JP3584751B2 - Methyl methacrylate laminated extruded resin plate - Google Patents

Methyl methacrylate laminated extruded resin plate Download PDF

Info

Publication number
JP3584751B2
JP3584751B2 JP27755798A JP27755798A JP3584751B2 JP 3584751 B2 JP3584751 B2 JP 3584751B2 JP 27755798 A JP27755798 A JP 27755798A JP 27755798 A JP27755798 A JP 27755798A JP 3584751 B2 JP3584751 B2 JP 3584751B2
Authority
JP
Japan
Prior art keywords
methyl methacrylate
resin
weight
parts
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27755798A
Other languages
Japanese (ja)
Other versions
JPH11165382A (en
Inventor
智博 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP27755798A priority Critical patent/JP3584751B2/en
Publication of JPH11165382A publication Critical patent/JPH11165382A/en
Application granted granted Critical
Publication of JP3584751B2 publication Critical patent/JP3584751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はメタクリル酸メチル系積層押出樹脂板、特に二次加熱成形した時に偏肉が少ない成形品を与えるメタクリル酸メチル系積層押出樹脂板に関する。
【0002】
【従来の技術】
メタクリル酸メチル系樹脂は、優れた透明性と耐光性を持った樹脂であり、この特性を生かして、光学材料や照明カバー、看板等に広く用いられている。
このメタクリル酸メチル系樹脂は二次加熱成形性にも優れており、一旦、押出板状化した後に熱変形温度以上に加熱して延伸成形し、特定の形状を付与することが可能である。
【0003】
この二次加熱成形方法としては、例えば、フリーブロー成形、フリーバキューム成形、突上げ成形、リッジ成形、ストレート成形、ドレープ成形、リバースドロー成形、エアスリップ成形、プラグアシスト成形、プラグアシストリバースドロー成形法等があり、これらの成形方法を単独または2種以上を組み合わせて行って所望の形状としている。
これらの成形方法は材料の延伸を伴うが、近年の動向として、コーナー部が大きく突き出した照明カバーや深い浴槽のごとく、超高延伸成形や成形技術自体の進歩により成形品形状の複雑化がさらに進んできている。
成形加工技術の発展によって、短時間加熱や低温加熱下に高延伸成形することも行われるようになり、成形される樹脂側も十分対応できるよう設計する必要が出てきた。
従来のメタクリル酸メチル系材料を使用して先述の高延伸成形を行うと、成形時に材料が破断したり、あるいは成形はできても高延伸部と低延伸部の板厚差が著しく大きくなる傾向があった。
これらの問題に対して、特定の分岐構造を持った微粒子を添加した押出板や、例えば特開平9−208789号公報には、メタクリル酸メチル系樹脂中に特定の架橋構造を持ったメタクリル酸メチル系重合体とゴム状重合体を含有させた押出板が開示されている。
【0004】
【発明が解決しようとする課題】
特開平9−208789号公報に記載の材料は優れたものではあるが、二次加熱成形時に収縮しやすいため、押出板製造時に冷却条件をうまく制御しないと均一な肉厚の押出板が得にくい傾向がある。このため、温度管理の困難な押出生産工場においては夏場に生産したものと冬場に生産したもので成形特性が微妙に変化してくるという問題があった。さらに、有効成分を板全体に分散させているため、コスト的に高いものになる。
【0005】
そこで本発明者は、押出成形時に特別な条件設定を必要としないメタクリル酸メチル系押出樹脂板について鋭意検討した結果、ゴム成分を特定量分散したメタクリル酸メチル系樹脂の両表層に、特定のアクリル系不溶樹脂粒子を分散させたメタクリル酸メチル系樹脂を薄く積層するだけで、押出板製造時の冷却条件に大きく影響されず、二次加熱成形を行っても成形品の偏肉が少ないメタクリル酸メチル系積層押出樹脂板が得られることを見い出し、本発明に至った。
【0006】
【課題を解決するための手段】
すなわち本発明は、メタクリル酸メチル系樹脂100重量部に対して、ゴム状重合体0〜50重量部を均一分散させた樹脂層(A)の両面に、メタクリル酸メチル系樹脂100重量部とゴム状重合体5〜70重量部からなる基材樹脂100重量部に対して、重量平均粒子径0.1〜100μmのメタクリル酸メチル系不溶樹脂粒子1〜50重量部を均一分散させた樹脂層(B)を多層押出成形法によって積層一体化してなるメタクリル酸メチル系積層押出樹脂板である。
以下、本発明を詳細に説明する。
【0007】
【発明の実施の形態】
本発明におけるメタクリル酸メチル系樹脂とは、メタクリル酸メチル樹脂を50重量%以上含有する樹脂、またはメタクリル酸メチル単位を50重量%以上とメタクリル酸メチルと共重合可能な単官能の不飽和単量体単位からなる共重合体である。
【0008】
メタクリル酸メチルと共重合可能な単官能不飽和単量体としては、例えば、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2−エチルヘキシル、メタクリル酸2−ヒドロキシエチル等のメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、等のアクリル酸エステル類、メタクリル酸、アクリル酸などの不飽和酸類;スチレン、α−メチルスチレン、アクリロニトリル、メタクリロニトリル、無水マレイン酸、フェニルマレイミド、シクロヘキシルマレイミド等である。また、この共重合体には、無水グルタル酸単位、グルタルイミド単位をさらに含んでいても良い。
【0009】
本発明におけるゴム状重合体とは、アクリル系多層構造重合体または5〜80重量部のゴムにエチレン性不飽和単量体なかでもアクリル系不飽和単量体95〜20重量部をグラフト重合したグラフト共重合体などがある。
アクリル系多層構造重合体は、エラストマーの層を20〜60重量部を内在させるものであって、最外には硬質層を有するもので、最内層として硬質層をさらに含む構造のものでも良い。
【0010】
エラストマーの層とは、ガラス転移点(Tg)が25℃未満のアクリル系重合体の層であり、低級アルキルアクリレート、低級メタクリレート、低級アルコキシアクリレート、シアノエチルアクリレート、アクリルアミド、ヒドロキシ低級アルキルアクリレート、ヒドロキシ低級メタクリレート、アクリル酸、メタクリル酸等のモノエチレン性不飽和単量体の1種以上を多官能単量体で架橋させた重合体からなる。
多官能単量体とは、先述のモノエチレン性不飽和単量体と共重合可能で共役ジエンを除くものである。
例えば、1、4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートのようなアルキルジオールジ(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレートのようなアルキレングリコールジ(メタ)アクリレート類;ジビニルベンゼン、ジアリルフタレートのような芳香族多官能化合物;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートのような多価アルコールの(メタ)アクリレート類やアリルメタクリレート等が挙げられる。
これらの単量体については二種類以上併用しても良い。
【0011】
硬質層とは、Tgが25℃以上のアクリル系重合体の層であり、炭素数1〜4個のアルキル基を有するアルキルメタクリレートを単独重合体、またはこのアルキルメタクリレートと、他のアルキルメタクリレート、アルキルアクリレート、スチレン、置換スチレン、アクリロニトリル、メタクリロニトリル等の単官能単量体との共重合体からなる。さらに多官能単量体を加えて重合させた架橋重合体でも構わない。
アクリル系多層構造重合体の例としては、特公昭55−27576号公報、特開平6−80739号公報および特開昭49−23292号公報に記載のものが該当する。
【0012】
5〜80重量部のゴムにエチレン性不飽和単量体を95〜20重量部グラフト重合して得られるグラフト共重合体に用いるゴムとして、例えば、ポリブタジエンゴム、アクリロニトリル/ブタジエン共重合体ゴム、スチレン/ブタジエン共重合体ゴムなどのジエン系ゴム、ポリブチルアクリレート、ポリプロピルアクリレート、ポリ−2−エチルヘキシルアクリレートなどのアクリル系ゴム、およびエチレン/プロピレン/非共役ジエン系ゴム等を用いることができる。
このゴムにグラフト共重合するのに用いられるエチレン性単量体およびそれらの混合物としては、スチレン、アクリロニトリル、アルキル(メタ)アクリレートなどが挙げられる。
これらのグラフト共重合体の例としては、特開昭55−147514号公報や特公昭47−9740号公報に記載のものを用いることができる。
【0013】
樹脂層(A)中のゴム状重合体の分散量は、メタクリル酸メチル系100重量部に対して0〜50重量部、好ましくは3〜20重量部である。50重量部を超えると樹脂板の曲げ弾性率が低下して好ましくない。
【0014】
樹脂層(B)中のゴム状重合体の分散量は、メタクリル酸メチル系樹脂100重量部に対して5〜70重量部、好ましくは5〜50重量部である。70重量部を超えると樹脂板の表面が柔らかくなり成形加工時に傷つきやすくなる。
【0015】
メタクリル酸メチル系不溶樹脂粒子とは、該樹脂粒子を分散しているメタクリル酸メチル系樹脂に、押出成形や射出成形の際にも溶け出さない樹脂粒子であり、具体的には、高分子量メタクリル酸メチル系樹脂粒子または架橋メタクリル酸メチル系樹脂粒子である。
【0016】
高分子メタクリル酸メチル系樹脂粒子は、メタクリル酸メチルを単独重合して得られる高分子量の樹脂粒子、またはメタクリル酸メチルを50重量%以上、好ましくは80重量%以上含み、ラジカル重合可能な二重結合を分子内に1個有する単量体を重合して得られる高分子量の樹脂粒子であり、その重量平均分子量(Mw)は約500000〜5000000である。
【0017】
ラジカル重合可能な二重結合を分子内に1個有する単量体としては、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2−エチルヘキシル、メタクリル酸2−ヒドロキシエチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、メタクリル酸、アクリル酸、スチレン、クロロスチレン、ブロムスチレン、ビニルトルエン、α−メチルスチレン等が挙げられる。これらの単量体は二種以上併用しても良い。
【0018】
架橋メタクリル酸メチル系樹脂粒子は、メタクリル酸メチルとラジカル重合可能な二重結合を分子内に少なくとも2個有する単量体を重合して得られる架橋樹脂粒子、またはメタクリル酸メチルを50重量%以上含み、ラジカル重合可能な二重結合を分子内に1個有する単量体とラジカル重合可能な二重結合を分子内に少なくとも2個有する単量体を重合して得られる架橋樹脂粒子であり、アセトン中に溶解させた時のゲル分率が10%以上のものである。
【0019】
ラジカル重合可能な二重結合を分子内に少なくとも2個有する単量体とは、先述の単量体と共重合可能で共役ジエンを除くものであり、例としては先述の多官能単量体が挙げられる。
【0020】
メタクリル酸メチル系樹脂粒子については、先述の組成内であれば特に問題はないが、可能な限り基材樹脂となるメタクリル酸メチル系樹脂の組成に近い方が好ましい。具体的には、基材樹脂を構成するメタクリル酸メチル単量体単位の構成比率と樹脂粒子を構成するメタクリル酸メチル系単量体単位の構成比率の差が30%以内であることが望ましい。この差が30%を超えた場合、二次熱成形して得られる成形品のた偏肉を抑制し難くなる。
【0021】
メタクリル酸メチル系樹脂粒子は、これらの構成成分を乳化重合法、分散重合法、懸濁重合法、ミクロ懸濁重合法等の方法により重合して得られる。
【0022】
メタクリル酸メチル系不溶樹脂粒子の粒子径は、重量平均で0.1〜100μである。0.1μ未満であると二次熱成形して得られる成形品の偏肉を抑制し難くなり、100μを超えると樹脂板の耐衝撃強度を低下させてしまう。
【0023】
樹脂層(B)中の不溶樹脂粒子の分散量は、メタクリル酸メチル系樹脂100重量部とゴム状重合体0〜70重量部からなる基材樹脂100重量部に対して、1〜50重量部、好ましくは3〜20重量部である。1重量部未満であると二次熱成形して得られる成形品の偏肉を抑制し難く、50重量部を超えると樹脂板の強度が低下してしまう。
【0024】
本発明における積層樹脂板の厚みは特に制限されるものではないが、概ね0.1〜10mmの範囲である。
また層の構成については、樹脂層(B)が樹脂層(A)の両表層を被覆している必要がある。片面しか被覆されていないと二次成形品の偏肉を抑制できない。
層厚比率[樹脂層(B)/樹脂層(A)/樹脂層(B)]は、概ね1/200/1〜1/1/1の範囲、好ましくは1/50/1〜1/2/1の範囲である。樹脂層(B)があまりにも薄すぎると二次成形品の偏肉を抑制できず、逆に樹脂層(A)が薄すぎると、偏肉は抑制できるが、不溶粒子の分散量自体が多くなってしまいコスト的に不利になる。
【0025】
メタクリル酸メチル系樹脂にゴム状重合体や不溶樹脂粒子を分散させて組成物とするには、周知の方法で行うことができる。すなわち、これらをヘンシェルミキサー、タンブラー等で機械的に混合し、バンバリーミキサーや一軸または二軸の押出機で溶融混練する方法がある。さらには後述の多層押出成形方法を用いて一段で積層樹脂板とすることも可能である。
【0026】
得られた組成物を積層樹脂板とするには、周知の多層押出成形法を用いる。多層押出成形法は、2〜3基の一軸、二軸の押出機で樹脂層(A)、樹脂層(B)の組成物を溶融混練した後、フィードブロックダイやマルチマニホールドダイを介して積層し、積層一体化された溶融樹脂板をロールユニットを用いて冷却固化して積層樹脂板を得る方法である。
【0027】
樹脂層(A)、樹脂層(B)には、前述の材料の他に、光拡散剤、染料、光安定剤、紫外線吸収剤、酸化防止剤、離型剤、難燃剤、帯電防止剤等の添加剤を分散させても特に問題は無く、もちろん2種以上分散させることも可能である。
【0028】
【発明の効果】
本発明のメタクリル酸メチル系積層押出樹脂板は、これを用いて二次熱成形を行って得られる成形品の偏肉を抑制することができ、高延伸でかつ複雑な成形を施される照明カバーやバスタブ、各種玩具等の材料に好適に用いられる。
【0029】
【実施例】
以下、実施例によって本発明を更に詳しく説明するが、本発明はこれら実施例によって制限されるものではない。
【0030】
実施例で使用した押出装置は以下の通りである。
・押出機▲1▼:スクリュー径40mm、一軸、ベント付き(田辺プラスチックス機械(株)製)
・押出機▲2▼:スクリュー径20mm、一軸、ベント付き(田辺プラスチックス機械(株)製)
・フィードブロック:2種3層分配(田辺プラスチックス機械(株)製)
・ダイ:Tダイ、リップ幅250mm、リップ間隔6mm
・ロール:ポリシングロール3本、縦型
【0031】
また、評価方法は以下の通りである。
(1)重量平均粒子径
光回折散乱粒径測定機(マイクロトラック粒度分析計Model 9220 FRA:リーズアンド ノースラップ社(Leeds & Northrup,Ltd. )製)で測定し、D50の値を平均粒子径とした。
(2)層厚の確認
一時的に樹脂層(B)を着色し、得られた積層押出板の端面を15倍拡大ルーペで観察し、積層部の厚みを調べた。
(3)加熱延伸成形
30cm×20cmの押出板を、両面より遠赤パネルヒーターで表面温度を140℃および170℃に加熱し、突上げ成形機(大阪板機製作所製TF−300型、突上げ面積10cm×5cm、突上げ高さ10cm)を用いて図1に示すような成形品を得た。
(4)板厚測定
突上げ成形品の図1に示すポイント「0」「1」〜「8」における板厚を超音波厚み計(ULTRASONIC GAGE MODEL 5222 :パナメトリックス社(PAN AMETRICS Ltd. )製) を用いて測定した。
「0」は頂部の中央、「1」〜「8」は成形品の側面の中央頂部より1cmずつ裾に下ろした点である。
【0032】
参考例1
[ゴム状重合体の製造]
ゴム状重合体として、特公昭55−27576号の実施例に記載の方法に準拠して、三層構造からなるアクリル系多層構造重合体を製造した。
内容積5Lのガラス製反応容器に、イオン交換水1700g、炭酸ナトリウム0.7g、過硫酸ナトリウム0.3gを仕込み、窒素気流下で撹拌後、乳化剤(ペレックスOT−P:花王(株)製)4.46g、イオン交換水150g、メチルメタクリレート150g、アリルメタクリレート0.3gを仕込んだ後、75℃に昇温し150分間撹拌を続けた。
続いてブチルアクリレート689g、スチレン162g、アリルメタクリレート17gの混合物と過硫酸ナトリウム0.85g、乳化剤(ペレックスOT−P:花王(株)製)7.4gとイオン交換水50gの混合物を別の入口から90分間にわたり添加し、さらに90分間重合を続けた。
重合を完了後、さらにメチルアクリレート326g、エチルアクリレート14gの混合物と過硫酸ナトリウム0.34gを溶解させたイオン交換水30gを別々の口から30分間にわたって添加した。添加終了後さらに60分間保持し重合を完了した。
得られたラテックスを0.5%塩化アルミニウム水溶液投入して重合体を凝集させた。これを温水にて5回洗浄後、乾燥してアクリル系多層構造重合体を得た。
【0033】
参考例2
[メタクリル酸メチル系不溶樹脂粒子の製造]
内容積2Lのガラス容器に、イオン交換水1200g、ポリメタクリル酸ナトリウム(和光純薬工業(株)製:Mw=700万)0.4gおよびポリオキシエチレンポリオキシプロピレンエーテル(プルロニックF68:旭電化工業(株)製)1.2g、燐酸水素2ナトリウム1.2gを仕込んだ後、メタクリル酸メチル380g、アクリル酸メチル17g、エチレングリコールジメタクリレート2g、ラウロイルパーオキサイド0.8g、n−ドデシルメルカプタン1.5gからなる単量体混合物を仕込んだ。
800rpmで撹拌しながら、75℃で2時間、重合率が12〜100%までの間に、0.4gのポリメタクリル酸ナトリウムを連続添加した。重合後、洗浄、脱水、乾燥後、風力分級機(日清エンジニアリング(株)製TC−15N)により分級を行い重量平均粒子径33μの粒子を得た。
【0034】
実施例1〜3
[樹脂層(A)]
メタクリル酸メチル系樹脂(スミペックスEXA、住友化学工業(株)製)100重量部と参考例1で作製したゴム状重合体を、それぞれ表1に示す量を混合した混合物100重量部に対して、炭酸カルシウム(丸尾カルシウム(株)製、平均粒径3μ)3重量部をヘンシェルミキサーで混合した後、押出機▲1▼にて溶融混練し、フィードブロックに供給した。
[樹脂層(B)]
樹脂層(A)に使用したものと同じメタクリル酸メチル系樹脂と参考例1で作製したゴム状重合体を、それぞれ表1に示す量を混合した混合物100重量部に対して、参考例2で作製したメタクリル酸メチル系不溶樹脂粒子を表1に示す量をヘンシェルミキサーで混合した後、押出機▲2▼にて溶融混練し、フィードブロックに供給した。
樹脂層(A)を中間層、樹脂層(B)を表層として、押出樹脂温度265℃、0.1mm/1.8mm/0.1mmの3層構成で多層押出成形を行い、幅21cmの積層押出樹脂板を作製した。
評価結果を表2、表3に示す。
【0035】
比較例1
[樹脂層(A)]
実施例1と同じメタクリル酸メチル系樹脂100重量部と参考例1で作製したゴム状重合体を、それぞれ表1に示す量を混合した混合物100重量部に対して、炭酸カルシウム(丸尾カルシウム(株)製、平均粒径3μ)3重量部をヘンシェルミキサーで混合した後、押出機▲1▼にて溶融混練し、フィードブロックに供給した。
[樹脂層(B)]
樹脂層(A)に使用したものと同じメタクリル酸メチル系樹脂と参考例1で作製したゴム状重合体を、それぞれ表1に示す量を混合した混合物100重量部に対して、参考例2で作製したメタクリル酸メチル系架橋樹脂粒子を表1に示す量をヘンシェルミキサーで混合した後、押出機▲2▼にて溶融混練し、フィードブロックに供給した。
樹脂層(A)を中間層、樹脂層(B)を表層として、押出樹脂温度265℃、0.2mm/2.6mm/0.2mmの3層構成で多層押出成形を行い、幅21cmの積層押出樹脂板を作製した。
評価結果を表2、表3に示す。
【0036】
実施例4
[樹脂層(A)]
実施例1と同じメタクリル酸メチル系樹脂100重量部と、参考例1で作製したゴム状重合体を、それぞれ表1に示す量を混合した混合物100重量部に対して、炭酸カルシウム(丸尾カルシウム(株)製、平均粒径3μ)1.6重量部、酸化チタン(石原産業(株)製)0.02重量部、アルキルスルホン酸ソーダ(炭素数15〜16、直鎖)0.5重量部をヘンシェルミキサーで混合した後、押出機▲1▼にて溶融混練し、フィードブロックに供給した。
[樹脂層(B)]
樹脂層(A)に使用したものと同じメタクリル酸メチル系樹脂と参考例1で作製したゴム状重合体、参考例2で作成したメタクリル酸メチル系架橋樹脂粒子を、それぞれ表1に示す量を混合した混合物100重量部に対して、樹脂層(A)に使用したものと同じアルキルスルホン酸ソーダ0.5重量部をヘンシェルミキサーで混合した後、押出機▲2▼にて溶融混練し、フィードブロックに供給した。
樹脂層(A)を中間層、樹脂層( B) を表層として、押出樹脂温度265℃で3mm厚、0.2mm/2.6mm/0.2mmの3層構成で多層押出成形を行い、幅22cmの積層押出樹脂板を作製した。
評価結果を表2、表3に示す。
【0037】
実施例5
[樹脂層(A)]
実施例1と同じメタクリル酸メチル系樹脂100重量部と、参考例1で作製したゴム状重合体を、それぞれ表1に示す量を混合した混合物100重量部に対して、炭酸カルシウム(丸尾カルシウム(株)製、平均粒径3μ)1.6重量部、酸化チタン(石原産業(株)製)0.02重量部をヘンシェルミキサーで混合した後、押出機▲1▼にて溶融混練し、フィードブロックに供給した。
[樹脂層(B)]
樹脂層(A)に使用したものと同じメタクリル酸メチル系樹脂と参考例1で作製したゴム状重合体、参考例2で作成したメタクリル酸メチル系架橋樹脂粒子を、それぞれ表1に示す量混合した混合物100重量部に対して、アルキルスルホン酸ソーダ(炭素数15〜16、直鎖)0.5重量部をヘンシェルミキサーで混合した後、押出機▲2▼にて溶融混練し、フィードブロックに供給した。
樹脂層(A)を中間層、樹脂層( B) を表層として、押出樹脂温度265℃で2mm厚、0.1mm/1.8mm/0.1mmの3層構成で多層押出成形を行い、幅21cmの積層押出樹脂板を作製した。
評価結果を表2、表3に示す。
【0038】
比較例
比較例1において、フィードブロック操作により樹脂層(B)の流路の片側を止めて2層押出とした以外は、実施例4に準じた。樹脂層(B)/樹脂層(A)が0.2mm/2.8mmである幅20cmの積層押出樹脂板を作製した。
評価結果を表2、表3に示す。
【0039】
比較例3
比較例1において樹脂層(A)と樹脂層(B)の材料を入れ替えた。その他は比較例1に準じて積層押出樹脂板を作製した。
評価結果を表2、表3に示す。
【0040】
比較例4
実施例1に使用したものと同じメタクリル酸メチル系樹脂100重量部に、参考例1で作製したゴム状重合体2 5重量部をヘンシェルミキサーで混合した後、押出機▲1▼にて溶融混練し、押出樹脂温度265℃で、3mm厚、幅20cmの単層押出樹脂板を作製した。
評価結果を表2、表3に示す。
【0041】
比較例5
実施例1に使用したものと同じメタクリル酸メチル系樹脂100重量部と参考例1で作製したゴム状重合体25重量部の混合物100重量部に対して、参考例2で作製した粒子13重量部をヘンシェルミキサーで混合した後、押出機▲1▼にて溶融混練し、押出樹脂温度265℃で、3mm厚、幅20cmの単層押出樹脂板を作製した。
評価結果を表2、表3に示す。
【0042】
【表1】

Figure 0003584751
部は重量部を表す。
【0043】
【表2】
Figure 0003584751
【0044】
【表3】
Figure 0003584751

【図面の簡単な説明】
【図1】本発明のメタクリル酸メチル系積層樹脂押出板を用いて実施例において
成形して得た成形品の外観図である。
【符号の説明】
0→8は板厚の測定個所を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a methyl methacrylate-based laminated extruded resin plate, and more particularly to a methyl methacrylate-based laminated extruded resin plate which gives a molded product with less uneven thickness when subjected to secondary heat molding.
[0002]
[Prior art]
Methyl methacrylate resin is a resin having excellent transparency and light resistance, and is widely used for optical materials, lighting covers, signboards, and the like by utilizing these characteristics.
This methyl methacrylate resin is also excellent in secondary heat moldability, and can be formed into an extruded plate, then heated to a heat deformation temperature or higher and stretch-molded to give a specific shape.
[0003]
Examples of the secondary heat molding method include free blow molding, free vacuum molding, push-up molding, ridge molding, straight molding, drape molding, reverse draw molding, air slip molding, plug assist molding, and plug assist reverse draw molding. These molding methods are performed singly or in combination of two or more kinds to obtain a desired shape.
These molding methods involve stretching of the material, but in recent years, as in the case of lighting covers and deep bathtubs with large protruding corners, the shape of molded products has become more complicated due to advances in ultra-high stretching molding and the molding technology itself. It is progressing.
With the development of molding technology, high-stretch molding has been performed under short-time heating or low-temperature heating, and it has become necessary to design the resin to be molded so that it can sufficiently cope with it.
When the above-mentioned high-stretch molding is performed using a conventional methyl methacrylate-based material, the material breaks at the time of molding, or the thickness difference between the high-stretched portion and the low-stretched portion tends to be remarkably large even though molding is possible. was there.
To solve these problems, an extruded plate to which fine particles having a specific branched structure are added, and for example, Japanese Patent Application Laid-Open No. 9-208789 discloses methyl methacrylate having a specific cross-linked structure in a methyl methacrylate resin. An extruded plate containing a system polymer and a rubbery polymer is disclosed.
[0004]
[Problems to be solved by the invention]
Although the material described in JP-A-9-208789 is excellent, it is difficult to obtain an extruded plate having a uniform thickness unless the cooling conditions are properly controlled during the production of the extruded plate because the material is easily shrunk during secondary heat molding. Tend. For this reason, there is a problem that in an extrusion production plant in which temperature control is difficult, the molding characteristics are slightly changed between those produced in summer and those produced in winter. Further, since the active ingredient is dispersed throughout the plate, the cost is high.
[0005]
Therefore, the present inventor has conducted intensive studies on a methyl methacrylate-based extruded resin plate that does not require special condition setting during extrusion molding, and as a result, a specific acrylic is provided on both surface layers of a methyl methacrylate-based resin in which a rubber component is dispersed in a specific amount. Methacrylic acid with a thin layer of methyl methacrylate resin in which system-insoluble resin particles are dispersed is not greatly affected by the cooling conditions during the manufacture of the extruded plate, and the molded product has less uneven thickness even after secondary heat molding. The inventors have found that a methyl-based laminated extruded resin plate can be obtained, and have reached the present invention.
[0006]
[Means for Solving the Problems]
That is, the present invention relates to a resin layer (A) in which 0 to 50 parts by weight of a rubbery polymer is uniformly dispersed with respect to 100 parts by weight of a methyl methacrylate resin, and 100 parts by weight of a methyl methacrylate resin and rubber on both surfaces. Resin layer obtained by uniformly dispersing 1 to 50 parts by weight of a methyl methacrylate-based insoluble resin particle having a weight average particle diameter of 0.1 to 100 μm with respect to 100 parts by weight of a base resin comprising 5 to 70 parts by weight of a polymer ( This is a methyl methacrylate-based laminated extruded resin plate obtained by laminating and integrating B) by a multilayer extrusion molding method.
Hereinafter, the present invention will be described in detail.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The methyl methacrylate resin in the present invention is a resin containing 50% by weight or more of a methyl methacrylate resin or a monofunctional unsaturated monomer copolymerizable with 50% by weight or more of a methyl methacrylate unit and methyl methacrylate. It is a copolymer composed of body units.
[0008]
Monofunctional unsaturated monomers copolymerizable with methyl methacrylate include, for example, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, Methacrylic esters such as hydroxyethyl; acrylic acids such as methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, etc. Esters, unsaturated acids such as methacrylic acid and acrylic acid; styrene, α-methylstyrene, acrylonitrile, methacrylonitrile, maleic anhydride, phenylmaleimide, cyclohexylmaleimide and the like. The copolymer may further contain a glutaric anhydride unit and a glutarimide unit.
[0009]
The rubbery polymer in the present invention is obtained by graft-polymerizing 95 to 20 parts by weight of an acrylic unsaturated monomer among ethylenically unsaturated monomers to an acrylic multilayer structure polymer or 5 to 80 parts by weight of rubber. Graft copolymers and the like.
The acrylic multi-layer structure polymer has 20 to 60 parts by weight of an elastomer layer, has a hard layer at the outermost side, and may have a structure further including a hard layer as the innermost layer.
[0010]
The layer of the elastomer is a layer of an acrylic polymer having a glass transition point (Tg) of less than 25 ° C., and includes lower alkyl acrylate, lower methacrylate, lower alkoxy acrylate, cyanoethyl acrylate, acrylamide, hydroxy lower alkyl acrylate, and hydroxy lower methacrylate. And a polymer obtained by crosslinking at least one of monoethylenically unsaturated monomers such as acrylic acid and methacrylic acid with a polyfunctional monomer.
The polyfunctional monomer is one that can be copolymerized with the above-mentioned monoethylenically unsaturated monomer and excludes a conjugated diene.
For example, alkyl diol di (meth) acrylates such as 1,4-butanediol di (meth) acrylate and neopentyl glycol di (meth) acrylate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetra Alkylene glycol di (meth) acrylates such as ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and tetrapropylene glycol di (meth) acrylate; aromatic polyfunctional compounds such as divinylbenzene and diallyl phthalate; (Meth) acrylates of polyhydric alcohols such as trimethylolpropane tri (meth) acrylate and pentaerythritol tetra (meth) acrylate, and allyl methacrylate. .
Two or more of these monomers may be used in combination.
[0011]
The hard layer is a layer of an acrylic polymer having a Tg of 25 ° C. or higher, and a homopolymer of an alkyl methacrylate having an alkyl group having 1 to 4 carbon atoms, or an alkyl methacrylate and another alkyl methacrylate, It is composed of a copolymer with a monofunctional monomer such as acrylate, styrene, substituted styrene, acrylonitrile, methacrylonitrile and the like. Further, a crosslinked polymer obtained by adding a polyfunctional monomer and polymerizing it may be used.
Examples of the acrylic multilayer polymer include those described in JP-B-55-27576, JP-A-6-80739, and JP-A-49-23292.
[0012]
Examples of the rubber used for the graft copolymer obtained by graft polymerization of 95 to 20 parts by weight of an ethylenically unsaturated monomer to 5 to 80 parts by weight of rubber include polybutadiene rubber, acrylonitrile / butadiene copolymer rubber, and styrene. / Diene rubber such as butadiene copolymer rubber, acrylic rubber such as polybutyl acrylate, polypropyl acrylate and poly-2-ethylhexyl acrylate, and ethylene / propylene / non-conjugated diene rubber.
Examples of the ethylenic monomers used for graft copolymerization with the rubber and mixtures thereof include styrene, acrylonitrile, alkyl (meth) acrylate, and the like.
As examples of these graft copolymers, those described in JP-A-55-147514 and JP-B-47-9740 can be used.
[0013]
The dispersion amount of the rubbery polymer in the resin layer (A) is 0 to 50 parts by weight, preferably 3 to 20 parts by weight, based on 100 parts by weight of the methyl methacrylate-based polymer. If it exceeds 50 parts by weight, the flexural modulus of the resin plate is undesirably reduced.
[0014]
The dispersion amount of the rubbery polymer in the resin layer (B) is 5 to 70 parts by weight , preferably 5 to 50 parts by weight, based on 100 parts by weight of the methyl methacrylate resin. If it exceeds 70 parts by weight, the surface of the resin plate becomes soft and easily damaged during molding.
[0015]
Methyl methacrylate-based insoluble resin particles are resin particles that do not dissolve in the methyl methacrylate-based resin in which the resin particles are dispersed, even during extrusion molding or injection molding. Methyl acrylate resin particles or crosslinked methyl methacrylate resin particles.
[0016]
Polymeric methyl methacrylate-based resin particles contain high molecular weight resin particles obtained by homopolymerizing methyl methacrylate, or contain 50% by weight or more, preferably 80% by weight or more of methyl methacrylate, and are radical polymerizable double particles. High molecular weight resin particles obtained by polymerizing a monomer having one bond in the molecule, and having a weight average molecular weight (Mw) of about 500000 to 5,000,000.
[0017]
Monomers having one radical polymerizable double bond in the molecule include ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, and 2-ethyl methacrylate. Hydroxyethyl, methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methacrylic acid, acrylic acid, styrene, chlorostyrene , Bromostyrene, vinyltoluene, α-methylstyrene and the like. Two or more of these monomers may be used in combination.
[0018]
Crosslinked methyl methacrylate-based resin particles are crosslinked resin particles obtained by polymerizing a monomer having at least two double bonds capable of radical polymerization with methyl methacrylate in a molecule, or 50% by weight or more of methyl methacrylate. A crosslinked resin particle obtained by polymerizing a monomer having one radical-polymerizable double bond in the molecule and a monomer having at least two radical-polymerizable double bonds in the molecule, It has a gel fraction of 10% or more when dissolved in acetone.
[0019]
The monomer having at least two radically polymerizable double bonds in the molecule is a monomer that can be copolymerized with the above-mentioned monomer and excludes a conjugated diene. No.
[0020]
The methyl methacrylate-based resin particles have no particular problem as long as they have the above-mentioned composition, but are preferably as close as possible to the composition of the methyl methacrylate-based resin as the base resin. Specifically, it is desirable that the difference between the composition ratio of the methyl methacrylate monomer units constituting the base resin and the composition ratio of the methyl methacrylate monomer units constituting the resin particles be within 30%. When this difference exceeds 30%, it is difficult to suppress uneven thickness of a molded product obtained by secondary thermoforming.
[0021]
Methyl methacrylate-based resin particles are obtained by polymerizing these components by a method such as an emulsion polymerization method, a dispersion polymerization method, a suspension polymerization method, or a microsuspension polymerization method.
[0022]
The particle size of the methyl methacrylate-based insoluble resin particles is 0.1 to 100 μm on a weight average. If it is less than 0.1 μm, it is difficult to suppress uneven thickness of a molded product obtained by secondary thermoforming, and if it exceeds 100 μm, the impact resistance of the resin plate is reduced.
[0023]
The amount of the insoluble resin particles dispersed in the resin layer (B) is 1 to 50 parts by weight based on 100 parts by weight of the base resin composed of 100 parts by weight of the methyl methacrylate resin and 0 to 70 parts by weight of the rubbery polymer. And preferably 3 to 20 parts by weight. If the amount is less than 1 part by weight, it is difficult to suppress uneven thickness of a molded product obtained by secondary thermoforming, and if it exceeds 50 parts by weight, the strength of the resin plate is reduced.
[0024]
The thickness of the laminated resin plate in the present invention is not particularly limited, but is generally in the range of 0.1 to 10 mm.
Regarding the layer configuration, it is necessary that the resin layer (B) covers both surface layers of the resin layer (A). If only one side is coated, uneven thickness of the secondary molded product cannot be suppressed.
The layer thickness ratio [resin layer (B) / resin layer (A) / resin layer (B)] is generally in the range of 1/200/1 to 1/1/1, preferably 1/50/1 to 1/2. / 1 range. If the resin layer (B) is too thin, the uneven thickness of the secondary molded product cannot be suppressed. Conversely, if the resin layer (A) is too thin, the uneven thickness can be suppressed, but the dispersion amount of the insoluble particles is large. It becomes disadvantageous in terms of cost.
[0025]
The dispersion of the rubbery polymer or the insoluble resin particles in the methyl methacrylate resin to form a composition can be carried out by a known method. That is, there is a method of mechanically mixing these with a Henschel mixer, a tumbler or the like, and melt-kneading them with a Banbury mixer or a single-screw or twin-screw extruder. Furthermore, it is also possible to form a laminated resin plate in one step by using a multilayer extrusion molding method described later.
[0026]
In order to make the obtained composition into a laminated resin plate, a well-known multilayer extrusion molding method is used. In the multilayer extrusion molding method, the composition of the resin layer (A) and the resin layer (B) is melt-kneaded with a two or three uniaxial or twin-screw extruder, and then laminated via a feed block die or a multi-manifold die. Then, the laminated and integrated molten resin plate is cooled and solidified using a roll unit to obtain a laminated resin plate.
[0027]
For the resin layer (A) and the resin layer (B), in addition to the above-described materials, a light diffusing agent, a dye, a light stabilizer, an ultraviolet absorber, an antioxidant, a release agent, a flame retardant, an antistatic agent, and the like. There is no particular problem even if the additives are dispersed, and it is of course possible to disperse two or more of them.
[0028]
【The invention's effect】
The methyl methacrylate-based laminated extruded resin plate of the present invention can suppress uneven thickness of a molded product obtained by performing secondary thermoforming using the same, and is highly stretched and subjected to complicated molding. It is suitably used for materials such as covers, bathtubs and various toys.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
[0030]
The extruder used in the examples is as follows.
・ Extruder (1): Screw diameter 40 mm, uniaxial, with vent (manufactured by Tanabe Plastics Machine Co., Ltd.)
・ Extruder (2): Screw diameter 20 mm, uniaxial, with vent (manufactured by Tanabe Plastics Machine Co., Ltd.)
・ Feed block: 2 types and 3 layers (Tanabe Plastics Machine Co., Ltd.)
・ Die: T die, lip width 250mm, lip interval 6mm
・ Roll: 3 polishing rolls, vertical type [0031]
The evaluation method is as follows.
(1) Weight-average particle diameter optical diffraction scattering particle size measuring instrument (Microtrac particle size analyzer Model 9220 FRA:. Leeds and Northrup (Leeds & Northrup, Ltd) Ltd.) was measured, the average particle D 50 of Diameter.
(2) Confirmation of Layer Thickness The resin layer (B) was temporarily colored, and the end face of the obtained laminated extruded plate was observed with a magnifying loupe of 15 times to examine the thickness of the laminated portion.
(3) Heat-stretch molding An extruded plate of 30 cm × 20 cm is heated from both sides to a surface temperature of 140 ° C. and 170 ° C. by a far-infrared panel heater, and is extruded by a push-up molding machine (TF-300 manufactured by Osaka Sheet Machine Works, push-up). A molded product as shown in FIG. 1 was obtained using an area of 10 cm × 5 cm and a raised height of 10 cm).
(4) Thickness Measurement The thickness of the push-up molded product at points "0", "1" to "8" shown in FIG. 1 is measured by an ultrasonic thickness gauge (ULTRASONIC GAGE MODEL 5222: manufactured by PAN AMTRIICS Ltd.). ) Was measured.
“0” is the point at the center of the top, and “1” to “8” are points lowered by 1 cm from the center at the center of the side surface of the molded product.
[0032]
Reference Example 1
[Production of rubbery polymer]
An acrylic multi-layer polymer having a three-layer structure was produced as the rubbery polymer according to the method described in Examples of JP-B-55-27576.
1700 g of ion-exchanged water, 0.7 g of sodium carbonate, and 0.3 g of sodium persulfate were charged into a 5 L glass reaction vessel, and stirred under a nitrogen stream, and then emulsifier (Perex OT-P: manufactured by Kao Corporation) After charging 4.46 g, 150 g of ion-exchanged water, 150 g of methyl methacrylate, and 0.3 g of allyl methacrylate, the temperature was raised to 75 ° C., and stirring was continued for 150 minutes.
Subsequently, a mixture of 689 g of butyl acrylate, 162 g of styrene, 17 g of allyl methacrylate, 0.85 g of sodium persulfate, 7.4 g of an emulsifier (Perex OT-P, manufactured by Kao Corporation), and 50 g of ion-exchanged water was passed through another inlet. The addition was made over 90 minutes and the polymerization was continued for another 90 minutes.
After completion of the polymerization, 30 g of ion-exchanged water in which a mixture of 326 g of methyl acrylate and 14 g of ethyl acrylate and 0.34 g of sodium persulfate were dissolved were added from separate ports over 30 minutes. After the addition was completed, the polymerization was maintained for another 60 minutes to complete the polymerization.
The resulting latex was charged with an aqueous 0.5% aluminum chloride solution to coagulate the polymer. This was washed five times with warm water and dried to obtain an acrylic multi-layer structure polymer.
[0033]
Reference Example 2
[Production of methyl methacrylate-based insoluble resin particles]
In a glass container having an inner volume of 2 L, 1200 g of ion-exchanged water, 0.4 g of polysodium methacrylate (manufactured by Wako Pure Chemical Industries, Ltd .: Mw = 7 million) and polyoxyethylene polyoxypropylene ether (Pluronic F68: Asahi Denka Kogyo Co., Ltd.) After charging 1.2 g and 1.2 g of disodium hydrogen phosphate, 380 g of methyl methacrylate, 17 g of methyl acrylate, 2 g of ethylene glycol dimethacrylate, 0.8 g of lauroyl peroxide, n-dodecyl mercaptan. A monomer mixture consisting of 5 g was charged.
While stirring at 800 rpm, 0.4 g of sodium polymethacrylate was continuously added at 75 ° C. for 2 hours while the polymerization rate was 12 to 100%. After polymerization, washing, dehydration, and drying, classification was performed with an air classifier (TC-15N manufactured by Nisshin Engineering Co., Ltd.) to obtain particles having a weight average particle diameter of 33 μm.
[0034]
Examples 1-3
[Resin layer (A)]
100 parts by weight of a methyl methacrylate-based resin (SUMIPEX EXA, manufactured by Sumitomo Chemical Co., Ltd.) and 100 parts by weight of a mixture obtained by mixing the rubber-like polymer prepared in Reference Example 1 with the amounts shown in Table 1 were added. After mixing 3 parts by weight of calcium carbonate (manufactured by Maruo Calcium Co., Ltd., average particle size 3 μm) with a Henschel mixer, the mixture was melt-kneaded with an extruder (1) and supplied to a feed block.
[Resin layer (B)]
The same methyl methacrylate-based resin as that used for the resin layer (A) and the rubbery polymer produced in Reference Example 1 were mixed in 100 parts by weight of the mixture shown in Table 1 with respect to 100 parts by weight. The produced methyl methacrylate-based insoluble resin particles were mixed in an amount shown in Table 1 with a Henschel mixer, melt-kneaded in an extruder (2), and supplied to a feed block.
Using the resin layer (A) as an intermediate layer and the resin layer (B) as a surface layer, multi-layer extrusion molding is performed at a extrusion resin temperature of 265 ° C. and a three-layer structure of 0.1 mm / 1.8 mm / 0.1 mm, and a 21 cm width laminate is formed. An extruded resin plate was produced.
Tables 2 and 3 show the evaluation results.
[0035]
Comparative Example 1
[Resin layer (A)]
100 parts by weight of the same methyl methacrylate resin as in Example 1 and 100 parts by weight of a mixture obtained by mixing the rubber-like polymer prepared in Reference Example 1 in the amounts shown in Table 1 were mixed with calcium carbonate (Maruo Calcium Co., Ltd.) And 3 parts by weight of an average particle diameter of 3 μm) were mixed with a Henschel mixer, melt-kneaded with an extruder (1), and supplied to a feed block.
[Resin layer (B)]
The same methyl methacrylate-based resin as that used for the resin layer (A) and the rubbery polymer produced in Reference Example 1 were mixed in 100 parts by weight of the mixture shown in Table 1 with respect to 100 parts by weight. The prepared methyl methacrylate-based crosslinked resin particles were mixed in an amount shown in Table 1 with a Henschel mixer, melt-kneaded with an extruder (2), and supplied to a feed block.
Using the resin layer (A) as an intermediate layer and the resin layer (B) as a surface layer, multilayer extrusion molding is performed with a three-layer configuration of an extruded resin temperature of 265 ° C. and 0.2 mm / 2.6 mm / 0.2 mm, and a lamination of 21 cm in width. An extruded resin plate was produced.
Tables 2 and 3 show the evaluation results.
[0036]
Example 4
[Resin layer (A)]
100 parts by weight of the same methyl methacrylate resin as in Example 1 and 100 parts by weight of a mixture obtained by mixing the rubber-like polymer produced in Reference Example 1 in the amounts shown in Table 1 were mixed with calcium carbonate (Maruo calcium ( 1.6 parts by weight, titanium oxide (manufactured by Ishihara Sangyo Co., Ltd.) 0.02 parts by weight, sodium alkyl sulfonate (C15-16, linear) 0.5 part by weight Was mixed with a Henschel mixer, melt-kneaded with an extruder (1), and supplied to a feed block.
[Resin layer (B)]
The same methyl methacrylate resin as used for the resin layer (A), the rubbery polymer prepared in Reference Example 1, and the methyl methacrylate crosslinked resin particles prepared in Reference Example 2 were added in the amounts shown in Table 1, respectively. 0.5 parts by weight of the same sodium alkyl sulfonate as used for the resin layer (A) was mixed with 100 parts by weight of the mixed mixture using a Henschel mixer, and then melt-kneaded with an extruder (2) and fed. Supplied to the block.
Using the resin layer (A) as the intermediate layer and the resin layer (B) as the surface layer, multilayer extrusion molding is performed at an extrusion resin temperature of 265 ° C. with a three-layer structure of 3 mm thick and 0.2 mm / 2.6 mm / 0.2 mm. A 22 cm laminated extruded resin plate was produced.
Tables 2 and 3 show the evaluation results.
[0037]
Example 5
[Resin layer (A)]
100 parts by weight of the same methyl methacrylate resin as in Example 1 and 100 parts by weight of a mixture obtained by mixing the rubber-like polymer produced in Reference Example 1 in the amounts shown in Table 1 were mixed with calcium carbonate (Maruo calcium ( 1.6 parts by weight, average particle size 3μ) and 0.02 parts by weight of titanium oxide (manufactured by Ishihara Sangyo Co., Ltd.) were mixed with a Henschel mixer, then melt-kneaded with an extruder (1) and fed. Supplied to the block.
[Resin layer (B)]
The same methyl methacrylate resin as used for the resin layer (A), the rubbery polymer prepared in Reference Example 1, and the methyl methacrylate crosslinked resin particles prepared in Reference Example 2 were mixed in the amounts shown in Table 1. 0.5 parts by weight of sodium alkylsulfonate (15 to 16 carbon atoms, linear chain) was mixed with 100 parts by weight of the resulting mixture using a Henschel mixer, and then melt-kneaded with an extruder (2) to form a feed block. Supplied.
Using the resin layer (A) as an intermediate layer and the resin layer (B) as a surface layer, a multilayer extrusion molding is performed with an extruded resin temperature of 265 ° C. and a thickness of 2 mm and a thickness of 0.1 mm / 1.8 mm / 0.1 mm. A 21 cm laminated extruded resin plate was prepared.
Tables 2 and 3 show the evaluation results.
[0038]
Comparative Example 2
Comparative Example 1 was the same as Example 4 except that one side of the flow path of the resin layer (B) was stopped by a feed block operation to perform two-layer extrusion. A laminated extruded resin plate having a width of 20 cm with a ratio of the resin layer (B) / the resin layer (A) of 0.2 mm / 2.8 mm was produced.
Tables 2 and 3 show the evaluation results.
[0039]
Comparative Example 3
In Comparative Example 1 , the materials of the resin layer (A) and the resin layer (B) were replaced. Otherwise, a laminated extruded resin plate was produced in accordance with Comparative Example 1 .
Tables 2 and 3 show the evaluation results.
[0040]
Comparative Example 4
25 parts by weight of the rubbery polymer produced in Reference Example 1 was mixed with 100 parts by weight of the same methyl methacrylate resin as used in Example 1 using a Henschel mixer, and then melt-kneaded with an extruder (1). Then, a single-layer extruded resin plate having a thickness of 3 mm and a width of 20 cm was produced at an extruded resin temperature of 265 ° C.
Tables 2 and 3 show the evaluation results.
[0041]
Comparative Example 5
13 parts by weight of particles prepared in Reference Example 2 with respect to 100 parts by weight of a mixture of 100 parts by weight of the same methyl methacrylate resin as used in Example 1 and 25 parts by weight of the rubbery polymer prepared in Reference Example 1 Was mixed with a Henschel mixer and melt-kneaded with an extruder (1) to produce a single-layer extruded resin plate having a thickness of 3 mm and a width of 20 cm at an extruded resin temperature of 265 ° C.
Tables 2 and 3 show the evaluation results.
[0042]
[Table 1]
Figure 0003584751
Parts represent parts by weight.
[0043]
[Table 2]
Figure 0003584751
[0044]
[Table 3]
Figure 0003584751

[Brief description of the drawings]
FIG. 1 is an external view of a molded product obtained by molding in an example using a methyl methacrylate-based laminated resin extruded plate of the present invention.
[Explanation of symbols]
0 → 8 indicates a measurement position of the plate thickness.

Claims (6)

メタクリル酸メチル系樹脂100重量部に対して、ゴム状重合体0〜50重量部を均一分散させた樹脂層(A)の両面に、メタクリル酸メチル系樹脂100重量部とゴム状重合体5〜70重量部からなる基材樹脂100重量部に対して、重量平均粒子径0.1〜100μmのメタクリル酸メチル系不溶樹脂粒子1〜50重量部を均一分散させた樹脂層(B)を多層押出成形法によって積層一体化してなるメタクリル酸メチル系積層押出樹脂板。A resin layer (A) in which 0 to 50 parts by weight of a rubbery polymer is uniformly dispersed with respect to 100 parts by weight of a methyl methacrylate resin, on both surfaces of the resin layer (A), 100 parts by weight of a methyl methacrylate resin and a rubbery polymer 5 to 5 parts. Multilayer extrusion of a resin layer (B) obtained by uniformly dispersing 1 to 50 parts by weight of a methyl methacrylate-based insoluble resin particle having a weight average particle diameter of 0.1 to 100 μm with respect to 100 parts by weight of a base resin composed of 70 parts by weight. A methyl methacrylate-based laminated extruded resin plate laminated and integrated by a molding method. メタクリル酸メチル系樹脂が、メタクリル酸メチル樹脂を少なくとも50重量%含む樹脂、またはメタクリル酸メチル単位を少なくとも50重量%と単官能不飽和単量体単位からなる共重合体である請求項1記載のメタクリル酸メチル系積層押出樹脂板。2. The method according to claim 1, wherein the methyl methacrylate resin is a resin containing at least 50% by weight of a methyl methacrylate resin or a copolymer comprising at least 50% by weight of a methyl methacrylate unit and a monofunctional unsaturated monomer unit. Methyl methacrylate-based laminated extruded resin plate. ゴム状重合体が▲1▼アクリル系多層構造重合体または▲2▼5〜80重量部のゴムにエチレン性不飽和単量体を95〜20重量部グラフト重合したグラフト共重合体である請求項1記載のメタクリル酸メチル系積層押出樹脂板。The rubbery polymer is (1) an acrylic multilayer structure polymer or (2) a graft copolymer obtained by graft-polymerizing 95 to 20 parts by weight of an ethylenically unsaturated monomer on 5 to 80 parts by weight of rubber. 2. A methyl methacrylate-based laminated extruded resin plate according to 1. メタクリル酸メチル系不溶樹脂粒子が、高分子量のメタクリル酸メチル系樹脂粒子または架橋メタクリル酸メチル系樹脂粒子である請求項1記載のメタクリル酸メチル系積層押出樹脂板。The methyl methacrylate-based laminated extruded resin plate according to claim 1, wherein the methyl methacrylate-based insoluble resin particles are high molecular weight methyl methacrylate-based resin particles or cross-linked methyl methacrylate-based resin particles. 樹脂層(B)において基材樹脂を構成するメタクリル酸メチル単量体単位の構成比率とメタクリル酸メチル系不溶樹脂粒子を構成するメタクリル酸メチル系単量体単位の構成比率との差が30%以内である請求項1記載のメタクリル酸メチル系積層押出樹脂板。In the resin layer (B), the difference between the composition ratio of the methyl methacrylate monomer units constituting the base resin and the composition ratio of the methyl methacrylate monomer units constituting the methyl methacrylate-based insoluble resin particles is 30%. The methyl methacrylate-based laminated extruded resin plate according to claim 1, wherein 請求項1〜請求項5のいずれかに記載のメタクリル酸メチル系積層押出樹脂板を加熱延伸成形することを特徴とするメタクリル酸メチル系樹脂成形品の製造方法A method for producing a methyl methacrylate-based resin molded product, comprising subjecting the methyl methacrylate-based laminated extruded resin plate according to any one of claims 1 to 5 to heat-stretch molding. .
JP27755798A 1997-10-02 1998-09-30 Methyl methacrylate laminated extruded resin plate Expired - Fee Related JP3584751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27755798A JP3584751B2 (en) 1997-10-02 1998-09-30 Methyl methacrylate laminated extruded resin plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27010597 1997-10-02
JP9-270105 1997-10-02
JP27755798A JP3584751B2 (en) 1997-10-02 1998-09-30 Methyl methacrylate laminated extruded resin plate

Publications (2)

Publication Number Publication Date
JPH11165382A JPH11165382A (en) 1999-06-22
JP3584751B2 true JP3584751B2 (en) 2004-11-04

Family

ID=26549067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27755798A Expired - Fee Related JP3584751B2 (en) 1997-10-02 1998-09-30 Methyl methacrylate laminated extruded resin plate

Country Status (1)

Country Link
JP (1) JP3584751B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146506A (en) * 1999-09-06 2001-05-29 Nippon Shokubai Co Ltd Resin sheet and molded article using the same

Also Published As

Publication number Publication date
JPH11165382A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
KR100511487B1 (en) Light diffusing laminated resin sheet
US7514140B2 (en) Acrylic film for lens substrate, lens film using the same lens sheet
EP1022311B1 (en) Acrylic films and acrylic laminates
JP3142774B2 (en) Acrylic film and acrylic laminated injection molded product using it
JP4262431B2 (en) Resin composition for capstock
JPH115241A (en) Light-diffusion laminated and extruded resin plate
JP2003253016A (en) Surface decorating acrylic film and molded product decorated therewith
US6908670B1 (en) Laminated extruded resin sheet
JP3575098B2 (en) Manufacturing method of molded products
JP3584751B2 (en) Methyl methacrylate laminated extruded resin plate
JP2002309059A (en) Acrylic resin film and laminate produced by using the same
JP2004090626A (en) Light diffusing laminated resin panel
JP2004131668A (en) Acrylic resin film and molded resin article produced by using the same
JP3307252B2 (en) Light-diffusing methyl methacrylate resin composition and sheet-like material
US6844396B2 (en) Acrylic resin composition
JP3866397B2 (en) Acrylic resin plate and lighting cover fixture with excellent light diffusion
JP3090844B2 (en) Thermoplastic resin composition and laminate thereof
JP4077893B2 (en) Methyl methacrylate resin extruded plate and molded product
JP3370510B2 (en) Matte film for lamination and laminate using the same
JP3679615B2 (en) Impact-resistant methacrylate resin plate with excellent molding appearance and its production method
JPH1081805A (en) Impact-resistant methacrylic resin composition
JPH1143576A (en) Thermoplastic resin composition and its laminate
JPH09235440A (en) Thermoplastic resin composition having matte effect and laminate made by using the same
JP2004230869A (en) Manufacturing method for light-diffusing frosted acrylic resin plate
JPH05339459A (en) Acrylic resin composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040414

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees