JP3584996B2 - Wiring board for electrical test and method of manufacturing the same - Google Patents
Wiring board for electrical test and method of manufacturing the same Download PDFInfo
- Publication number
- JP3584996B2 JP3584996B2 JP31991894A JP31991894A JP3584996B2 JP 3584996 B2 JP3584996 B2 JP 3584996B2 JP 31991894 A JP31991894 A JP 31991894A JP 31991894 A JP31991894 A JP 31991894A JP 3584996 B2 JP3584996 B2 JP 3584996B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive polymer
- wiring
- wiring board
- electrical test
- protruding electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012360 testing method Methods 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229920001940 conductive polymer Polymers 0.000 claims description 64
- 239000000758 substrate Substances 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 17
- 229920005989 resin Polymers 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 16
- 239000002131 composite material Substances 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 239000002019 doping agent Substances 0.000 claims description 8
- 238000006116 polymerization reaction Methods 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- -1 polyphenylenevinylene Polymers 0.000 claims description 5
- 229920000123 polythiophene Polymers 0.000 claims description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 229920000553 poly(phenylenevinylene) Polymers 0.000 claims description 3
- 229920001197 polyacetylene Polymers 0.000 claims description 3
- 229920000128 polypyrrole Polymers 0.000 claims description 3
- 239000011247 coating layer Substances 0.000 claims description 2
- 238000007598 dipping method Methods 0.000 claims description 2
- 239000007800 oxidant agent Substances 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 20
- 239000010410 layer Substances 0.000 description 13
- 238000005530 etching Methods 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 229910052759 nickel Inorganic materials 0.000 description 10
- 238000007689 inspection Methods 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 239000011889 copper foil Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical group C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- KETQAJRQOHHATG-UHFFFAOYSA-N 1,2-naphthoquinone Chemical compound C1=CC=C2C(=O)C(=O)C=CC2=C1 KETQAJRQOHHATG-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 241001377010 Pila Species 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- LHOWRPZTCLUDOI-UHFFFAOYSA-K iron(3+);triperchlorate Chemical compound [Fe+3].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O LHOWRPZTCLUDOI-UHFFFAOYSA-K 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- ODHKAQHVQPQOFZ-UHFFFAOYSA-N triphenyl-$l^{3}-iodane Chemical compound C1=CC=CC=C1I(C=1C=CC=CC=1)C1=CC=CC=C1 ODHKAQHVQPQOFZ-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Structure Of Printed Boards (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、プリント基板、集積回路用基板、液晶表示基板などの高密度配線基板における導通抵抗検査をはじめとする接触導通を要する電気的検査に使用するエレクトリカルテスト用配線基板に関する。
【0002】
【従来の技術】
本発明は、プリント基板をはじめ、高密度実装基板の検査用基板の構造、作製法および検査法に関するものである。本発明の背景として、実装基板上への電子部品実装密度の増大や部品端子の狭ピッチ化がある。このため、実装部品端子の相互配置間隔が縮小している。相互結線が確保できるようにする微細配線化および多層化技術が進むに伴い、これら実装技術を駆使して、実装部品のマルチチップモジュール化が図られている。例えば、シリコン基板上に半導体素子が集積回路化されたもの(以下ベアチップ)をこれまで、リードフレームに実装封止して、挿入部品もしくは面実装部品としてきた。これに対し、該ベアチップを複数個、ひとつの基板にワイヤボンド接続またはTAB接続あるいはCCB接続し封止後、リードフレームに実装して機能化する形態である。MCMは、COB,PGA,HICの分野と特徴づけは、明確ではないが、ひとつの指標として、実装基板面積に対するデバイスの面積比率が30%以上と定義されている。このような、基板はシリコンを基板とするMCM−D、セラミック系材料を基板とするMCM−C、有機材料を基板とするMCM−Lに分けられる。
【0003】
これらの基板は、ベアチップ実装前に、所定パターンの形成を電気的なオープンショートテストで確認する必要があり、プリント板で培われてきた検査方法を適用する場合に検査条件は、従来よりさらに厳しくなりつつある。例えば、所定パターンは、線幅と線間(以下ラインアンドスペース)が100μm/100μm以下の特徴がある。同時に、金メッキ処理された部品実装の電極も90〜120μmピッチとなりつつあり、その電極数は将来、1インチ角あたり1000個を超えると予測される。従って、200μmピッチ以下で検査用接触端子を被検査基板の電極に対向させる必要がある。また、被検査基板の電極は、実装前の損傷防止に格段の注意を必要とする。この背景から、従来技術として検査用接触端子を被検査基板に対向して配置する方法がある。
【0004】
従来技術においては、被検査基板に対向する端子は導電性金属端子が用いられる。しかし、被検査基板の電極を損傷させる可能性がある。電極の損傷防止を改善する方法として、特開昭59−3269号公報に示されるように検査用接触端子と被検査基板との間に圧接時に導電性ゴムシートを挿入する技術がある。
【0005】
【発明が解決しようとする課題】
この従来の方法は、電極配線層表面がソルダレジストなどのパッシベーション膜で沿面をとって被覆されている場合、確実圧接するには不利である。また、端子を保持する基板を利用するのでは、狭ピッチに対応するのに限界がある。本発明は、狭ピッチに対応するのが容易で、狭ピッチでの導電性金属からなる突起電極とその先端にのみ、導電性を損なわず、弾力性を有する導電性高分子または導電性高分子複合膜が被覆された構造を与えるものである。
【0006】
【課題を解決するための手段】
本発明は、絶縁基板と、絶縁基板中に埋め込まれている所定パターンの配線と、その配線上に設けられた、被テスト用デバイスの電極と接触する突起電極とよりなっており、導電性金属からなる突起電極先端が導電性を著しく低下させることなく導電性高分子または導電性高分子複合膜で被覆されていることを特徴とする。
【0007】
導電性金属からなる突起電極先端が導電性を著しく低下させることなく導電性高分子で被覆する方法を以下説明する。
1.導電性高分子または導電性高分子と他の樹脂の混合物を電極上に選択的に被覆する。
(1)導電性高分子(アンドープ)または導電性高分子(アンドープ)と他の樹脂の混合物を適当な溶媒に溶解し、電極上に浸したこの溶液の溶媒を揮発させることにより被覆する。その後で、ドーパントをドーピングする。導電性高分子としては、例えば、ポリチオフェン、ポリピロール、ポリアセチレン、ポリフェニレンビニレン等が使用される。他の樹脂としては、例えば、ゴム等のエラストマー、ポリ塩化ビニル、ポリ酢酸ビニル、フェノール樹脂、エポキシ樹脂等が使用される。ドーパントとしては、例えば、塩化第2鉄、ヨウ素、過塩素酸鉄等が使用される。
(2)電極を導電性高分子モノマーとドーパントの混合溶液に浸漬し、電解重合により導電性高分子を形成させる。
(3)樹脂を被覆した電極を導電性高分子モノマーとドーパントの混合溶液に浸漬し、電解重合により導電性高分子を重合させながら、樹脂皮膜層に浸透させて導電性高分子複合膜を形成させる。
(4)高分子アニオン(例えばスルホン酸、カルボン酸等の極性基を有す高分子)膜または、高分子アニオンと樹脂の混合物の膜を被覆した電極を導電性高分子モノマー溶液に浸漬し、電解重合により導電性高分子を重合させながら、皮膜層に浸透させて導電性高分子複合膜を形成させる。
(5)酸化剤を混合した樹脂を電極上に被覆し、導電性高分子モノマー蒸気にさらすことにより重合を行いながら、重合体を被覆層に浸透させ導電性高分子複合膜を形成させる。
【0008】
2.導電性高分子膜または導電性高分子複合膜をパターニングし、仮基板をエッチングする際のエッチングレジストとして使用し、電極上に選択的に被覆する方法。
(1)導電性高分子(アンドープ)または導電性高分子(アンドープ)と他の樹脂(エストラマー)などの混合物を適当な溶媒に溶解する。そして、仮基板上に膜形成後、パターンマスクを介して紫外線照射し、現像することによりエッチングレジストのパターンを形成した導電性高分子膜を得る。その後で、各種ドーパントをドーピングする。この導電性高分子膜をマスク(エッチングレジスト)にして仮基板のエッチングを行い、導電性高分子で被覆した電極パターン(突起電極)を形成させる。ここで、導電性高分子としては、例えばポリチオフェン等、または、それらに光重合可能なエチレン性二重結合を有する基を導入させたものが使用される。
(2)導電性高分子(アンドープ)を、パターン形成能力のある樹脂(例えば、各種レジスト、光架橋可能な樹脂等)に混合し、以下2.(1)の方法により導電性高分子で被覆した電極パターン(突起電極)を形成させるパターン形成能力のある樹脂としては、例えば、アルキル(メタ)アクリレートと(メタ)アクリル酸の共重合物/テトラエチレングリコールジアクリレート/ベンゾフェノン(光開始剤)の組成物、フェノール樹脂/オルトナフトキノンアジドの組成物等が使用できる。
(3)導電性高分子(アンドープ)膜または導電性高分子(アンドープ)と他の樹脂の混合物の膜を形成し、各種ドーパントをドーピングする。この膜の上に感光性レジストを塗布成膜し、パターンマスクを介して光(紫外線または可視光線)照射し、現像することによりレジストパターンを形成する。次いで、このレジストパターンをマスクに下地の導電性高分子膜をエッチングし、パターンを転写する(リフトオフ法)。そして、この導電性高分子膜をマスク(エッチングレジスト)にして基板のエッチングを行い、感光性レジストを除去して導電性高分子で被覆した電極パターン(突起電極)を形成させる。
(4)導電性高分子(アンドープ)または導電性高分子(アンドープ)と他の樹脂の混合物と光によりドーパントを発生する化合物(例えば、トリフェニルヨードニウムテトラフルオロボレート)を適当な溶媒に溶解する。そして、膜形成後、パターンマスクを介して紫外線照射し、光照射部のみドーピングを行い不溶化させ、次いで現像することによりパターン形成した導電性高分子膜を得る。以下、2.(1)の方法により導電性高分子で被覆した電極パターンを形成させる。
【0009】
突起電極形成後に導電性高分子を付与する場合について図1〜図10により、本発明の一実施例を説明する。1で示す厚さ35〜70μmの電解銅箔と2で示す厚さ0.1〜0.5μmのニッケル層からなる(例えば福田金属製の)2層箔を用いる。このニッケル面にレジスト3をラミネートする。レジストは例えば日立化成製HN350を用いる。この後、積算露光量125〜130mJ/cm2の露光現像で所定のパターンを含むネガイメージを焼き付ける。パターンのネガイメージは3で示すレジスト層に焼き付けられる(図1)。1、2を電極として、パターンのポジイメージを電気銅めっきする。レジスト剥離後には、パターンのポジイメージが4で示される(図2)。
【0010】
この後、直径5mmの穴をパンチング穴明けする。パンチング穴明け工程は、その中心位置を自動認識する場合には、十分なコントラストが必要になる。このような場合は、レジスト剥離を実施する前に該工程を先行させることが望ましい(図3)。
【0011】
図3で形成した箔の電気銅めっきパターンを任意の樹脂に埋め込む(配線転写法)。この時、パターン間での異物や油脂分除去のため、パターンの整面処理をネオサンディップに浸漬洗浄する。ピール強度を確保するため、パタ−ン銅の酸化処理および酸化銅の還元処理を行う。その後、24時間以内に5で示す熱硬化性ガラスエポキシプリプレグを介して途中工程での反り防止のための35μm電解銅箔6と共に真空プレスする(図4)。この後、直径3.15〜3.175のドリル穴明け(K点)を行う(図5)。
【0012】
1のキャリアをエッチングして転写パターン上に位置精度良く、ピラー形成を行うため、4’に示す直径4mmのガイドマークをキャリア側から見えるようにする。このガイドマークは、該K点でも代用可能だが、ピラー群に近いところがより高精度となる。まず、図4で作製した金属のキャリア側についた酸化処理還元処理の層を除去するため、バフ研磨で整面する。この後、レジストラミネート、該マークに沿面を取った円パターンをネガイメージに焼き付ける。露光現像後、アルカリエッチングで銅エッチングする。この際、2で示すニッケルはエッチングされない。このため、埋め込まれた銅パターンのエッチングを防いでいる。この後、ニッケルをメルストリップ社製ニッケルエッチング用A液、B液、過酸化水素水で除去する。レジスト剥離後(図6)、窓明けされたパターンを該K点を基準として、NC穴明けする。この穴を次のマスク位置合わせに使用する。精度をさらに良くするにはガイドマークをそのまま残す方が望ましい(図7)。
【0013】
レジストの密着を確実にするバフ研磨による整面をまず行う。レジストラミネート後、ピラーのネガイメージを焼き付けるため、該ガイドマークと該ネガイメージに含まれるガイドマークとの位置合わせマークを倍率40〜100倍のマイクロスコープで見ながら合わせる。ガイドマークはピラー群の周囲に少なくとも4ケ所設けることが望ましい。露光及び現像後、図6と同様に銅エッチング、ニッケルエッチング、レジスト剥離を行う。キャリアの銅厚さを制御すれば、サイドエッチの少ない任意断面の突起電極7が得られる(図8)。この突起電極7を、無電解ニッケル、金めっきあるいは、転写パターンにリードパターンを設けることにより、電気ニッケル、金メッキする。めっき層8の厚さは、後者の場合、ニッケル層は2〜6μm、金メッキ層は0.1〜7μmが望ましい。外形加工ののち所定引き出し配線および電極、電極の上に形成された突起電極を有する基板が得られる(図9)。
【0014】
突起電極を下にして、小型プレスに固定する。これと平行にプレスに取り付けた基板の真下にアプリケータやスピンコートで導電性高分子を厚さ1〜30μmで被膜したフローティングガラスやアクリル板などを設置する。プレス降下により、突起電極に選択的に導電性高分子9を付与することができる。これにより、図10の構造を有する本発明のテスト用基板が得られる。
【0015】
【作用】
まず、平面図で本発明の電極群が被検査基板へ、どのような位置関係にあるか補足説明する。図11は、被検査基板の表面電極パターンおよび引き回し配線を裏面から透視した場合の概略平面図である。一方、図11と同様の方向から、本発明の検査基板パターンを見た場合の概略平面図を図12に示す。図12の突起電極群は、11−2の表面電極パターン群と対向して配置され、相互の接触には12−4のガイド穴を位置合わせに利用可能である。11−1の引き回し配線は、相互接触により所定配線12−1と12−1’ではんだ接続などハンドリングで十分可能な大きさおよび低密度な電極群に引き出され、この電極群を使って自動測定システムやテスタなどにはんだ接続される。同様に、11−2の引き回し配線は12−2と12−2’の所定配線で引き出される。本発明は、この相互接触の際、11−2の表面電極を損傷させることなく、かつ平面間での接触確度ばらつきを抑えると共に、電極の寿命を向上させる。
【0016】
【発明の効果】
本発明のテスト用配線基板は、被検査デバイスパタ−ンの狭ピッチに対応するのが容易であり、導電性金属からなる突起電極とその先端にのみ導電性を損なわず、弾力性を有する導電性高分子または導電性高分子複合膜が被覆されており、被検査デバイスの表面電極を損傷させることなく、かつ平面間での接触確度ばらつきを抑えると共に、テスト用配線板自体の突起電極の寿命を向上させるものである。
【図面の簡単な説明】
【図1】〜
【図10】本発明のテスト用配線基板の製造工程を示す断面図である。
【図11】被検査基板のパタ−ンを示す平面図である。
【図12】本発明基板のパタ−ンを示す平面図である。
【符号の説明】
1 銅箔
2 ニッケル層
3 レジスト層
4 めっきパターン
4’ ガイドマ−ク
5 プリプレグ
6 銅箔
7 突起電極
8 めっき層
9 導電性高分子
11−1 引き回し配線
11−2 表面電極パターン群
12−1 所定配線
12−1’所定配線
12−2 所定配線
12−2’所定配線
12−3 突起電極群
12−4 ガイド穴[0001]
[Industrial applications]
The present invention relates to a wiring board for an electrical test used for an electrical inspection that requires contact continuity such as a continuity resistance test on a high-density wiring board such as a printed board, an integrated circuit board, and a liquid crystal display board.
[0002]
[Prior art]
The present invention relates to a structure, a manufacturing method, and an inspection method of an inspection board for a high-density mounting board, including a printed board. As background of the present invention, there is an increase in the mounting density of electronic components on a mounting substrate and a narrow pitch of component terminals. For this reason, the mutual arrangement interval of the mounting component terminals is reduced. As the fine wiring reduction and multilayer technology that interconnects can be secured advances, by making full use of these implementation techniques, multi-chip mode joules of mounted components is achieved. For example, an integrated circuit in which a semiconductor element is integrated on a silicon substrate (hereinafter, a bare chip) has been mounted and sealed on a lead frame to form an insert component or a surface mount component. On the other hand, a plurality of bare chips are connected to one substrate by wire bond connection, TAB connection or CCB connection, sealed, and then mounted on a lead frame for functionalization. The MCM is not clearly defined in the fields of COB, PGA, and HIC, but as one index, the area ratio of the device to the mounting board area is defined as 30% or more. Such substrates are classified into MCM-D using silicon as a substrate, MCM-C using a ceramic-based material as a substrate, and MCM-L using an organic material as a substrate.
[0003]
For these substrates, it is necessary to confirm the formation of a predetermined pattern by an electrical open short test before mounting a bare chip, and the inspection conditions are more severe when applying the inspection method cultivated on printed boards. It is becoming. For example, the predetermined pattern has a feature that a line width and a line interval (hereinafter, line and space) are 100 μm / 100 μm or less. At the same time, it is becoming an electrode also 90~120μm pitch gold-plated treated component mounting, the number of electrodes in the future is predicted 1000 per inch angle and is exceeded. Therefore, it is necessary to face the inspection contact pin to the electrode of the device under test substrate below 200μm pitch. Also, the electrodes of the substrate to be inspected require extreme care to prevent damage before mounting. From this background, there is a method of arranging a contact terminal for inspection facing a substrate to be inspected as a conventional technology.
[0004]
In the related art, a conductive metal terminal is used as a terminal facing the substrate to be inspected. However, there is a possibility that the electrodes of the substrate to be inspected may be damaged. As a method of improving prevention of electrode damage, there is a technique of inserting a conductive rubber sheet between a contact terminal for inspection and a substrate to be inspected at the time of press-contact, as disclosed in JP-A-59-3269.
[0005]
[Problems to be solved by the invention]
This conventional method is disadvantageous for reliable pressure welding when the surface of the electrode wiring layer is covered with a passivation film such as a solder resist. Further, when a substrate for holding terminals is used, there is a limit in supporting a narrow pitch. The present invention is directed to a conductive polymer or a conductive polymer which is easy to cope with a narrow pitch and has elasticity without impairing the conductivity only at the protruding electrode made of a conductive metal at the narrow pitch and its tip. This gives the composite membrane a coated structure.
[0006]
[Means for Solving the Problems]
The present invention comprises an insulating substrate, a wiring of a predetermined pattern embedded in the insulating substrate, and a protruding electrode provided on the wiring and in contact with an electrode of a device under test. The tip of the protruding electrode is coated with a conductive polymer or a conductive polymer composite film without significantly lowering the conductivity .
[0007]
A method for coating the protruding electrode tip made of a conductive metal with a conductive polymer without significantly lowering the conductivity will be described below.
1. A conductive polymer or a mixture of a conductive polymer and another resin is selectively coated on the electrode.
(1) The conductive polymer (undoped) or a mixture of the conductive polymer (undoped) and another resin is dissolved in a suitable solvent, and the solution is dipped on the electrode and the solvent is volatilized for coating. Thereafter, the dopant is doped. As the conductive polymer, for example, polythiophene, polypyrrole, polyacetylene, polyphenylenevinylene, or the like is used. As other resin, for example, elastomer such as rubber, polyvinyl chloride, polyvinyl acetate, phenol resin, epoxy resin and the like are used. As the dopant, for example, ferric chloride, iodine, iron perchlorate, or the like is used.
(2) The electrode is immersed in a mixed solution of a conductive polymer monomer and a dopant, and a conductive polymer is formed by electrolytic polymerization.
(3) A resin-coated electrode is immersed in a mixed solution of a conductive polymer monomer and a dopant, and while the conductive polymer is polymerized by electrolytic polymerization, is penetrated into the resin film layer to form a conductive polymer composite film. Let it.
(4) dipping an electrode coated with a polymer anion (for example, a polymer having a polar group such as sulfonic acid or carboxylic acid) or a film of a mixture of a polymer anion and a resin in a conductive polymer monomer solution; While polymerizing the conductive polymer by electrolytic polymerization, the conductive polymer is permeated into the film layer to form a conductive polymer composite film.
(5) an oxidizing agent is coated on the mixed combined resin electrode, while the polymerization by exposure to a conductive polymer monomer vapor, to form a conductive polymer composite film impregnated with the polymer in the coating layer .
[0008]
2. A method in which a conductive polymer film or a conductive polymer composite film is patterned, used as an etching resist when etching a temporary substrate, and selectively coated on electrodes.
(1) A conductive polymer (undoped) or a mixture of a conductive polymer (undoped) and another resin (estramer) is dissolved in a suitable solvent. Then, after the film is formed on the temporary substrate, the film is irradiated with ultraviolet rays through a pattern mask and developed to obtain a conductive polymer film having an etching resist pattern formed thereon. After that, various dopants are doped. Using the conductive polymer film as a mask (etching resist), the temporary substrate is etched to form an electrode pattern (protruding electrode) covered with the conductive polymer. Here, as the conductive polymer, for example polythiophene, or those them by introducing a group that having a photopolymerizable ethylenic double bond is used.
(2) A conductive polymer (undoped) is mixed with a resin capable of forming a pattern (for example, various resists, a photocrosslinkable resin, and the like). (1) The method by the conductive polymer in the coated electrode patterns resin with patterning ability to form a (protruding electrodes), for example, alkyl (meth) acrylate and (meth) acrylic acid co-heavy compounds / the composition of tetraethylene glycol diacrylate / benzophenone (photoinitiator), composition, etc. of the phenolic resin / ortho naphthoquinone azide de can be used.
(3) A conductive polymer (undoped) film or a film of a mixture of a conductive polymer (undoped) and another resin is formed and doped with various dopants. A photosensitive resist is applied and formed on this film, irradiated with light (ultraviolet light or visible light) through a pattern mask, and developed to form a resist pattern. Next, using the resist pattern as a mask, the underlying conductive polymer film is etched to transfer the pattern (lift-off method). Then, using the conductive polymer film as a mask (etching resist), the substrate is etched to remove the photosensitive resist and form an electrode pattern (protruding electrode) covered with the conductive polymer.
(4) the conductive polymer (undoped) or a conductive polymer (undoped) and a mixture of other resin with a compound that generates a dopant by light (e.g., triphenyl iodonium tetrafluoro volley g) is dissolved in a suitable solvent . After the film is formed, the conductive polymer film is irradiated with ultraviolet rays through a pattern mask, is insolubilized by doping only the light-irradiated portion, and is then developed to obtain a patterned polymer film. Hereinafter, 2. An electrode pattern coated with a conductive polymer is formed by the method (1).
[0009]
One embodiment of the present invention will be described with reference to FIGS. 1 to 10 in the case where a conductive polymer is applied after the formation of the protruding electrodes. A two- layer foil (for example, manufactured by Fukuda Metal) comprising an electrolytic copper foil having a thickness of 1 to 35 μm and a nickel layer having a thickness of 0.1 to 0.5 μm shown by 2 is used. The resist 3 is laminated on the nickel surface. As the resist, for example, HN350 manufactured by Hitachi Chemical is used. Thereafter, a negative image including a predetermined pattern is printed by exposure and development with an integrated exposure amount of 125 to 130 mJ / cm 2 . The negative image of the pattern is printed on a resist layer indicated by 3 (FIG. 1). Using the electrodes 1 and 2 as electrodes, a positive image of the pattern is electroplated with copper. After stripping the resist, a positive image of the pattern is shown at 4 (FIG. 2).
[0010]
Thereafter, a hole having a diameter of 5 mm is punched. In the punching step, a sufficient contrast is required when the center position is automatically recognized. In such a case, it is desirable to precede the step before performing the resist stripping (FIG. 3).
[0011]
The electrolytic copper plating patterns of the formed
[0012]
Positional accuracy on the first etched transfer patterns carrier, for performing the pillar formation, to make visible guide marks 4mm diameter shown in 4 'from the carrier side. This guide mark can be substituted at the K point, but the position near the pillar group has higher accuracy. First, in order to remove the layer of oxidation-reduction process with the carrier side of the metal produced in FIG. 4, the integer plane with buffing. Thereafter, a resist laminate and a circular pattern creepage of the mark are printed on a negative image. After exposure and development, copper etching is performed by alkali etching. At this time, the nickel indicated by 2 is not etched. For this reason, to prevent etching of the implanted copper patterns. Thereafter, nickel is removed by a nickel etching solution A and solution B manufactured by Merstrip Co., Ltd., and hydrogen peroxide solution. After resist stripping (Fig. 6), a window drilled been patterns relative to the said point K, to NC drilling. This hole is used for the next mask alignment. It is desirable to leave the guide mark as it is in order to further improve the accuracy (FIG. 7).
[0013]
First performed integer surface by buffing to ensure the adhesion of the resist. After the resist lamination, in order to print the negative image of the pillar, the alignment mark between the guide mark and the guide mark included in the negative image is aligned with a microscope with a magnification of 40 to 100 times. Guide mark is preferably provided at least four places around the Pila over group. After the exposure and development, copper etching, nickel etching, and resist peeling are performed as in FIG. By controlling the copper thickness of the carrier, it is possible to obtain the protruding electrode 7 having an arbitrary cross section with less side etching (FIG. 8). The projection electrodes 7, electroless nickel, gold plating or by providing the Ridopata over on to the transfer pattern, electrolytic nickel and gold plating. In the latter case, the thickness of the plating layer 8 is preferably 2 to 6 μm for the nickel layer and 0.1 to 7 μm for the gold plating layer. After the outer shape processing, a substrate having predetermined lead wires, electrodes, and projecting electrodes formed on the electrodes is obtained (FIG. 9).
[0014]
It is fixed to a small press with the protruding electrode facing down. In parallel with this, a floating glass or an acrylic plate coated with a conductive polymer to a thickness of 1 to 30 μm by an applicator or spin coating is provided directly below the substrate attached to the press. The conductive polymer 9 can be selectively applied to the protruding electrodes by pressing down. Thus, the test substrate of the present invention having the structure of FIG. 10 is obtained.
[0015]
[Action]
First, a supplementary explanation will be given on the positional relationship of the electrode group of the present invention to the substrate to be inspected in a plan view. FIG. 11 is a schematic plan view when the front surface electrode pattern and the lead-out wiring of the substrate to be inspected are seen through from the back surface. On the other hand, FIG. 12 shows a schematic plan view when the inspection board pattern of the present invention is viewed from the same direction as FIG. The protruding electrode group in FIG. 12 is arranged to face the surface electrode pattern group 11-2, and the guide holes 12-4 can be used for alignment with each other for mutual contact. The lead-out wiring 11-1 is drawn out to a group of electrodes having a size and a low density that are sufficiently large for handling such as soldering by predetermined wirings 12-1 and 12-1 'by mutual contact, and is automatically measured using this electrode group. It is soldered to a system or tester. Similarly, the lead-out wiring 11-2 is drawn out by predetermined wirings 12-2 and 12-2 '. The present invention does not damage the surface electrode 11-2 at the time of this mutual contact, suppresses the contact accuracy variation between planes, and improves the life of the electrode.
[0016]
【The invention's effect】
The test wiring board of the present invention can easily cope with the narrow pitch of the device pattern to be inspected, and has a conductive electrode having elasticity without impairing the conductivity only at the protruding electrode made of a conductive metal and its tip. Coated with a conductive polymer or conductive polymer composite film , without damaging the surface electrodes of the device under test, minimizing contact accuracy variations between planes, and prolonging the life of the protruding electrodes on the test wiring board itself. Is to improve.
[Brief description of the drawings]
FIG. 1
FIG. 10 is a cross-sectional view showing a manufacturing process of the test wiring board of the present invention.
FIG. 11 is a plan view showing a pattern of a substrate to be inspected.
FIG. 12 is a plan view showing a pattern of the substrate of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Copper foil 2
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31991894A JP3584996B2 (en) | 1993-12-27 | 1994-12-22 | Wiring board for electrical test and method of manufacturing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-333201 | 1993-12-27 | ||
JP33320193 | 1993-12-27 | ||
JP31991894A JP3584996B2 (en) | 1993-12-27 | 1994-12-22 | Wiring board for electrical test and method of manufacturing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003290018A Division JP3536983B2 (en) | 1993-12-27 | 2003-08-08 | Manufacturing method of wiring board for electrical test |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07235739A JPH07235739A (en) | 1995-09-05 |
JP3584996B2 true JP3584996B2 (en) | 2004-11-04 |
Family
ID=26569876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31991894A Expired - Fee Related JP3584996B2 (en) | 1993-12-27 | 1994-12-22 | Wiring board for electrical test and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3584996B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6568073B1 (en) * | 1991-11-29 | 2003-05-27 | Hitachi Chemical Company, Ltd. | Process for the fabrication of wiring board for electrical tests |
JP2001099864A (en) * | 1999-09-29 | 2001-04-13 | Nec Corp | Printed board inspecting jig and its manufacturing method |
-
1994
- 1994-12-22 JP JP31991894A patent/JP3584996B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07235739A (en) | 1995-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6133534A (en) | Wiring board for electrical tests with bumps having polymeric coating | |
CN1319157C (en) | Multilayer circuit board and semiconductor device | |
EP1395101A1 (en) | Method of manufacturing electronic part and electronic part obtained by the method | |
US20060220242A1 (en) | Method for producing flexible printed wiring board, and flexible printed wiring board | |
CN110402020B (en) | Flexible printed circuit board and manufacturing method thereof | |
KR100463442B1 (en) | Ball grid array substrate and method for preparing the same | |
US20060030140A1 (en) | Method of making bondable leads using positive photoresist and structures made therefrom | |
US6568073B1 (en) | Process for the fabrication of wiring board for electrical tests | |
JP3584996B2 (en) | Wiring board for electrical test and method of manufacturing the same | |
JP3178417B2 (en) | Semiconductor carrier and method of manufacturing the same | |
JP2002118204A (en) | Semiconductor device, substrate for mounting semiconductor and method for manufacturing the same | |
JP2007517410A (en) | Pattern circuit and manufacturing method thereof | |
JP3536983B2 (en) | Manufacturing method of wiring board for electrical test | |
KR20090071494A (en) | Method of manufacturing for printed wiring board | |
KR100278460B1 (en) | Wiring board for electrical test and manufacturing method thereof | |
JP3033539B2 (en) | Carrier film and method for producing the same | |
JP4057748B2 (en) | Flexible printed circuit board and manufacturing method thereof | |
KR100374075B1 (en) | Film carrier tape for mounting electronic parts and method for manufacturing the same | |
JP2009177071A (en) | Polyimide film circuit board and method of manufacturing the same | |
JPH0621601A (en) | Printed circuit board, and fabrication and connection thereof | |
KR100511965B1 (en) | A tin plating method of the tape substrate | |
JP3862032B2 (en) | Electrical test wiring board and manufacturing method thereof | |
JP2000156557A (en) | Manufacture of wiring member | |
JPS5867097A (en) | Method of producing printed circuit board | |
JP3129217B2 (en) | Fine pitch connector members |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20030808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040715 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040728 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070813 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080813 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090813 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090813 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100813 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120813 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120813 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |