JP3585406B2 - Method for producing crystallized ceramic film and ceramic film thereof - Google Patents
Method for producing crystallized ceramic film and ceramic film thereof Download PDFInfo
- Publication number
- JP3585406B2 JP3585406B2 JP30783599A JP30783599A JP3585406B2 JP 3585406 B2 JP3585406 B2 JP 3585406B2 JP 30783599 A JP30783599 A JP 30783599A JP 30783599 A JP30783599 A JP 30783599A JP 3585406 B2 JP3585406 B2 JP 3585406B2
- Authority
- JP
- Japan
- Prior art keywords
- type
- film
- ceramic film
- heat treatment
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は結晶化セラミック膜の新規製造方法に関する。特に、化学的方法又は物理的方法により形成したセラミックの非晶質又は部分結晶化プレカーサー膜を高圧気相中で熱処理することにより、低温で結晶化セラミック膜を得る方法に関する。
【0002】
【従来の技術】
セラミック膜は様々な性質と機能を持ち、各種の用途が開発された。セラミック膜で材料の表面を被覆すれば、腐蝕や磨耗を抑えることができる。又、セラミック膜は特殊な電気的特性を有するため、各種の電子デバイスと光電デバイスに利用することができる。電子デバイスに関しては、DRAM、不揮発性RAM、圧電デバイス、コンデンサ、センサ、焦電デバイス、アクチュエータなどへの応用が開発された。又、強誘電体セラミック膜の自発分極によって、不揮発性RAMに応用することができ、または強誘電体の高い誘電率により、DRAMの応用にも応用できる。光電デバイスに関しては、非線型光学デバイス、導電性膜、光電スイッチ、弾性表面波、光導波路、パイロセンサ、光電表示装置、反射膜、又は反射防止膜の応用が開発された。
【0003】
セラミック膜を製造するため、各種の製造方法が開発された。これらの方法は、概ねに化学的方法と物理的方法に分けられる。化学的方法として、化学気相蒸着、スピンコーテイング、ディッピング、とゾルゲル法などが挙げられる。物理的プロセスとして、蒸発法、イオンビーム法、分子ビーム法、電子ビーム法、スパッタリング、レーザースパッタリングなどが挙げられる。一般的に、低温において基板上に形成した膜は殆ど非晶質又は部分結晶化しているものである。結晶化膜を得るため、成膜中の高温処理、又は成膜後の高温熱処理が必要である。高温熱処理で、セラミック膜と基板との反応が起りやすいため、膜の性質が大きく影響される。半導体の分野では、強誘電セラミック膜によく使われる基板はケイ素基板である。高温熱処理で、ケイ素は容易に酸化され、しかもケイ素とセラミック膜の成分が拡散しやくなり、ケイ素とセラミック膜の相互作用及び界面反応が起りやすい。このような界面反応によって、セラミック膜の成分は外れやすく、またケイ素がセラミック膜に拡散するため、セラミック膜と基板の性質は大きく劣化する。更に、高温熱処理によって、膜の粒子が成長しやすいため、膜の表面粗さが増し、その後のエッチングなどの処理に支障をもたらす。
【0004】
従来の高温熱処理の欠点を改善するため、いくつかのプロセスが開発された。その内、水熱プロセスまた電気化学水熱プロセスは、基板を反応液に入れ、溶液と基板との化学反応によって膜を形成する方法である。このようなプロセスで、基板と反応溶液が直接に接触するため、強酸溶液と強アルカリ溶液を使用するとき、基板が腐蝕されやすく、半導体デバイスに不利である。レーザー、イオンビーム、電子ビーム、分子ビームなどの処理はセラミック膜の結晶化温度を低く抑えることができるが、ビームサーズは小さいため、大面積の膜を製造するのに難点がある。走査装置を併用すると、大面積の膜を作ることが可能であるが、走査スピートの制限があり、大量生産に不利である。または、レーザー、イオンビーム、分子ビーム、電子ビームのエネルギが高いため、セラミック膜の構造が破壊されやすく、欠陥が起りやすく、膜の性質が大きく影響される。
【0005】
【発明が解決しようとする課題】
以上の問題点を解決するため、本発明の研究者は一連の実験を行った結果、新規なセラミック膜の結晶化方法を発明し、結晶化セラミック膜の低温製造プロセスを実現した。
【0006】
本発明の目的は、セラミックの非晶質又は部分結晶化プレカーサー膜を低温で結晶化させる方法を提供することである。
【0007】
本発明のもう一つの目的は、前記方法によって製造された結晶化セラミック膜を提供することである。
【0008】
【課題を解決するための手段】
前記課題を解決するために、本発明は、基板上に、セラミックの非晶質又は部分結晶化プレカーサー膜を化学的方法に又は物理的方法により形成した後、前記プレカーサー膜を5大気圧以上の高圧気相中に熱処理することにより結晶化させることを特徴する結晶化セラミック膜の製造方法を提供する。
【0009】
本発明の高圧気相は、以下の方法によって実現することができるが、以下の方法に制限されない。即ち、揮発性物質の蒸気圧により高圧気相を生成する方法、又は高圧気体ジェットによる高圧気相を生成する方法が挙げられる。
【0010】
セラミックスは無機の非金属化合物である。陰イオンの種類によって、酸化物、窒化物、硼化物、炭化物、ハロゲン化物、水素化物などが挙げられる。セラミックスの構造は岩塩型、閃亜鉛鉱型、ウルツ鉱、ペロブスカイト型、複合ペロブスカイト型、層状ペロブスカイト型、パイロクロア型、コランダム型、チタン鉄鉱型、ルチル型、スピネル型、逆スピネル型、橄欖石型、蛍石型、逆蛍石型、塩化カルシウム型、タングステンブロンズ型、ニオブ酸リチウム型、タンタル酸ストンチウム型、ケイ酸塩型とその混合型が挙げられる。
【0011】
本発明の方法は特定なセラミック膜の成分または結晶構造に制限されない。一連の実験の結果、本発明がセラミック膜の成分と結晶構造と関係なく、有効的に膜の結晶化温度を低く抑えることができると確認された。
【0012】
本発明の方法は以下のような構造を持つセラミック膜を製造することができるが、それに制限されない:岩塩型、閃亜鉛鉱型、ウルツ鉱、ペロブスカイト型、複合ペロブスカイト型、層状ペロブスカイト型、パイロクロア型、コランダム型、チタン鉄鉱型、ルチル型、スピネル型、逆スピネル型、橄欖石型、蛍石型、逆蛍石型、塩化カルシウム型、タングステンブロンズ型、ニオブ酸リチウム型、タンタル酸ストンチウム型、ケイ酸塩型とその混合型。
【0013】
本発明で製造できる膜はたとえば、SrBi2Ta2O9、BaBi2Ta2O9、(Sr, Ba)Bi2Ta2O9、SrBi2(Ta, Nb)2O9、Pb(Zr, Ti)O3、Sr2(Ta, Nb)2O7、PbTiO3、Pb3Nb4O13、Ta2O5などがある、しかし本発明の方法は以上の膜に制限されない。その膜は強誘電性膜と常誘電性膜を含んでいる。
【0014】
本発明の主な特徴は、高圧の気相環境で結晶化セラミック膜の形成を促進することにある。その圧力は、5大気圧以上であり、より好ましくは10大気圧から400大気圧までである。高圧の熱処理により、結晶化セラミック膜の形成プロセスは低温に起こることができる。本発明によって、結晶化セラミック膜、熱処理温度は600℃以下に抑えることができる。好ましい熱処理温度は550℃以下で、より好ましい熱処理温度は500℃以下である。さらに、高圧の熱処理の後、もう一度常圧で100℃から600℃までの温度で熱処理すると、膜の性質はさらに良くなる。
【0015】
セラミック膜は化学的方法又は物理的方法により形成されることができる。化学的方法として、化学気相蒸着、スピンコーティング、ディッピング、及びゾルゲル法などが挙げられる。物理的方法として、電着法、電気泳動法、蒸発法、イオンビーム法、分子ビーム法、電子ビーム法、スパッタリング法、レーザー法などが挙げられる。
【0016】
本発明の結晶化方法は、レーザー、イオンビーム、電子ビームなどの複雑な設置を必要とせずに大面積のセラミック膜を生成することができる。実施例中に、結晶化Pb(Zr, Ti)O3膜を300℃に形成させることができた。本発明のプロセスは有効的に従来の結晶化プロセスの温度を大幅に低減し、半導体プロセスと組み合わせることができ、DRAM(Dynamic Random Access Memory)や不揮発性RAM(Non−volatile Random Access Memory)への応用を可能とする。低温のプロセスで、基板や金属配線の酸化を抑えることができ、又は膜と基板の界面反応を抑えることができる。または膜の微構造もよくなり、膜の粒徑を小さくし、膜の平坦さを向上させることもできる。
【0017】
本発明に使われる基板は特に制限されない。ケイ素、ガラス、セラミックス、高分子、金属、その複合物などが挙げられる。普通高温の結晶化プロセスで使えない低融点の材料(例えばガラスと高分子)は、本発明にも使える。又、基板は、平面のものに制限されず、湾曲した表面を有する基板を使うこともできる。
【0018】
本発明の高圧気相を生成するのに使う揮発性物質は、加熱により蒸気を発生できる揮発性物質であればよい。揮発性物質として、ガスの場合は、酸素、窒素、水素、アルゴン、水蒸気、二酸化炭素、一酸化炭素、酸化窒素、オゾン、とその混合物が挙げられる。窒化物と炭化物の膜の場合は、不活性ガスはたとえば窒素やアルゴンは好ましい。揮発性液体を使う場合は、有機溶媒又は無機溶媒(例えば過酸化水素、アルコール、ケトン、エーテル、芳香族化合物)、有機アルカリ又は無機アルカリ(例えばアンモニア、アミン、アミド)、有機酸又は無機酸(例えば硝酸、塩酸、酢酸、硫酸)、金属塩溶液、及びその混合物が挙げられる。溶液を蒸気圧源として用いる場合は、溶液の量は少なくとも加熱温度下で充分な蒸気圧を作る程度でなければならない。しかし、溶液の量は加熱する前、膜と直接に接触しない程度制限しなければならない。高圧気体ジェットで膜の結晶化を促進することもできる。気体ジェットとして、酸素、水素、窒素、アルゴン、水蒸気、二酸化炭素、一酸化炭素、オゾン、酸化窒素、及びその混合物からなるものが挙げられる。
【0019】
【実施例】
実施例1
SrBi2Ta2O9の化学量論に基づいて、2−エチルヘキサノン酸ストロンチウム塩、2−エチルヘキサノン酸ビスマス塩とタンタルエトキシドを混合し、SrBi2Ta2O9のプレカーサーを作成した。混合したプレカーサーをPt/Ti/SiO2/Si基板にスピンコーテイングした。出来上がった膜を150℃で乾燥した後、再び350℃に10分間熱処理し、有機溶媒を蒸発させた。その膜をX線回折で分析した結果、非晶質の膜を確認した。その膜を高圧チャンバに入れ、チャンバ内に蒸留水を入れた。入れた蒸留水の量は、加熱前に膜と直接に接触しない程度であった。続いて、260℃及び300℃で2時間熱処理した。260℃のときの蒸気圧は47.6大気圧で、300℃ときの蒸気圧は78.9大気圧であった。260℃で熱処理した後、膜は一部しか結晶化しなかったが、300℃で熱処理した場合、図1が示すように、良好な結晶化を示すX線回折図パターンが観察された。この実施例により、高圧による結晶化膜の形成が証明された。
比較例1
実施例1のように、SrBi2Ta2O9のプレカーサーを作成した後、Pt/Ti/SiO2/Siの基板上スピンコーティングした。出来上がった膜を電気炉で300℃、2時間熱処理した。300℃で加熱した後、その膜は非晶質のままであった。膜のX線回折図は図2に示めされている。
【0020】
その膜を電気炉で700℃に加熱した後、実施例1と同じ結晶性を有する膜を得た。したがって、実施例1の結晶化温度は比較例1より400℃も低い結果となった。AFMの観察により、実施例1膜の粒徑は比較例より小さく、または実施例1膜の平坦さは比較例1の膜より良好であった。SIMSの分析により、比較例1において700℃で熱処理した膜中に、ビスマスは顕著に基板に拡散したことに対し、実施例1の膜にその現象はなかった。したがって、この高圧処理は有効的に膜の結晶化温度を低く抑制し、膜と基板との相互拡散を抑え、または膜の微構造を改善した。
実施例2
実施例1のように、SrBi2Ta2O9のプレカーサーを作った。混合したプレカーサーをPt/Ti/SiO2/Si基板にスピンコーテイングした。出来上がった膜を150℃で乾燥した後、再び350℃で10分間熱処理し、有機溶媒を蒸発させた。その膜をX線回折で分析した結果、非晶質の膜を確認した。その膜を高圧チャンバに入れ、チャンバ内にアンモニア水(pH=12)を入れた。入れたアンモニア水の量は、加熱前に膜と直接に接触しない程度であった。加熱中に、アンモニアが蒸発するため、蒸気圧力が大きくなった。300℃に加熱すると、気圧は89.4大気圧になった。その気圧は実施例1より大きい。300℃で2時間熱処理した後、図3が示すように、良好な結晶化を示すX線回折パターンが観察された。この実施例により、アンモニア水の蒸気圧による高圧が結晶化膜の形成を促進したことが証明された。
実施例3
RF−スパッタリングでPt/Ti/SiO2/Si基板上にSrBi2Ta2O9の膜を形成した。ターゲットは固相反応法によって作られ、ターゲットと基板の距離は3センチ、スパッタリングの時間は30分間であった。出来上がった膜を高圧チャンバに入れ、56.5大気圧と280℃で2時間熱処理した。出来上がった膜のX線回折図は図4に示す。この図から分かるように、高圧気相の熱処理によって、スパッタリングで生成した膜の結晶化の促進が確認された。
実施例4
2−エチルヘキサノン酸ストロンチウム塩、2−エチルヘキサノン酸バリウム塩、2−エチルヘキサノン酸ビスマス塩、及びタンタルエトキシドを混合し、(Sr0.5Ba0.5)Bi2Ta2O9のプレカーサーとした。このプレカーサーをPt/Ti/SiO2/Si基板にスピンコーテイングした。出来上がった膜を150℃に乾燥した後、再び350℃に10分間熱処理し、有機溶媒を蒸発した。その膜をX線回折で分析した結果、非晶質の膜を確認した。さらにその膜を高圧チャンバに入れ、チャンバ内に蒸留水を入れた。入れた蒸留水の量は、加熱前に膜と直接に接触しない程度であった。280℃で2時間熱処理した場合、気圧は56.5大気圧であった。280℃での熱処理の後、良好な結晶化を示すX線回折パターンが観察された。この実施例は高圧により結晶化SrBi2Ta2O9固溶体膜の形成が促進されたことを実証した。
実施例5
2−エチルヘキサノン酸鉛塩、ジルコニウムn−プロポキシドとテトライソプロピルオルトチタネートを混合し、Pb(Zr0.5Ti0.48)O3のプレカーサーを作成した。混合したプレカーサーをPt/Ti/SiO2/Si基板にスピンコーテイングした。出来上がった膜を150℃で乾燥した後、さらに350℃で10分間熱処理し、有機溶媒を蒸発させた。その膜をX線回折で分析した結果、非晶質の膜を確認した。その膜を高圧チャンバに入れ、チャンバ内に蒸留水を入れた。入れた蒸留水の量は、加熱前に膜と直接に接触しない程度であった。300℃で4時間熱処理した。そのときの気圧は77.6大気圧であった。熱処理後、図5が示すように、良好な結晶化を示すX線回折パターンが観察された。この実施例は、高圧熱処理によって結晶化Pb(Zr0.52Ti0.48)O3膜の形成が促進されたことを実証した。
比較例2
実施例5のように、Pb(Zr0.52Ti0.48)O3のプレカーサーを生成した後、Pt/Ti/SiO2/Siの基板上にスピンコーティングした。出来上がった膜を電気炉で300℃で4時間熱処理した。300℃で加熱した後、その膜は非晶質のままであった。膜のX線回折図は図6に示めされている。実施例5と比較すると、本発明の高圧熱処理により結晶化Pb(Zr0.52Ti0.48)O3膜の形成が促進されたことを確認した。
実施例6
PbTiO3の化学量論に基づいて、2−エチルヘキサノン酸鉛塩とテトライソプロピルオルトチタネートを混合し、PbTiO3のプレカーサーを作成した。混合したプレカーサーをPt/Ti/SiO2/Si基板にスピンコーテイングした。出来上がった膜を150℃で乾燥した後、さらに350℃で10分間熱処理し、有機溶媒を蒸発させた。その膜をX線回折で分析した結果、非晶質の膜を確認した。その膜を高圧チャンバに入れ、チャンバ内に蒸留水を入れた。入れた蒸留水の量は、加熱前に膜と直接に接触しない程度であった。300℃で2時間熱処理した。そのときの気圧は77.6大気圧であった。熱処理後、図7が示すように、良好な結晶化を示すX線回折パターンが観察された。この実施例は、高圧熱処理によって結晶化PbTiO3膜の形成が促進されたことを実証した。
実施例7
Pb3Nb4O13の化学量論に基づいて、2−エチルヘキサノン酸鉛塩とニオビウムエトキシドを混合し、Pb3Nb4O13のプレカーサーを作成した。混合したプレカーサーをPt/Ti/SiO2/Si基板にスピンコーテイングした。出来上がった膜を150℃で乾燥した後、さらに350℃で10分間熱処理し、有機溶媒を蒸発させた。その膜をX線回折で分析した結果、非晶質の膜を確認した。その膜を高圧チャンバに入れ、チャンバ内に蒸留水を入れた。入れた蒸留水の量は、加熱前に膜と直接に接触しない程度であった。300℃で2時間熱処理した。そのときの気圧は77.6大気圧であった。熱処理後、図8が示すように、良好な結晶化を示すX線回折パターンが観察された。この実施例は、高圧熱処理によって結晶化Pb3Nb4O13膜の形成が促進されたことを実証した。
比較例3
実施例7のように、Pb3Nb4O13のプレカーサーを作成した後、Pt/Ti/SiO2/Siの基板上スピンコーティングした。出来上がった膜を電気炉で300℃で2時間熱処理した。300℃で加熱した後、その膜は非晶質のままであった。膜のX線回折図は図9に示めされている。実施例7と比較すると、本発明は、高圧熱処理によって結晶化Pb3Nb4O13膜の形成が促進されることを確認した。
実施例8
Pb3Nb4O13の化学量論に基づいて、2−エチルヘキサノン酸鉛塩とニオビウムエトキシドを混合し、Pb3Nb4O13のプレカーサーを作成した。混合したプレカーサーをPt/Ti/SiO2/Si基板にディッピングした。ディッピングするときの膜の移動速度は0.3 cm/secであった。出来上がった膜を150℃に乾燥した後、さらに350℃に10分間熱処理し、有機溶媒を蒸発させた。その膜をX線回折で分析した結果、非晶質の膜を確認した。その膜を高圧チャンバに入れ、チャンバ内に蒸留水を入れた。入れた蒸留水の量は、加熱前に膜と直接に接触しない程度であった。300℃で2時間熱処理した。そのときの気圧は77.6大気圧であった。熱処理後、良好な結晶化を示すX線回折パターンが観察された。この実施例は、高圧熱処理によって結晶化Pb3Nb4O13膜の形成が促進されたことを実証した。
実施例9
タンタルエトキシドをTa2O5のプレカーサーとして用いた。当該プレカーサーをPt/Ti/SiO2/Si基板にスピンコーテイングした。出来上がった膜を150℃で乾燥した後、さらに350℃で10分間熱処理し、有機溶媒を蒸発させた。その膜をX線回折で分析した結果、非晶質の膜を確認した。その膜を高圧チャンバに入れ、チャンバ内に蒸留水を入れた。入れた蒸留水の量は、加熱前に膜と直接に接触しない程度であった。350℃で2時間熱処理した。そのときの気圧は156.4大気圧であった。熱処理後、良好な結晶化を示すX線回折パターンが観察された。この実施例は、高圧熱処理によって結晶化Ta2O5膜の形成が促進されたことを実証した。
【0021】
【発明の効果】
本発明は低温でセラミック膜を結晶化させることができるため、熱処理のエネルギを減少することができ、高温の熱処理によって起る膜と基板の界面反応を抑えることができる。また、低温で得られた膜の粒径が小さく、膜のあらさを低くし、膜の平坦度を増加する。
【0022】
本発明は高価かつ複雑な高エネルギの装置、例えばレーザー、イオンビーム、電子ビームなどの設備を必要とせず、設備のコストを低く抑えることができる。
【0023】
本発明で製造した膜はDRAM、不揮発性RAM、積層コンデンサ、アクチュエータ、圧電デバイス、焦電デバイス、センサ、光電表示装置、光電スイッチ、非線形光学デバイス、導電性膜、反射膜と反射防止膜などに応用することができる。
【図面の簡単な説明】
【図1】実施例1においてスピンコーティングで得られたSrBi2Ta2O9プレカーサー膜を78.9大気圧、300℃、2時間の熱処理により得られた結晶化膜のX線回折図である。
【図2】比較例1においてスピンコーティングで得られたSrBi2Ta2O9プレカーサー膜を常圧、300℃、2時間の熱処理により得られた膜のX線回折図である。
【図3】実施例2においてアンモニア水を使い、スピンコーティングで得られたSrBi2Ta2O9プレカーサー膜を89.4大気圧、300℃、2時間の熱処理により得られた膜のX線回折図である。
【図4】実施例3においてRFスパッタリングで得られた SrBi2Ta2O9プレカーサー膜を56.5大気圧、280℃、2時間の熱処理により得られた膜のX線回折図である。
【図5】実施例5においてスピンコーティングで得られたPb(Zr0.52Ti0.48)O3プレカーサー膜を77.6大気圧、300℃、4時間の熱処理により得られた膜のX線回折図である。
【図6】比較例2においてスピンコーティングで得られたPb(Zr0.52Ti0.48)O3プレカーサー膜を300℃、4時間の熱処理により得られた膜のX線回折図である。
【図7】実施例6においてスピンコーティングで得られたPbTiO3プレカーサー膜を77.6大気圧、300℃、2時間の熱処理により得られた膜のX線回折図である。
【図8】実施例7においてスピンコーティングで得られたPb3Nb4O13プレカーサー膜を77.6大気圧、300℃、2時間の熱処理により得られた膜のX線回折図である。
【図9】比較例3においてスピンコーティングで得られたPb3Nb4O13プレカーサー膜を300℃、2時間の熱処理により得られた膜X線回折図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel method for producing a crystallized ceramic film. In particular, the present invention relates to a method of obtaining a crystallized ceramic film at a low temperature by heat-treating a ceramic amorphous or partially crystallized precursor film formed by a chemical method or a physical method in a high-pressure gas phase.
[0002]
[Prior art]
Ceramic membranes have various properties and functions, and various applications have been developed. If the surface of the material is covered with a ceramic film, corrosion and wear can be suppressed. Further, since the ceramic film has special electric characteristics, it can be used for various electronic devices and photoelectric devices. Regarding electronic devices, applications to DRAMs, non-volatile RAMs, piezoelectric devices, capacitors, sensors, pyroelectric devices, actuators, and the like have been developed. In addition, the ferroelectric ceramic film can be applied to a nonvolatile RAM due to spontaneous polarization, or can be applied to a DRAM due to the high dielectric constant of the ferroelectric. Regarding photoelectric devices, applications of non-linear optical devices, conductive films, photoelectric switches, surface acoustic waves, optical waveguides, pyrosensors, photoelectric displays, reflective films, or antireflective films have been developed.
[0003]
Various manufacturing methods have been developed for manufacturing ceramic membranes. These methods are generally divided into chemical and physical methods. Chemical methods include chemical vapor deposition, spin coating, dipping, and sol-gel methods. Examples of the physical process include an evaporation method, an ion beam method, a molecular beam method, an electron beam method, sputtering, and laser sputtering. Generally, a film formed on a substrate at a low temperature is almost amorphous or partially crystallized. In order to obtain a crystallized film, high-temperature treatment during film formation or high-temperature heat treatment after film formation is required. Since the reaction between the ceramic film and the substrate is likely to occur in the high-temperature heat treatment, the properties of the film are greatly affected. In the field of semiconductors, a frequently used substrate for ferroelectric ceramic films is a silicon substrate. The silicon is easily oxidized by the high-temperature heat treatment, and the components of the silicon and the ceramic film are easily diffused, so that the interaction and the interface reaction between the silicon and the ceramic film are likely to occur. Due to such an interfacial reaction, the components of the ceramic film tend to come off, and silicon diffuses into the ceramic film, so that the properties of the ceramic film and the substrate are significantly deteriorated. Furthermore, since the high-temperature heat treatment easily causes the particles of the film to grow, the surface roughness of the film increases, which hinders subsequent processing such as etching.
[0004]
Several processes have been developed to remedy the disadvantages of conventional high temperature heat treatment. Among them, a hydrothermal process or an electrochemical hydrothermal process is a method in which a substrate is put into a reaction solution and a film is formed by a chemical reaction between the solution and the substrate. In such a process, since the substrate and the reaction solution come into direct contact with each other, when a strong acid solution and a strong alkali solution are used, the substrate is easily corroded, which is disadvantageous for a semiconductor device. Although treatment with a laser, an ion beam, an electron beam, a molecular beam, or the like can lower the crystallization temperature of the ceramic film, it has a difficulty in manufacturing a large-area film because the beam size is small. When a scanning device is used in combination, it is possible to form a large-area film, but there is a limitation on the scanning speed, which is disadvantageous for mass production. Alternatively, since the energy of a laser, an ion beam, a molecular beam, and an electron beam is high, the structure of the ceramic film is easily broken, defects easily occur, and the properties of the film are greatly affected.
[0005]
[Problems to be solved by the invention]
In order to solve the above problems, the researchers of the present invention have conducted a series of experiments, and as a result, have invented a novel method for crystallizing a ceramic film, and have realized a low-temperature manufacturing process of a crystallized ceramic film.
[0006]
It is an object of the present invention to provide a method for crystallizing a ceramic amorphous or partially crystallized precursor film at a low temperature.
[0007]
Another object of the present invention is to provide a crystallized ceramic film manufactured by the above method.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has, on a substrate to form or by physical methods to chemical methods ceramic amorphous or partially crystallized precursor film, the precursor film of more than 5 atmospheric pressure A method for producing a crystallized ceramic film characterized by being crystallized by heat treatment in a high-pressure gas phase.
[0009]
The high-pressure gas phase of the present invention can be realized by the following method, but is not limited to the following method. That is, a method of generating a high-pressure gas phase by a vapor pressure of a volatile substance or a method of generating a high-pressure gas phase by a high-pressure gas jet can be used.
[0010]
Ceramics are inorganic non-metallic compounds. Oxides, nitrides, borides, carbides, halides, hydrides and the like can be mentioned depending on the type of anion. The structure of ceramics is rock salt type, zinc blende type, wurtzite type, perovskite type, composite perovskite type, layered perovskite type, pyrochlore type, corundum type, ilmenite type, rutile type, spinel type, reverse spinel type, olivine type, Examples include a fluorite type, a reverse fluorite type, a calcium chloride type, a tungsten bronze type, a lithium niobate type, a stomium tantalate type, a silicate type and a mixed type thereof.
[0011]
The method of the present invention is not limited to a particular ceramic membrane component or crystal structure. As a result of a series of experiments, it was confirmed that the present invention can effectively suppress the crystallization temperature of the ceramic film regardless of the components and the crystal structure of the ceramic film.
[0012]
The method of the present invention can produce, but is not limited to, ceramic membranes having the following structures: rock salt type, zinc blende type, wurtzite type, perovskite type, composite perovskite type, layered perovskite type, pyrochlore type , Corundum type, ilmenite type, rutile type, spinel type, reverse spinel type, olivine type, fluorite type, reverse fluorite type, calcium chloride type, tungsten bronze type, lithium niobate type, lithium niobate type, stotium tantalate type, silica Acid salt type and its mixed type.
[0013]
Films that can be produced by the present invention include, for example, SrBi 2 Ta 2 O 9 , BaBi 2 Ta 2 O 9 , (Sr, Ba) Bi 2 Ta 2 O 9 , SrBi 2 (Ta, Nb) 2 O 9 , Pb (Zr, Ti) O 3 , Sr 2 (Ta, Nb) 2 O 7 , PbTiO 3 , Pb 3 Nb 4 O 13 , Ta 2 O 5 and the like, but the method of the present invention is not limited to the above films. The film includes a ferroelectric film and a paraelectric film.
[0014]
A key feature of the present invention is to promote the formation of a crystallized ceramic film in a high pressure gas phase environment. The pressure is above 5 atmospheres, more preferably from 10 to 400 atmospheres. Due to the high pressure heat treatment, the process of forming the crystallized ceramic film can take place at low temperatures. According to the present invention, the crystallized ceramic film and the heat treatment temperature can be suppressed to 600 ° C. or less. A preferred heat treatment temperature is 550 ° C or less, and a more preferred heat treatment temperature is 500 ° C or less. Further, after the high-pressure heat treatment, another heat treatment at a normal pressure at a temperature of 100 ° C. to 600 ° C. further improves the properties of the film.
[0015]
The ceramic film can be formed by a chemical method or a physical method. Chemical methods include chemical vapor deposition, spin coating, dipping, and sol-gel methods. Examples of the physical method include an electrodeposition method, an electrophoresis method, an evaporation method, an ion beam method, a molecular beam method, an electron beam method, a sputtering method, and a laser method.
[0016]
The crystallization method of the present invention can produce a large-area ceramic film without requiring complicated installation of a laser, an ion beam, an electron beam, and the like. In the example, a crystallized Pb (Zr, Ti) O 3 film could be formed at 300 ° C. The process of the present invention can effectively reduce the temperature of the conventional crystallization process significantly and can be combined with the semiconductor process, and can be applied to a DRAM (Dynamic Random Access Memory) or a non-volatile RAM (Non-Volatile Random Access Memory). Enable application. In a low-temperature process, oxidation of the substrate or metal wiring can be suppressed, or an interface reaction between the film and the substrate can be suppressed. Alternatively, the microstructure of the film is improved, the particle diameter of the film is reduced, and the flatness of the film can be improved.
[0017]
The substrate used in the present invention is not particularly limited. Examples include silicon, glass, ceramics, polymers, metals, and composites thereof. Materials with low melting points (eg, glass and polymers) that cannot normally be used in high temperature crystallization processes can also be used in the present invention. Further, the substrate is not limited to a flat substrate, and a substrate having a curved surface can be used.
[0018]
The volatile substance used to generate the high-pressure gas phase of the present invention may be any volatile substance that can generate steam by heating. In the case of a gas, examples of the volatile substance include oxygen, nitrogen, hydrogen, argon, water vapor, carbon dioxide, carbon monoxide, nitrogen oxide, ozone, and a mixture thereof. In the case of nitride and carbide films, the inert gas is preferably, for example, nitrogen or argon. When using a volatile liquid, an organic or inorganic solvent (eg, hydrogen peroxide, alcohol, ketone, ether, aromatic compound), an organic or inorganic alkali (eg, ammonia, amine, amide), an organic or inorganic acid ( For example, nitric acid, hydrochloric acid, acetic acid, and sulfuric acid), a metal salt solution, and a mixture thereof. If a solution is used as the vapor pressure source, the amount of the solution must be at least sufficient to create a sufficient vapor pressure at the heating temperature. However, the amount of solution must be limited before heating so that it does not come into direct contact with the membrane. High pressure gas jets can also promote crystallization of the film. Gas jets include those composed of oxygen, hydrogen, nitrogen, argon, water vapor, carbon dioxide, carbon monoxide, ozone, nitric oxide, and mixtures thereof.
[0019]
【Example】
Example 1
Based on the stoichiometry of SrBi 2 Ta 2 O 9 , strontium 2-ethylhexanoate, bismuth 2-ethylhexanoate and tantalum ethoxide were mixed to prepare a precursor of SrBi 2 Ta 2 O 9 . The mixed precursor was spincoated on Pt / Ti / SiO 2 / Si substrate. After drying the resulting film at 150 ° C., it was heat-treated again at 350 ° C. for 10 minutes to evaporate the organic solvent. As a result of analyzing the film by X-ray diffraction, an amorphous film was confirmed. The membrane was placed in a high pressure chamber and distilled water was placed in the chamber. The amount of distilled water charged was such that it did not directly contact the membrane before heating. Subsequently, heat treatment was performed at 260 ° C. and 300 ° C. for 2 hours. The vapor pressure at 260 ° C. was 47.6 atm, and the vapor pressure at 300 ° C. was 78.9 atm. After heat treatment at 260 ° C., the film only partially crystallized, but when heat treated at 300 ° C., an X-ray diffraction pattern showing good crystallization was observed as shown in FIG. This example demonstrated the formation of a crystallized film under high pressure.
Comparative Example 1
As in Example 1, a precursor of SrBi 2 Ta 2 O 9 was prepared, and then spin-coated on a Pt / Ti / SiO 2 / Si substrate. The resulting film was heat-treated at 300 ° C. for 2 hours in an electric furnace. After heating at 300 ° C., the film remained amorphous. The X-ray diffraction diagram of the film is shown in FIG.
[0020]
After heating the film to 700 ° C. in an electric furnace, a film having the same crystallinity as in Example 1 was obtained. Therefore, the crystallization temperature of Example 1 was 400 ° C. lower than that of Comparative Example 1. According to AFM observation, the particle diameter of the film of Example 1 was smaller than that of the comparative example, or the flatness of the film of Example 1 was better than that of the film of Comparative Example 1. According to the SIMS analysis, bismuth was remarkably diffused into the substrate in the film heat-treated at 700 ° C. in Comparative Example 1, but the phenomenon was not observed in the film of Example 1. Thus, this high pressure treatment effectively reduced the crystallization temperature of the film, suppressed interdiffusion between the film and the substrate, or improved the microstructure of the film.
Example 2
A precursor of SrBi 2 Ta 2 O 9 was made as in Example 1. The mixed precursor was spincoated on Pt / Ti / SiO 2 / Si substrate. After drying the resulting film at 150 ° C., it was heat-treated again at 350 ° C. for 10 minutes to evaporate the organic solvent. As a result of analyzing the film by X-ray diffraction, an amorphous film was confirmed. The membrane was placed in a high pressure chamber, and aqueous ammonia (pH = 12) was placed in the chamber. The amount of the added ammonia water was such that it did not come into direct contact with the membrane before heating. During the heating, the vapor pressure increased due to the evaporation of the ammonia. Upon heating to 300 ° C., the pressure reached 89.4 atm. The pressure is higher than in Example 1. After heat treatment at 300 ° C. for 2 hours, an X-ray diffraction pattern showing good crystallization was observed as shown in FIG. This example proved that the high pressure due to the ammonia water vapor pressure promoted the formation of the crystallized film .
Example 3
A film of SrBi 2 Ta 2 O 9 was formed on a Pt / Ti / SiO 2 / Si substrate by RF-sputtering. The target was made by a solid-state reaction method, the distance between the target and the substrate was 3 cm, and the sputtering time was 30 minutes. The resulting film was placed in a high pressure chamber and heat treated at 56.5 atmospheres and 280 ° C. for 2 hours. The X-ray diffraction diagram of the resulting film is shown in FIG. As can be seen from this figure, it was confirmed that the heat treatment in the high-pressure vapor phase promoted the crystallization of the film formed by sputtering.
Example 4
A mixture of strontium 2-ethylhexanoate, barium 2-ethylhexanoate, bismuth 2-ethylhexanoate, and tantalum ethoxide was used to form a precursor of (Sr 0.5 Ba 0.5 ) Bi 2 Ta 2 O 9 . And This precursor was spin-coated on a Pt / Ti / SiO 2 / Si substrate. After drying the resulting film at 150 ° C., it was heat-treated again at 350 ° C. for 10 minutes to evaporate the organic solvent. As a result of analyzing the film by X-ray diffraction, an amorphous film was confirmed. Further, the membrane was placed in a high-pressure chamber, and distilled water was placed in the chamber. The amount of distilled water charged was such that it did not directly contact the membrane before heating. After heat treatment at 280 ° C. for 2 hours, the pressure was 56.5 atm. After heat treatment at 280 ° C., an X-ray diffraction pattern showing good crystallization was observed. This example demonstrated that high pressure promoted the formation of a crystallized SrBi 2 Ta 2 O 9 solid solution film.
Example 5
A precursor of Pb (Zr 0.5 Ti 0.48 ) O 3 was prepared by mixing lead 2-ethylhexanoate, zirconium n-propoxide and tetraisopropyl orthotitanate. The mixed precursor was spincoated on Pt / Ti / SiO 2 / Si substrate. The resulting film was dried at 150 ° C., and then heat-treated at 350 ° C. for 10 minutes to evaporate the organic solvent. As a result of analyzing the film by X-ray diffraction, an amorphous film was confirmed. The membrane was placed in a high pressure chamber and distilled water was placed in the chamber. The amount of distilled water charged was such that it did not directly contact the membrane before heating. Heat treatment was performed at 300 ° C. for 4 hours. The air pressure at that time was 77.6 atmospheric pressure. After the heat treatment, an X-ray diffraction pattern showing good crystallization was observed as shown in FIG. This example demonstrated that high pressure heat treatment promoted the formation of a crystallized Pb (Zr 0.52 Ti 0.48 ) O 3 film.
Comparative Example 2
As in Example 5, a precursor of Pb (Zr 0.52 Ti 0.48 ) O 3 was generated and then spin-coated on a Pt / Ti / SiO 2 / Si substrate. The resulting film was heat-treated at 300 ° C. for 4 hours in an electric furnace. After heating at 300 ° C., the film remained amorphous. The X-ray diffraction diagram of the film is shown in FIG. As compared with Example 5, it was confirmed that the formation of the crystallized Pb (Zr 0.52 Ti 0.48 ) O 3 film was promoted by the high-pressure heat treatment of the present invention.
Example 6
Based on the stoichiometry of PbTiO 3, a mixture of 2-ethylhexanoic San'namarishio and tetraisopropyl orthotitanate, it created a precursor of PbTiO 3. The mixed precursor was spincoated on Pt / Ti / SiO 2 / Si substrate. The resulting film was dried at 150 ° C., and then heat-treated at 350 ° C. for 10 minutes to evaporate the organic solvent. As a result of analyzing the film by X-ray diffraction, an amorphous film was confirmed. The membrane was placed in a high pressure chamber and distilled water was placed in the chamber. The amount of distilled water charged was such that it did not directly contact the membrane before heating. Heat treatment was performed at 300 ° C. for 2 hours. The air pressure at that time was 77.6 atmospheric pressure. After the heat treatment, as shown in FIG. 7, an X-ray diffraction pattern showing good crystallization was observed. This example demonstrated that high pressure heat treatment promoted the formation of a crystallized PbTiO 3 film.
Example 7
Based on the stoichiometry of Pb 3 Nb 4 O 13, a mixture of 2-ethylhexanoic San'namarishio and niobium ethoxide to prepare a precursor of Pb 3 Nb 4 O 13. The mixed precursor was spincoated on Pt / Ti / SiO 2 / Si substrate. The resulting film was dried at 150 ° C., and then heat-treated at 350 ° C. for 10 minutes to evaporate the organic solvent. As a result of analyzing the film by X-ray diffraction, an amorphous film was confirmed. The membrane was placed in a high pressure chamber and distilled water was placed in the chamber. The amount of distilled water charged was such that it did not directly contact the membrane before heating. Heat treatment was performed at 300 ° C. for 2 hours. The air pressure at that time was 77.6 atmospheric pressure. After the heat treatment, as shown in FIG. 8, an X-ray diffraction pattern showing good crystallization was observed. This example demonstrated that high pressure heat treatment promoted the formation of a crystallized Pb 3 Nb 4 O 13 film.
Comparative Example 3
As in Example 7, a precursor of Pb 3 Nb 4 O 13 was prepared, and then spin-coated on a Pt / Ti / SiO 2 / Si substrate. The resulting film was heat-treated at 300 ° C. for 2 hours in an electric furnace. After heating at 300 ° C., the film remained amorphous. The X-ray diffraction diagram of the film is shown in FIG. In comparison with Example 7, the present invention confirmed that the formation of the crystallized Pb 3 Nb 4 O 13 film was promoted by the high-pressure heat treatment.
Example 8
Based on the stoichiometry of Pb 3 Nb 4 O 13, a mixture of 2-ethylhexanoic San'namarishio and niobium ethoxide to prepare a precursor of Pb 3 Nb 4 O 13. The mixed precursor was dipped on a Pt / Ti / SiO 2 / Si substrate. The moving speed of the film when dipping was 0.3 cm / sec. The resulting film was dried at 150 ° C., and then heat-treated at 350 ° C. for 10 minutes to evaporate the organic solvent. As a result of analyzing the film by X-ray diffraction, an amorphous film was confirmed. The membrane was placed in a high pressure chamber and distilled water was placed in the chamber. The amount of distilled water charged was such that it did not directly contact the membrane before heating. Heat treatment was performed at 300 ° C. for 2 hours. The air pressure at that time was 77.6 atmospheric pressure. After the heat treatment, an X-ray diffraction pattern showing good crystallization was observed. This example demonstrated that high pressure heat treatment promoted the formation of a crystallized Pb 3 Nb 4 O 13 film.
Example 9
Tantalum ethoxide was used as a precursor of Ta 2 O 5 . The precursor was spin-coated on a Pt / Ti / SiO 2 / Si substrate. The resulting film was dried at 150 ° C., and then heat-treated at 350 ° C. for 10 minutes to evaporate the organic solvent. As a result of analyzing the film by X-ray diffraction, an amorphous film was confirmed. The membrane was placed in a high pressure chamber and distilled water was placed in the chamber. The amount of distilled water charged was such that it did not directly contact the membrane before heating. Heat treatment was performed at 350 ° C. for 2 hours. At that time, the atmospheric pressure was 156.4 atmospheric pressure. After the heat treatment, an X-ray diffraction pattern showing good crystallization was observed. This example demonstrated that high pressure heat treatment promoted the formation of a crystallized Ta 2 O 5 film.
[0021]
【The invention's effect】
In the present invention, since the ceramic film can be crystallized at a low temperature, the energy of the heat treatment can be reduced, and the interface reaction between the film and the substrate caused by the high-temperature heat treatment can be suppressed. Further, the grain size of the film obtained at a low temperature is small, the roughness of the film is reduced, and the flatness of the film is increased.
[0022]
The present invention does not require expensive and complicated equipment of high energy, for example, equipment such as a laser, an ion beam, and an electron beam, and can keep equipment costs low.
[0023]
Films manufactured by the present invention are used for DRAMs, nonvolatile RAMs, multilayer capacitors, actuators, piezoelectric devices, pyroelectric devices, sensors, photoelectric display devices, photoelectric switches, non-linear optical devices, conductive films, reflective films and anti-reflective films, etc. Can be applied.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction diagram of a crystallized film obtained by subjecting a SrBi 2 Ta 2 O 9 precursor film obtained by spin coating in Example 1 to a heat treatment at 78.9 atmospheric pressure and 300 ° C. for 2 hours. .
FIG. 2 is an X-ray diffraction diagram of a film obtained by subjecting a SrBi 2 Ta 2 O 9 precursor film obtained by spin coating in Comparative Example 1 to a heat treatment at 300 ° C. for 2 hours at normal pressure.
FIG. 3 is an X-ray diffraction pattern of a film obtained by subjecting a SrBi 2 Ta 2 O 9 precursor film obtained by spin coating to a heat treatment at 89.4 atmospheric pressure and 300 ° C. for 2 hours using ammonia water in Example 2. FIG.
FIG. 4 is an X-ray diffraction diagram of a film obtained by subjecting a SrBi 2 Ta 2 O 9 precursor film obtained by RF sputtering in Example 3 to heat treatment at 56.5 atmospheric pressure and 280 ° C. for 2 hours.
FIG. 5 is a cross-sectional view of a film obtained by subjecting a Pb (Zr 0.52 Ti 0.48 ) O 3 precursor film obtained by spin coating in Example 5 to heat treatment at 77.6 atmospheric pressure at 300 ° C. for 4 hours. FIG.
6 is an X-ray diffraction diagram of a film obtained by subjecting a Pb (Zr 0.52 Ti 0.48 ) O 3 precursor film obtained by spin coating in Comparative Example 2 to a heat treatment at 300 ° C. for 4 hours.
FIG. 7 is an X-ray diffraction diagram of a film obtained by subjecting a PbTiO 3 precursor film obtained by spin coating in Example 6 to heat treatment at 77.6 atmospheric pressure and 300 ° C. for 2 hours.
FIG. 8 is an X-ray diffraction diagram of a film obtained by subjecting a Pb 3 Nb 4 O 13 precursor film obtained by spin coating in Example 7 to a heat treatment at 77.6 atmospheric pressure and 300 ° C. for 2 hours.
FIG. 9 is a film X-ray diffraction diagram obtained by subjecting a Pb 3 Nb 4 O 13 precursor film obtained by spin coating in Comparative Example 3 to a heat treatment at 300 ° C. for 2 hours.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30783599A JP3585406B2 (en) | 1999-10-28 | 1999-10-28 | Method for producing crystallized ceramic film and ceramic film thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30783599A JP3585406B2 (en) | 1999-10-28 | 1999-10-28 | Method for producing crystallized ceramic film and ceramic film thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001146421A JP2001146421A (en) | 2001-05-29 |
JP3585406B2 true JP3585406B2 (en) | 2004-11-04 |
Family
ID=17973783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30783599A Expired - Lifetime JP3585406B2 (en) | 1999-10-28 | 1999-10-28 | Method for producing crystallized ceramic film and ceramic film thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3585406B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004256377A (en) * | 2003-02-27 | 2004-09-16 | Nippon Shokubai Co Ltd | Method of manufacturing metal oxide film |
JP2007103963A (en) * | 2006-12-11 | 2007-04-19 | Seiko Epson Corp | Method for manufacturing ferroelectric capacitor, ferroelectric capacitor and semiconductor device |
CN111656510A (en) * | 2018-02-22 | 2020-09-11 | 应用材料公司 | Method of processing mask substrate to achieve better film quality |
WO2020218617A1 (en) * | 2019-04-26 | 2020-10-29 | 国立大学法人東京工業大学 | Method for producing ferroelectric film, ferroelectric film, and usage thereof |
-
1999
- 1999-10-28 JP JP30783599A patent/JP3585406B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001146421A (en) | 2001-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6143366A (en) | High-pressure process for crystallization of ceramic films at low temperatures | |
JP5299620B2 (en) | Ceramics, dielectric capacitor, semiconductor device, actuator, optical modulator, and ultrasonic sensor | |
EP0687750B1 (en) | Method for manufacturing thin film of composite metal-oxide dielectric | |
JP3133922B2 (en) | Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element | |
JPH09153597A (en) | Ferroelectric thin film element, fabrication thereof, and ferroelectric memory element | |
JP3480624B2 (en) | Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element | |
JP2008042069A (en) | Piezoelectric element, and its manufacturing method | |
KR100932573B1 (en) | Ferroelectric Capacitors, Method of Making Ferroelectric Capacitors, and Ferroelectric Memory | |
JP3182909B2 (en) | Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device | |
US20080182128A1 (en) | Process For Preparing Piezoelectric Materials | |
US6528863B1 (en) | Perovskite-containing composite material, method of manufacturing said material, electronic component and module | |
JP3944917B2 (en) | Method for forming oxide ceramic thin film | |
JP3585406B2 (en) | Method for producing crystallized ceramic film and ceramic film thereof | |
KR0156044B1 (en) | Manufacture for ferroelectric thin film | |
JP2995290B2 (en) | Method of forming PZT-based ferroelectric thin film | |
JP3118702B2 (en) | Method for manufacturing non-volatile memory thin film | |
JPH11163273A (en) | Manufacture of dielectric thin film and dielectric capacitor and dielectric memory | |
JP4766299B2 (en) | (111) Oriented PZT Dielectric Film Forming Substrate, (111) Oriented PZT Dielectric Film Formed Using This Substrate | |
JP2001223403A (en) | Ferroelectric substance thin film, its forming method and ferroelectric substance thin film element using the thin film | |
EP1790622A1 (en) | Complex metal oxide raw material composition | |
EP1195799A1 (en) | High pressure process for the formation of crystallized ceramic films at low temperatures | |
Han et al. | Hydrogen post-annealing effect of the ferroelectric properties of (Pb0. 72La0. 28) Ti0. 93O3 films fabricated by pulsed laser deposition | |
JPH10223847A (en) | Manufacture of ferroelectric thin film element, ferroelectric thin film element and ferroelectric memory device | |
JPH09321234A (en) | Ferroelectric thin film device, manufacture thereof and ferroelectric memory device | |
JP3267278B2 (en) | Method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040803 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3585406 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100813 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |