から食塩水を供給し、このとき塩濃度の制御は電解槽6内に設けた一対の電極5間の電気伝導度を測定しながら、循環ポンプ2を停止し、塩溶解槽19の上流の弁を開けた後、循環ポンプ2を動作させるか、あるいは、循環ポンプ2を運転しながら、塩溶解槽19の上流の弁の開閉を繰り返すことにより、所定の塩濃度となるまで供給する。電解槽6が所定の食塩濃度に達したら、電解槽6の電極5間に電圧を印加して、遊離塩素を生成する。次に、電解槽6の上流側の弁を開き、電解槽6で生成した塩素水を浴槽水に供給して殺菌をするようになっている。
【0004】
ところで、上記のように循環ポンプ2を運転、停止したり、流路を変更すると、電解槽6の下流側を通じて塩溶解槽19にかかる水圧が変化し、呼吸作用により塩溶解槽19から電解槽6に食塩水が流入してしまう。すなわち、循環ポンプ2が停止状態では塩溶解槽19の水位は図6(a)に示すようにW1であるが、循環ポンプ2が運転しているときは、図6(b)の矢印に示すように水圧で電解槽6から塩溶解槽19に水が逆流して塩溶解槽19の水位がW2に上昇する。しかし、循環ポンプ2をオフして停止すると、圧力が無くなり、図6(c)の矢印のように塩溶解槽19から電解槽6内に食塩水が流入して塩溶解槽19の水位がW1になる。この際、塩溶解槽19から電解槽6内に食塩水が流入するので、電解前の食塩水供給時にいったん電解槽6内に過供給された食塩水を排出するような制御が必要となり、食塩の消費が速くなってしまうという問題がある。
【0005】
また、従来から塩溶解槽19は外筒19a内に食塩筒19bを入れて構成してあった。そして、食塩筒19bの塩が全て溶解し、更に食塩水供給時に電解槽6内の塩濃度が所定の濃度まで上がらない程、塩溶解槽19内の塩濃度が小さくなった時には、塩不足が表示されるようになっている。図7(a)は塩補充前における塩溶解槽19の水位を示している。そして、食塩を補充する時は、補充した食塩によって、塩溶解槽19内の水が溢れないように、塩溶解槽19の上流側の弁を開いて塩溶解槽19内の食塩水を全部外部に排出して図7(b)の状態とし、この状態で図7(c)に示すように、食塩筒19bに新たに定量の食塩を充填して外筒19a内に入れ、その後、塩補充後の再開時に、図7(d)に示すように塩溶解槽19内に新たに水を導入して塩補充前の所定水位W1となるように制御していた。
【0006】
ところが、このようなものにおいては、塩補充時に塩溶解槽19内の食塩水を全量排水するため、食塩水が無駄になり、また、塩補充後の再開時に、新たに塩溶解層19に水を導入する制御が必要となるという問題があった。
【0007】
【発明が解決しようとする課題】
本発明は上記の従来例の問題点に鑑みて発明したものであって、その目的とするところは、食塩の過剰な消費を抑え、浴槽水及び装置内に一定の塩素を供給して、レジオネラ属菌などの病原性細菌を殺菌することを可能とすることにあり、また、別の目的とするところは、塩補充時に無駄に食塩水を捨てることがなく、塩補充期間を長くでき、また、塩補充後に塩溶解槽内に水を導入する制御を必要としないことにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明に係る浴槽水循環浄化装置は、浴槽水を循環水路1に循環させる循環ポンプ2と、浴槽水の流れをろ過するろ過槽3とを備え、循環水路1中にバイパス路4を設け、バイパス路4の途中を第1分岐路16と第2分岐路17とに分岐し、第1分岐路16に上流側から下流側にかけて順に弁7、電解槽6を設けると共に第2分岐路17に上流側から下流側にかけて順に弁18、塩溶解槽19を設け、第2分岐路17の下流側の端部を電解槽6に連通接続し、第1分岐路16の下流側の端部をろ過槽3の1次側に接続した浴槽水循環浄化装置において、第2分岐路17の塩溶解槽19と電解槽6との間の流路に塩溶解槽19から電解槽6にのみ水が流れる方向性を有する逆止弁11を設けて成ることを特徴とするものである。このような構成とすることで、循環ポンプ2が運転しているときに水圧で電解槽6から塩溶解槽19に水が逆流して塩溶解槽19の水位が上昇するのが逆止弁11により阻止され、これにより、循環ポンプ2が停止しても塩溶解槽19から電解槽6内に食塩水が流入しないものである。
【0009】
また、塩溶解槽19が外筒19a内に食塩筒19bを入れて構成され、食塩筒19bに食塩を充填して外筒19a内に入れるに当って塩溶解槽19内の水を排水するための排水路40を設け、この排水路40より塩溶解槽19内の水を排水した際の塩溶解槽19内の水位が、塩溶解槽19における塩補充前における水面から外筒19a内の底部までの容積から、塩補充前における水面から下の食塩筒19bの容積を引いたのと略同じ体積の水量が外筒19a内に残るように設定することが好ましい。このような構成とすることで、塩不足の場合に新たに食塩を補充する際、補充した食塩により塩溶解槽19内の水が外筒19aから溢れないように外筒19a内の水を排水路40から排水するのであるが、この時、排水路40より塩溶解槽19内の水を排水した際の塩溶解槽19内の水位が、塩溶解槽19における塩補充前における水面から外筒19a内の底部までの容積から、塩補充前における水面から下の食塩筒19bの容積を引いたのと略同じ体積の水量が外筒19a内に残るように設定するので、排水後に新たな食塩を入れた食塩筒19bを外筒19a内に入れると、排水されずに塩溶解槽19内に残っていた食塩水の水位が上昇してちょうど塩補充前と同じ設定水位と同じ水位となり、塩補充後に、塩溶解槽19に新たに水を供給する制御が必要でなくなるものである。
【0010】
【発明の実施の形態】
以下、本発明を添付図面に示す実施形態に基づいて説明する。
【0011】
図1には本発明の装置の配管構成図の一実施形態が示してある。循環水路1は一端に吸い込み口8を設けると共に他端に吐出口9を設けてあり、上記吸い込み口8と吐出口9とが浴槽10内の浴槽水中に浸漬させてある。
【0012】
循環水路1には上流側から下流側にかけて順に循環ポンプ2、ヒータ12、弁13が設けてあり、また、循環水路1は循環ポンプ2よりも下流側で通水水路1aと浄化水路1bとの2つの水路に分岐し、この通水水路1aと浄化水路1bはヒータ12の上流側において再び合流している。なお、通水水路1aにヒータ12を設け、浄化水路1bをヒータ12よりも下流側で合流させるようにしてもよいものである。
【0013】
循環水路1の一部を構成する浄化水路1bにはろ過槽3が設けてあり、浄化水路1bのろ過槽3よりも上流側に弁14が設けてあり、また、浄化水路1bのろ過槽3よりも下流側に弁15が設けてある。
【0014】
浄化水路1bの弁14よりも上流側又は通水水路1aのヒータ12よりも上流側にバイパス路4の一端部が接続してあり、バイパス路4の他端部が浄化水路1bの弁14とろ過槽3との間に接続してある。このバイパス路4の途中は第1分岐路16と第2分岐路17とに分岐しており、第1分岐路16には上流側から下流側にかけて順に弁7、電解槽6が設けてある。また、第2分岐路17は上流側から下流側にかけて順に弁18、塩溶解槽19が設けてあり、第2分岐路17の下流側の端部が電解槽6に連通接続してある。第2分岐路17の塩溶解槽19と電解槽6との間の部分の流路は塩溶解槽19の上部の上出口28aから導出された流路17aと塩溶解槽19の下部の下出口28bから導出されて上記流路17aに合流する流路17bとで構成してあり、この第2分岐路17の塩溶解槽19と電解槽6との間の部分の流路17aの流路17bとの合流位置よりも下流側に塩溶解槽19から電解槽6にのみ水が流れる方向性を有する逆止弁11を設けてある。
【0015】
塩溶解槽19には食塩が収納される。また、電解槽6は一対の不溶性電極板よりなる電極5を隔膜を介することなく対向配置した無隔膜タイプのものとして形成してある。ここで、電極5を構成する電極板の形状は電解槽6の下方まで達する長方形である。電極5には直流電圧が印加されるようになっており、電極5への電圧の印加は制御部20の制御により行われる。塩溶液には塩素イオン(Cl)が含まれているが、電解槽6で電極5に直流電圧を印加して塩素イオン(Cl)の一部を電気分解すると、塩素イオン(Cl)は塩素(Cl)や次亜塩素酸イオン(ClO)に交換され、浴槽水に殺菌力を持たせることができるようになっている。
【0016】
ろ過槽3内には中空糸膜のような精密ろ過材よりなるろ材3aが設けてある。ろ過槽3内には浄化水路1bから供給される浴槽水の噴出口21が設けてあり、この噴出口21から噴出水がろ材3aの上流側の面に向けて噴出するようになっている。
【0017】
上記のような構成の浴槽水循環浄化装置は「通常循環」モード、「食塩水供給」モード、「電解」モード、「塩素水供給」モード等の諸モードを切り替えて運転することができるようになっている。これらのモード切り換えによる各弁の切り換え、循環ポンプ2の運転は制御部20による制御により行われるものである。また、電解時における電極5への電圧の印加も制御部20による制御により行われる。
【0018】
ここで、本発明の浴槽水循環浄化装置は通常循環運転時には、弁13、弁14、弁15をいずれも開、弁18、弁7をいずれも閉にして循環ポンプ2を運転するように制御されるものであり、この場合、循環ポンプ2の運転により吸い込み口8から循環水路1に吸い込まれた浴槽水の一部がろ過槽3を通過する際にろ材3aによりろ過されて浄化され、ヒータ11で加温されて、吐出口9から浴槽10中に返送されるものである(これが「通常循環モード」である)。ここで、循環水路1は循環ポンプ2よりも下流側で通水水路1aと浄化水路1bとの2つの水路に分岐しているので、浄化水路1b中に設けたろ過槽3内のろ材3aが目詰まりして浄化水路1bを流れる水量が減っても、この場合には通水水路1aを流れる水量が増えることで、循環水路1全体を流れる浴槽水の水量は変わらず、ヒータ11による加温された浴槽水の返送により浴槽10内における浴槽水の温度低下を防いでいる。
【0019】
殺菌(または制菌)運転に当っては、「食塩水供給」モード→「電解」モード→「塩素水供給」モードの順で運転するものである。すなわち、弁13、弁14、弁15、弁18をいずれも開、弁7を閉にした状態で循環ポンプ2を運転することで、塩溶解槽19から食塩水が電解槽6に供給される(これが「食塩水供給」モードである)。このようにして電解槽6に食塩水を供給した後、弁13、弁14、弁15をいずれも開、弁18、弁7をいずれも閉とした状態で電極5に電圧を印加して電気分解することで、塩素を発生させる(これが「電解」モードである)。この場合循環ポンプ2は運転しておく。次に、弁13、弁14、弁15、弁7をいずれも開、弁18を閉とし、この状態で循環ポンプ2を運転すると電解槽6内の塩素水がろ過槽3に供給され、ろ材3aを通過して浴槽水と一緒に浴槽10に流れ込む(これが「塩素水供給」モードである)。このように塩素水を循環水路1に流すことで、浴槽水や装置内の病原性細菌を抑制し、不快感を与えるヌメリを取り除くものである。なお、食塩水供給に当っては弁13、弁14、弁15をいずれも開、弁7を閉にした状態で循環ポンプ2を運転しながら、弁18の開閉を繰り返し制御しながら電解槽6内の塩濃度が一定濃度となるようにしてもよい。
【0020】
上記のように、通常循環運転や殺菌運転を行うのであるが、本発明においては、塩溶解槽19と電解槽6との間の流路に塩溶解槽19から電解槽6にのみ水が流れる方向性を有する逆止弁11を設けてあるので、循環ポンプ2が運転しているときに水圧で電解槽6から塩溶解槽19に水が逆流して塩溶解槽19の水位が上昇しようとしても逆止弁11により阻止されるものである。これにより、塩溶解槽19内の水位が所定水位よりも余分に上昇し、この余分に上昇した分の食塩水が循環ポンプ2の運転停止により圧力が解除されることで塩溶解槽19から電解槽6に食塩水が流入するというような現象を防止することができるようになっている。つまり、循環ポンプ2のオン、オフや流路の変更時に、呼吸作用により塩溶解槽19から電解槽6に食塩水が流入することがないものである。したがって、電解時に食塩濃度の制御ができなくなったり、塩溶解槽19内の食塩の消費が速くなってしまうことをなくすことが可能となるものである。
【0021】
図2(a)は循環ポンプ2の停止状態における塩溶解槽19内の水位を示しており、図2(b)は循環ポンプ2を運転している場合における塩溶解槽19内の水位を示しており、図2(c)は循環ポンプ2運転後に循環ポンプ2の運転をオフした場合における塩溶解槽19内の水位を示しており、図2(a)(b)(c)のいずれの場合にも塩溶解槽19内の水位W1は同じである。
【0022】
次に、図3、図4に基づいて本発明の他の実施形態につき説明する。本実施形態においては基本的構成、通常循環運転や殺菌(または制菌)運転の動作は上記した実施形態と同じであるので、重複する構成及び動作の説明は省略し、上記実施形態と異なる点及び上記実施形態では説明しなかった点について以下説明する。
【0023】
塩溶解槽19は外筒19a内に通水孔を設けた食塩筒19bを入れて構成してある(この点は上記実施形態では説明しなかったが上記実施形態も同様である)。そして、本発明においては、食塩筒19bに新たに定量の食塩を充填して外筒19a内に入れるに当って塩溶解槽19内の水を排水するための排水路40を設けてあり、この排水路40より塩溶解槽19内の水を排水した際の塩溶解槽19内の水位が、塩溶解槽19における塩補充前における水面から外筒19a内の底部までの容積から、塩補充前における水面から下の食塩筒19bの容積を引いたのと略同じ体積の水量が外筒19a内に残るように設定してある。
【0024】
すなわち、図3、図4に示す実施形態ではバイパス路4の上流側の端部から第2分岐路17の塩溶解槽19の底部における接続部分までの流路が排水路40を兼用しており、この排水路40の端部であるバイパス路4の上流側の端部の位置Aのレベルが塩溶解槽19における位置Bと同じレベルとなっている。ここで、塩溶解槽19における位置Bは、塩溶解槽19における塩補充前における水面から外筒19a内の底部までの容積から、塩補充前における水面から下の食塩筒19bの容積を引いたのと略同じ体積の水量を、食塩筒19bを取り外した状態の外筒19a内に入れた場合の水位である。例えば、塩補充前における水面から外筒19a内の底部までの容積を350ml、塩補充前における水面から下の食塩筒19bの容積を300mlとした場合、350−300=50mlとなり、この50mlの水量の水を食塩筒19bを取り外した状態の外筒19a内に入れた場合の水位が上記位置Bとなるものである。
【0025】
図4(a)は塩補充前における塩溶解槽19の水位を示している。そして、食塩を補充する時は、そして、塩を補充する場合には、塩溶解槽19の上流側の弁18のみ開き、他の弁を全て閉じ、この状態で、外筒19aから食塩筒19bを上方に取り出すと、外筒19a内の食塩水が弁18、循環ポンプ2を通して浴槽10に排出されるが、外筒19a内においては上記位置Bが水面となる位置まで水位が低下し、これ以降は位置Bが位置Aと同じため位置Bの水位で食塩水が溜まって残ることになる(図4(b)参照)。次に、食塩筒19bに食塩を充填し、弁18を閉じた状態で、再び外筒19a内に食塩を充填した食塩筒19bを入れて取り付けると、水位は塩補充前の水位の高さまで上昇することになる(図4(c)参照)。
【0026】
これにより塩補充のために食塩筒19bを取り出したときに塩溶解槽19内の食塩水を必要以上排出することなく、また、食塩補充後に塩溶解槽19に新たに水を流入させる制御が必要でないものである。
【0027】
なお、位置Aのレベルが位置Bのレベルよりも高い場合には、塩を補充した食塩筒19bを外筒19a内に入れた場合、塩溶解槽19から水が溢れてしまい、ユーザーに不快感を与えるので好ましくないものである。
【0028】
【発明の効果】
上記の請求項1記載の本発明にあっては、浴槽水を循環水路に循環させる循環ポンプと、浴槽水の流れをろ過するろ過槽とを備え、循環水路中にバイパス路を設け、バイパス路の途中を第1分岐路と第2分岐路とに分岐し、第1分岐路に上流側から下流側にかけて順に弁、電解槽を設けると共に第2分岐路に上流側から下流側にかけて順に弁、塩溶解槽を設け、第2分岐路の下流側の端部を電解槽に連通接続し、第1分岐路の下流側の端部をろ過槽の1次側に接続した浴槽水循環浄化装置において、第2分岐路の塩溶解槽と電解槽との間の流路に塩溶解槽から電解槽にのみ水が流れる方向性を有する逆止弁を設けてあるので、循環ポンプが運転しているときに水圧で電解槽から塩溶解槽に水が逆流して塩溶解槽の水位が上昇するのが逆止弁により阻止され、これにより、循環ポンプが停止しても塩溶解槽から電解槽内に食塩水が流入しないものであり、この結果、食塩の過剰な消費を抑え、浴槽水及び装置内に一定の塩素を供給して、レジオネラ属菌などの病原性細菌を殺菌することが可能となるものである。
【0029】
また、請求項2記載の発明にあっては、上記請求項1記載の発明の効果に加えて、塩溶解槽が外筒内に食塩筒を入れて構成され、食塩筒に新たに定量の食塩を充填して外筒内に入れるに当って塩溶解槽内の水を排水するための排水路を設け、この排水路より塩溶解槽内の水を排水した際の塩溶解槽内の水位が、塩溶解槽における塩補充前における水面から外筒内の底部までの容積から、塩補充前における水面から下の食塩筒の容積を引いたのと略同じ体積の水量が外筒内に残るように設定してあるので、塩補充時に無駄に食塩水を捨てることがなく、塩の過剰な消費を抑え、塩補充期間を長くできるものであり、また、塩補充後に塩溶解槽内に水を導入する制御を必要としないものである。
【図面の簡単な説明】
【図1】本発明の配管構成図である。
【図2】(a)は循環ポンプを停止している場合における塩溶解槽内の水位を示す説明図であり、(b)は循環ポンプを運転している場合における塩溶解槽内の水位を示す説明図であり、(c)は循環ポンプ運転後に循環ポンプの運転をオフした場合における塩溶解槽内の水位を示す説明図である。
【図3】本発明の他の実施形態の配管構成図である。
【図4】(a)は同上の塩補充前における塩溶解槽内の水位を示す説明図であり、(b)は食塩筒を取り外すとともに塩溶解槽内の食塩水を一部排水した状態における水位を示す説明図であり、(c)は新しい食塩を充填補充した食塩筒を外筒内に入れた場合の塩溶解槽内の水位を示す説明図である。
【図5】従来例の配管構成図である。
【図6】(a)は従来例において循環ポンプを停止している場合における塩溶解槽内の水位を示す説明図であり、(b)は循環ポンプを運転している場合における塩溶解槽内の水位を示す説明図であり、(c)は循環ポンプ運転後に循環ポンプの運転をオフした場合における塩溶解槽内の水位を示す説明図である。
【図7】(a)は従来例において塩補充前における塩溶解槽内の水位を示す説明図であり、(b)は食塩筒を取り外すとともに塩溶解槽内の食塩水を全部排水した状態を示す説明図であり、(c)は新しい食塩を充填補充した食塩筒を外筒内に入れた場合の説明図であり、(d)は塩溶解槽内に新たに水を導入した状態の説明図である。
【符号の説明】
1 循環水路
2 循環ポンプ
3 ろ過槽
3a ろ材
4 バイパス路
5 電極
6 電解槽
7 弁
11 逆止弁
19 塩溶解槽
19a 外筒
19b 食塩筒
40 排水路
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a bathtub water circulation / purification device that circulates and purifies bathtub water in a bathtub, thereby enabling long-term use of bathtub water.
[0002]
[Prior art]
2. Description of the Related Art In recent years, a bath that can be used for 24 hours in a home bath has been provided. In this case, it is necessary to purify and sterilize the bathtub water constantly or periodically so that the bathtub water in the bathtub 10 can be used for a long time. For this purpose, as shown in FIG. 5, a circulation pump 2 for circulating bath water in the circulation water channel 1 and a filtration tank 3 for filtering the flow of the bath water are provided, and a bypass channel 4 is provided in the circulation water channel 1. A salt dissolving tank 19 is provided in the bypass 4, and an electrolytic tank 6 containing a pair of electrodes 5 is provided downstream thereof, and the downstream of the bypass 4 is connected to the primary side of the filtration tank. There has been proposed a bath tub water circulation purification device provided with a valve 7 on the upstream side.
[0003]
In the above conventional example, in order to generate chlorine, first, a saline solution is supplied to the electrolytic cell 6 from the salt dissolving tank 19, and at this time, the salt concentration is controlled by controlling the electric conductivity between the pair of electrodes 5 provided in the electrolytic cell 6. While measuring, the circulation pump 2 is stopped and the valve upstream of the salt dissolution tank 19 is opened, and then the circulation pump 2 is operated, or the valve upstream of the salt dissolution tank 19 is operated while the circulation pump 2 is operated. Is supplied until the salt concentration reaches a predetermined value. When the electrolytic bath 6 reaches a predetermined salt concentration, a voltage is applied between the electrodes 5 of the electrolytic bath 6 to generate free chlorine. Next, the valve on the upstream side of the electrolytic cell 6 is opened, and the chlorine water generated in the electrolytic cell 6 is supplied to the bath water for sterilization.
[0004]
By the way, when the circulation pump 2 is operated, stopped, or the flow path is changed as described above, the water pressure applied to the salt dissolving tank 19 through the downstream side of the electrolytic tank 6 changes, and the salt dissolving tank 19 is moved from the salt dissolving tank 19 by respiration. Saltwater flows into 6. That is, when the circulating pump 2 is stopped, the water level in the salt dissolving tank 19 is W1 as shown in FIG. 6A, but when the circulating pump 2 is operating, it is indicated by an arrow in FIG. 6B. As described above, water flows backward from the electrolytic cell 6 to the salt dissolving tank 19 at the water pressure, and the water level in the salt dissolving tank 19 rises to W2. However, when the circulation pump 2 is turned off and stopped, the pressure is lost and the saline solution flows from the salt dissolving tank 19 into the electrolytic tank 6 as shown by the arrow in FIG. become. At this time, since the saline solution flows into the electrolytic cell 6 from the salt dissolving tank 19, it is necessary to control such that the saline solution once supplied into the electrolytic cell 6 is discharged when the saline solution is supplied before the electrolysis. There is a problem that the consumption of is faster.
[0005]
Conventionally, the salt dissolving tank 19 is configured by putting a salt tube 19b in an outer tube 19a. When the salt in the salt dissolving tank 19b becomes so small that all the salt in the salt tube 19b is dissolved and the salt concentration in the electrolytic tank 6 does not rise to a predetermined concentration when the saline solution is supplied, the salt shortage occurs. It is displayed. FIG. 7A shows the water level of the salt dissolving tank 19 before salt replenishment. Then, when replenishing the salt, the valve on the upstream side of the salt dissolving tank 19 is opened and all the salt solution in the salt dissolving tank 19 is externalized so that the replenished salt does not overflow the water in the salt dissolving tank 19. 7 (b), and in this state, as shown in FIG. 7 (c), a fixed amount of salt is newly charged into the salt tube 19b and put into the outer tube 19a. At the time of resuming later, water was newly introduced into the salt dissolving tank 19 as shown in FIG. 7 (d), and the water level was controlled to the predetermined water level W1 before salt replenishment.
[0006]
However, in such a case, since the entire amount of the saline solution in the salt dissolving tank 19 is drained at the time of replenishing the salt, the saline solution is wasted. However, there is a problem that control for introducing is necessary.
[0007]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and it is an object of the present invention to suppress excessive consumption of salt, supply a constant amount of chlorine to bath water and the apparatus, and to provide Legionella. Another object of the present invention is to make it possible to kill pathogenic bacteria such as genus bacteria, and it is also possible to extend a salt replenishment period without wasting saline solution at the time of salt replenishment. Another advantage is that control for introducing water into the salt dissolving tank after replenishing the salt is not required.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a bathtub water circulation purification device according to the present invention includes a circulation pump 2 for circulating bathtub water to a circulation waterway 1 and a filtration tank 3 for filtering the flow of bathtub water. A bypass path 4 is provided, the middle of the bypass path 4 is branched into a first branch path 16 and a second branch path 17, and a valve 7 and an electrolytic cell 6 are provided in the first branch path 16 in order from upstream to downstream. A valve 18 and a salt dissolving tank 19 are provided in the second branch passage 17 in order from the upstream side to the downstream side, and the downstream end of the second branch passage 17 is connected to the electrolytic bath 6 to be downstream of the first branch passage 16. In a bath tub water circulation purification device having an end on the side connected to the primary side of the filtration tank 3, a flow path between the salt dissolving tank 19 and the electrolytic tank 6 of the second branch 17 is provided from the salt dissolving tank 19 to the electrolytic tank 6. A check valve 11 having a direction in which water flows only in the It is. With such a configuration, when the circulating pump 2 is operating, water flows backward from the electrolytic cell 6 to the salt dissolving tank 19 by water pressure and the water level in the salt dissolving tank 19 rises. Accordingly, even when the circulation pump 2 is stopped, the saline solution does not flow into the electrolytic tank 6 from the salt dissolving tank 19.
[0009]
Further, the salt dissolving tank 19 is configured by putting the salt tube 19b in the outer tube 19a, and in order to drain the water in the salt dissolving tank 19 when filling the salt tube 19b with the salt and putting it in the outer tube 19a. The water level in the salt dissolving tank 19 when the water in the salt dissolving tank 19 is drained from the drain path 40 is set at the bottom of the outer cylinder 19a from the water surface before salt replenishment in the salt dissolving tank 19. It is preferable that the water volume before the salt replenishment is set so that the amount of water of approximately the same volume as that obtained by subtracting the volume of the lower salt cylinder 19b from the water surface before salt replenishment remains in the outer cylinder 19a. With such a configuration, when replenishing salt when salt is insufficient, the water in the outer cylinder 19a is drained so that water in the salt dissolving tank 19 does not overflow from the outer cylinder 19a due to the replenished salt. At this time, the water level in the salt dissolving tank 19 when the water in the salt dissolving tank 19 is drained from the drain path 40 is changed from the water surface before the salt replenishment in the salt dissolving tank 19 to the outer cylinder. Since the same amount of water as that obtained by subtracting the volume of the lower salt cylinder 19b from the water surface before salt replenishment is subtracted from the volume to the bottom in the outer cylinder 19a remains in the outer cylinder 19a, new salt is discharged after draining. When the salt cylinder 19b containing the salt is put into the outer cylinder 19a, the level of the saline solution remaining in the salt dissolving tank 19 without being drained rises to the same level as the set water level just before the salt replenishment. After replenishment, fresh water is supplied to the salt dissolution tank 19 That one in which control is no longer necessary.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.
[0011]
FIG. 1 shows an embodiment of a piping configuration diagram of the apparatus of the present invention. The circulation channel 1 has a suction port 8 at one end and a discharge port 9 at the other end, and the suction port 8 and the discharge port 9 are immersed in bath water in a bathtub 10.
[0012]
The circulating water channel 1 is provided with a circulating pump 2, a heater 12, and a valve 13 in this order from the upstream side to the downstream side. It branches into two water channels, and the water flow channel 1a and the purification water channel 1b join again on the upstream side of the heater 12. Note that the heater 12 may be provided in the water passage 1a, and the purified water passage 1b may be merged downstream of the heater 12.
[0013]
A filtration tank 3 is provided in the purification water channel 1b constituting a part of the circulation water channel 1, a valve 14 is provided on the purification water channel 1b on the upstream side of the filtration tank 3, and a filtration tank 3 of the purification water channel 1b is provided. A valve 15 is provided on the downstream side.
[0014]
One end of the bypass passage 4 is connected to the upstream of the valve 14 of the purified water passage 1b or to the upstream of the heater 12 of the water passage 1a, and the other end of the bypass 4 is connected to the valve 14 of the purified water passage 1b. It is connected between the filtration tank 3. The bypass path 4 branches into a first branch path 16 and a second branch path 17, and the first branch path 16 is provided with a valve 7 and an electrolytic cell 6 in order from the upstream side to the downstream side. The second branch 17 is provided with a valve 18 and a salt dissolution tank 19 in order from the upstream side to the downstream side, and the downstream end of the second branch 17 is connected to the electrolytic cell 6. The flow passage in the portion between the salt dissolving tank 19 and the electrolytic bath 6 of the second branch 17 is a flow passage 17 a derived from an upper outlet 28 a of an upper part of the salt dissolving tank 19 and a lower outlet of a lower part of the salt dissolving tank 19. And a flow path 17b which is derived from the flow path 28b and joins the flow path 17a. The flow path 17b of the flow path 17a in the portion between the salt dissolving tank 19 and the electrolytic tank 6 of the second branch path 17 A check valve 11 having a direction in which water flows only from the salt dissolving tank 19 to the electrolytic tank 6 is provided downstream of the merged position with the above.
[0015]
Salt is stored in the salt dissolving tank 19. In addition, the electrolytic cell 6 is formed as a non-diaphragm type in which the electrodes 5 composed of a pair of insoluble electrode plates are arranged to face each other without interposing a diaphragm. Here, the shape of the electrode plate constituting the electrode 5 is a rectangle reaching below the electrolytic cell 6. A DC voltage is applied to the electrode 5, and the application of the voltage to the electrode 5 is performed under the control of the control unit 20. The salt solution chloride - but contains chlorine ions by applying a DC voltage to the electrode 5 in the electrolytic cell 6 (Cl) (Cl -) When electrolysis of a portion of the chloride ion (Cl -) Is exchanged for chlorine (Cl 2 ) or hypochlorite ion (ClO ), so that bath water can be given a sterilizing power.
[0016]
In the filtration tank 3, a filter medium 3a made of a precision filtration medium such as a hollow fiber membrane is provided. A jet port 21 for bath water supplied from the purification water channel 1b is provided in the filtration tank 3, and jet water is jetted from the jet port 21 toward the upstream surface of the filter medium 3a.
[0017]
The bathtub water circulation purification device having the above-described configuration can be operated by switching among various modes such as a “normal circulation” mode, a “salt water supply” mode, an “electrolysis” mode, and a “chlorine water supply” mode. ing. The switching of each valve by the mode switching and the operation of the circulation pump 2 are performed under the control of the control unit 20. Further, the application of the voltage to the electrode 5 during the electrolysis is also performed by the control of the control unit 20.
[0018]
Here, during normal circulation operation, the bathtub water circulation purification device of the present invention is controlled such that all of the valves 13, 14, and 15 are opened, and all of the valves 18 and 7 are closed to operate the circulation pump 2. In this case, when the circulation pump 2 is operated, part of the bathtub water sucked into the circulation channel 1 from the suction port 8 by the operation of the circulation pump 2 is filtered and purified by the filter medium 3 a when passing through the filtration tank 3. And is returned from the discharge port 9 into the bathtub 10 (this is the “normal circulation mode”). Here, the circulating water channel 1 is branched downstream of the circulating pump 2 into two water channels of a water passing water channel 1a and a purification water channel 1b, so that the filter medium 3a in the filtration tank 3 provided in the purification water channel 1b is removed. Even if the amount of water flowing through the purified water passage 1b is reduced due to clogging, the amount of water flowing through the water passage 1a increases in this case, so that the amount of bathtub water flowing through the entire circulation water passage 1 does not change. The returned bathtub water prevents a decrease in the temperature of the bathtub water in the bathtub 10.
[0019]
In the sterilization (or bacteriostatic) operation, the operation is performed in the order of “salt water supply” mode → “electrolysis” mode → “chlorine water supply” mode. That is, the salt pump is operated from the salt dissolving tank 19 to the electrolytic cell 6 by operating the circulation pump 2 with all of the valves 13, 14, 14, 15 and 18 opened and the valve 7 closed. (This is the "salt water supply" mode). After the saline solution is supplied to the electrolytic cell 6 in this manner, a voltage is applied to the electrode 5 by applying a voltage to the electrode 5 with all of the valves 13, 14, and 15 opened and all the valves 18 and 7 closed. Decomposition produces chlorine (this is the "electrolysis" mode). In this case, the circulation pump 2 is operated. Next, the valves 13, 14, 14, 15 and 7 are all opened and the valve 18 is closed. When the circulation pump 2 is operated in this state, the chlorine water in the electrolytic cell 6 is supplied to the filtration tank 3, It flows into the bathtub 10 along with the bathtub water through 3a (this is the "chlorine water supply" mode). By flowing chlorine water in the circulation channel 1 in this manner, bath water and pathogenic bacteria in the apparatus are suppressed, and slime that gives discomfort is removed. In supplying the saline solution, the electrolytic tank 6 is operated while the valve 18, the valve 14, and the valve 15 are all open and the valve 7 is closed, while the circulation pump 2 is operated and the opening and closing of the valve 18 is repeatedly controlled. May be set to a constant concentration.
[0020]
As described above, the normal circulation operation and the sterilization operation are performed. In the present invention, water flows only from the salt dissolving tank 19 to the electrolytic tank 6 in the flow path between the salt dissolving tank 19 and the electrolytic tank 6. Since the directional check valve 11 is provided, when the circulation pump 2 is operating, water flows back from the electrolytic cell 6 to the salt dissolving tank 19 due to water pressure, and the water level in the salt dissolving tank 19 tends to rise. Is also blocked by the check valve 11. As a result, the water level in the salt dissolving tank 19 rises more than the predetermined water level, and the excess saline solution is released from the salt dissolving tank 19 by releasing the pressure by stopping the operation of the circulation pump 2. It is possible to prevent a phenomenon that the saline solution flows into the tank 6. That is, when the circulating pump 2 is turned on or off or when the flow path is changed, the saline solution does not flow into the electrolytic tank 6 from the salt dissolving tank 19 due to the respiratory action. Therefore, it is possible to prevent the salt concentration from being unable to be controlled during the electrolysis and the salt from being consumed in the salt dissolving tank 19 from being consumed quickly.
[0021]
FIG. 2A shows the water level in the salt dissolving tank 19 when the circulation pump 2 is stopped, and FIG. 2B shows the water level in the salt dissolving tank 19 when the circulation pump 2 is operating. 2 (c) shows the water level in the salt dissolving tank 19 when the operation of the circulation pump 2 is turned off after the operation of the circulation pump 2, and is shown in FIG. 2 (a), (b) or (c). In this case, the water level W1 in the salt dissolving tank 19 is the same.
[0022]
Next, another embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the basic configuration, the operation of the normal circulation operation and the operation of the sterilization (or bacteriostatic) operation are the same as those of the above-described embodiment. What is not described in the above embodiment will be described below.
[0023]
The salt dissolving tank 19 is configured by inserting a salt tube 19b provided with a water passage hole in an outer tube 19a (this point is not described in the above embodiment, but is the same in the above embodiment). In the present invention, a drainage channel 40 for draining water in the salt dissolving tank 19 is provided when the salt cylinder 19b is newly filled with a fixed amount of salt and put into the outer cylinder 19a. The water level in the salt dissolving tank 19 when the water in the salt dissolving tank 19 is drained from the drainage channel 40 is calculated based on the volume from the surface of the salt dissolving tank 19 before the salt replenishment to the bottom in the outer cylinder 19a before the salt replenishment. It is set so that a water amount of substantially the same volume as that obtained by subtracting the volume of the lower salt cylinder 19b from the water surface at remains in the outer cylinder 19a.
[0024]
That is, in the embodiment shown in FIGS. 3 and 4, the flow path from the upstream end of the bypass path 4 to the connection portion at the bottom of the salt dissolution tank 19 of the second branch path 17 also serves as the drainage path 40. The level at the position A at the upstream end of the bypass 4, which is the end of the drainage channel 40, is the same as the position B at the salt dissolution tank 19. Here, the position B in the salt dissolving tank 19 is obtained by subtracting the volume of the lower salt cylinder 19b from the water surface before salt replenishment from the volume from the water surface before salt replenishment in the salt dissolving tank 19 to the bottom in the outer cylinder 19a. This is a water level when a water amount having substantially the same volume as that described above is placed in the outer cylinder 19a with the salt cylinder 19b removed. For example, when the volume from the water surface before salt replenishment to the bottom in the outer cylinder 19a is 350 ml, and the volume of the salt tube 19b below the water surface before salt replenishment is 300 ml, 350-300 = 50 ml, and the water volume of 50 ml Is the above-mentioned position B when the water is put into the outer cylinder 19a with the salt cylinder 19b removed.
[0025]
FIG. 4A shows the water level of the salt dissolving tank 19 before salt replenishment. Then, when replenishing the salt, and when replenishing the salt, only the valve 18 on the upstream side of the salt dissolving tank 19 is opened, and all the other valves are closed, and in this state, the outer cylinder 19a is moved from the outer cylinder 19a to the salt cylinder 19b. Is taken out upward, the saline solution in the outer cylinder 19a is discharged to the bathtub 10 through the valve 18 and the circulating pump 2, but in the outer cylinder 19a, the water level drops to a position where the position B becomes a water surface. Thereafter, since the position B is the same as the position A, the saline solution remains at the water level at the position B (see FIG. 4B). Next, when the salt cylinder 19b is filled with the salt and the valve 18 is closed, the salt cylinder 19b filled with the salt is again inserted into the outer cylinder 19a and attached, and the water level rises to the level of the water level before the salt replenishment. (See FIG. 4C).
[0026]
Thus, when the salt cylinder 19b is taken out for replenishing the salt, the salt solution in the salt dissolving tank 19 is not discharged more than necessary, and control for newly flowing water into the salt dissolving tank 19 after replenishing the salt is required. Is not.
[0027]
When the level at the position A is higher than the level at the position B, when the salt cylinder 19b supplemented with salt is put in the outer cylinder 19a, water overflows from the salt dissolving tank 19, and the user is discomforted. Is not preferred.
[0028]
【The invention's effect】
In the present invention of the above claim 1, further comprising a circulation pump for circulating the bathtub water in the water circulation passage, and a filtration tank for filtering the flow of the bath water, a bypass passage is provided in the circulation water channel, a bypass passage Is branched into a first branch path and a second branch path, and a valve and an electrolytic cell are sequentially provided from the upstream side to the downstream side in the first branch path, and a valve is provided in the second branch path in order from the upstream side to the downstream side, In a bath tub water circulation purification device provided with a salt dissolving tank, the downstream end of the second branch is connected to the electrolytic tank, and the downstream end of the first branch is connected to the primary side of the filtration tank . When the circulating pump is operating, a check valve having a direction in which water flows only from the salt dissolving tank to the electrolytic tank is provided in a flow path between the salt dissolving tank and the electrolytic tank in the second branch passage. When the water flows back from the electrolytic cell to the salt dissolving tank due to water pressure, the water level in the salt dissolving tank rises. Thus, even if the circulation pump is stopped, the saline solution does not flow from the salt dissolving tank into the electrolytic tank. As a result, excessive consumption of salt is suppressed, and a certain amount of salt water is kept in the bathtub water and the apparatus. By supplying chlorine, it is possible to kill pathogenic bacteria such as Legionella spp.
[0029]
According to the second aspect of the present invention, in addition to the effects of the first aspect, the salt dissolving tank is constituted by inserting a salt tube in an outer tube, and a fixed amount of salt is newly added to the salt tube. A drainage channel for draining the water in the salt dissolving tank when filling and putting it in the outer cylinder, the water level in the salt dissolving tank when the water in the salt dissolving tank is drained from this drainage channel From the volume from the water surface before salt replenishment in the salt dissolving tank to the bottom in the outer cylinder, the water volume of approximately the same volume as the volume of the lower salt cylinder from the water surface before salt replenishment is left in the outer cylinder. Is set to, the salt solution is not wasted when replenishing the salt, excessive consumption of salt can be suppressed, and the salt replenishment period can be lengthened. It does not require any control to be introduced.
[Brief description of the drawings]
FIG. 1 is a piping configuration diagram of the present invention.
FIG. 2A is an explanatory view showing a water level in a salt dissolving tank when the circulation pump is stopped, and FIG. 2B is a diagram showing a water level in the salt dissolving tank when the circulation pump is operating. It is an explanatory view showing, and (c) is an explanatory view showing a water level in a salt dissolving tank when operation of a circulation pump is turned off after operation of a circulation pump.
FIG. 3 is a piping configuration diagram of another embodiment of the present invention.
FIG. 4 (a) is an explanatory view showing a water level in a salt dissolving tank before replenishment of the salt, and FIG. 4 (b) is a state in which a salt tube is removed and the salt solution in the salt dissolving tank is partially drained. It is explanatory drawing which shows a water level, (c) is explanatory drawing which shows the water level in a salt dissolution tank when a salt tank filled with fresh salt and refilled is put in an outer cylinder.
FIG. 5 is a piping configuration diagram of a conventional example.
FIG. 6 (a) is an explanatory view showing a water level in a salt dissolving tank when a circulation pump is stopped in a conventional example, and FIG. 6 (b) is an explanatory view showing a water level in a salt dissolving tank when a circulation pump is operating. FIG. 8C is an explanatory diagram showing a water level in the salt dissolving tank when the operation of the circulation pump is turned off after the operation of the circulation pump.
FIG. 7 (a) is an explanatory view showing a water level in a salt dissolving tank before salt replenishment in a conventional example, and FIG. 7 (b) shows a state where a salt tube is removed and salt water in the salt dissolving tank is completely drained. It is an explanatory view showing, (c) is an explanatory view in the case where the salt cylinder filled and replenished with new salt is put in the outer cylinder, and (d) is an explanation of a state in which water is newly introduced into the salt dissolving tank. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circulation channel 2 Circulation pump 3 Filtration tank 3a Filter medium 4 Bypass path 5 Electrode 6 Electrolysis tank 7 Valve 11 Check valve 19 Salt dissolution tank 19a Outer cylinder 19b Salt cylinder 40 Drainage channel

Claims (2)

浴槽水を循環水路に循環させる循環ポンプと、浴槽水の流れをろ過するろ過槽とを備え、循環水路中にバイパス路を設け、バイパス路の途中を第1分岐路と第2分岐路とに分岐し、第1分岐路に上流側から下流側にかけて順に弁、電解槽を設けると共に第2分岐路に上流側から下流側にかけて順に弁、塩溶解槽を設け、第2分岐路の下流側の端部を電解槽に連通接続し、第1分岐路の下流側の端部をろ過槽の1次側に接続した浴槽水循環浄化装置において、第2分岐路の塩溶解槽と電解槽との間の流路に塩溶解槽から電解槽にのみ水が流れる方向性を有する逆止弁を設けて成ることを特徴とする浴槽水循環浄化装置。A circulation pump that circulates bathtub water into the circulation channel, and a filtration tank that filters the flow of bathtub water are provided. A bypass is provided in the circulation channel, and the middle of the bypass is divided into a first branch and a second branch. The first branch is provided with a valve and an electrolytic cell in order from the upstream side to the downstream in the first branch, and the second branch is provided with a valve and a salt dissolving tank in order from upstream to downstream in the second branch. In a bath water circulation purifier having an end communicating with the electrolytic cell and a downstream end of the first branch connected to the primary side of the filtration tank , the bath is provided between the salt dissolving tank and the electrolytic tank of the second branch. A bathtub water circulation purification device, characterized in that a check valve having a direction in which water flows only from the salt dissolving tank to the electrolytic tank is provided in the flow path. 塩溶解槽が外筒内に食塩筒を入れて構成され、食塩筒に食塩を充填して外筒内に入れるに当って塩溶解槽内の水を排水するための排水路を設け、この排水路より塩溶解槽内の水を排水した際の塩溶解槽内の水位が、塩溶解槽における塩補充前における水面から外筒内の底部までの容積から、塩補充前における水面から下の食塩筒の容積を引いたのと略同じ体積の水量が外筒内に残るように設定して成ることを特徴とする請求項1記載の浴槽水循環浄化装置。The salt dissolving tank is configured by putting a salt tube in an outer cylinder, and providing a drainage channel for draining water in the salt dissolving tank when filling the salt tube with salt and putting it in the outer cylinder. When the water in the salt dissolving tank is drained from the channel, the water level in the salt dissolving tank is calculated from the volume from the water surface before salt replenishment in the salt dissolving tank to the bottom in the outer cylinder from the water level before salt replenishment. 2. The bathtub water circulation purifying device according to claim 1, wherein the amount of water having substantially the same volume as that obtained by subtracting the volume of the cylinder is set to remain in the outer cylinder.
JP23997998A 1998-08-26 1998-08-26 Bathtub water circulation purification device Expired - Fee Related JP3584745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23997998A JP3584745B2 (en) 1998-08-26 1998-08-26 Bathtub water circulation purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23997998A JP3584745B2 (en) 1998-08-26 1998-08-26 Bathtub water circulation purification device

Publications (2)

Publication Number Publication Date
JP2000070944A JP2000070944A (en) 2000-03-07
JP3584745B2 true JP3584745B2 (en) 2004-11-04

Family

ID=17052682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23997998A Expired - Fee Related JP3584745B2 (en) 1998-08-26 1998-08-26 Bathtub water circulation purification device

Country Status (1)

Country Link
JP (1) JP3584745B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126740A (en) 2000-10-27 2002-05-08 Omega:Kk Method for cleaning and sterilizing service water or the like

Also Published As

Publication number Publication date
JP2000070944A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP5295753B2 (en) Ozone water generator
KR101915717B1 (en) Toilet with pump having electrolysis function
JP3584745B2 (en) Bathtub water circulation purification device
CN110207368B (en) Soft water heater
JP3584765B2 (en) Sterilizer and bath tub water circulation purifier equipped with sterilizer
JP4481047B2 (en) Ionized water generator
JPH10174973A (en) Method for washing and sterilizing continuous water passing type electrolytic water making apparatus, electrolytic water-making apparatus equipped with mechanism executing the method and passage changeover valve device used therein
JP3465611B2 (en) Sterilizer and bath tub water circulation purifier equipped with sterilizer
JP3671639B2 (en) Circulating and purifying device for bath water
JP3584764B2 (en) Bathtub water circulation purification device
JP3752941B2 (en) Electrolyzed water generator
JP3505457B2 (en) Water treatment equipment
JP3671684B2 (en) Bath water purification device
JPH07256256A (en) Apparatus for forming electrolytic ionic water
JP3438600B2 (en) Bathtub water circulation purification device
JP3584744B2 (en) Bathtub water circulation purification device
JPH11200460A (en) Toilet system equipped with electrolytic water washing function
JPH08117753A (en) Electrolytic water-making apparatus
JP4481056B2 (en) Ionized water generator
JP3921993B2 (en) Dishwasher
JP3890440B2 (en) Electrolyzed water generator
JP3210912B2 (en) Bathtub water purification equipment
JP3210913B2 (en) Bathtub water purification equipment
JP3835176B2 (en) Electrolyzed water generator
JPS6320145B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

LAPS Cancellation because of no payment of annual fees