JP3583998B2 - Multi-channel echo canceling method, apparatus therefor, and program recording medium - Google Patents

Multi-channel echo canceling method, apparatus therefor, and program recording medium Download PDF

Info

Publication number
JP3583998B2
JP3583998B2 JP2001033734A JP2001033734A JP3583998B2 JP 3583998 B2 JP3583998 B2 JP 3583998B2 JP 2001033734 A JP2001033734 A JP 2001033734A JP 2001033734 A JP2001033734 A JP 2001033734A JP 3583998 B2 JP3583998 B2 JP 3583998B2
Authority
JP
Japan
Prior art keywords
signal
channel
sound
filter
acoustic coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001033734A
Other languages
Japanese (ja)
Other versions
JP2002237770A (en
Inventor
雅史 田中
朗 中川
澄宇 阪内
陽一 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001033734A priority Critical patent/JP3583998B2/en
Publication of JP2002237770A publication Critical patent/JP2002237770A/en
Application granted granted Critical
Publication of JP3583998B2 publication Critical patent/JP3583998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Telephone Function (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば多チャネル音響再生系を有する通信会議システムに適用され、ハウリングの原因及び聴覚上の障害となる音響エコーを消去する多チャネルエコー消去方法、その装置、そのプログラム及びその記録媒体に関するものである。
【0002】
【従来の技術】
近年のデジタルネットワークと音声画像の高能率符号化技術の進展により、複数の人が容易に参加でき、より自然な通話環境を提供できる多チャネルの拡声通話方式が研究されはじめている。その実現のためには、複数のスピーカからマイクロホンへの音響的回り込みを消去する多チャネル音響エコー消去の技術的課題と解決策の検討が必要となる。
N(≧2)チャネルの再生系とM(≧1)チャネルの収音系とで構成される通信会議システムは、図5に示すような構成により音響エコーの消去を行う。即ち各受話端子1〜1からの受話信号は各スピーカ2〜2で音響信号として再生され、各N個の音響エコー経路10〜10を経て各マイクロホン3(m=1,…,M)に回り込む。受話側の全Nチャネルの受話端子1〜1と、Mチャネル送話側の送話端子5〜5それぞれとの間にNチャネルエコーキャンセル部4〜4を接続して音響エコーを消去する。
【0003】
上記Nチャネルエコーキャンセル部4は、各収音チャネル毎に再生側の全Nチャネルと収音側の1チャネルとの間のN入力1出力時系列信号を処理する構成をとる。このNチャネルエコーキャンセル部4(m=1,…,M)の構成を図6に示す。
各受話信号x(k),x(k),…,x(k)はそれぞれ適応フィルタ11,11,…,11でフィルタ処理されて疑似エコー信号y^1m(k),y^2m(k),…,y^Nm(k)が生成され、これら疑似エコー信号がマイクロホン3の収音信号y(k)から減算部12,12,…,12で順次引き算され、エコー信号が抑圧されて送話端子5へ出力される。修正係数算出部13において、各受話信号x(k),…,x(k)と送話端子5へ出力される残留エコー信号(誤差信号)eとが入力されて各適応フィルタのフィルタ係数に対する修正係数が計算される。即ち各受話信号から次のような受話信号ベクトルを生成する

Figure 0003583998
Lは適応フィルタ11,…,11のタップ数(フィルタ長)である。
【0004】
受話信号ベクトル (k),…, (k)を次式のベクトル(k)とする
(k)=[ (k), (k),…, (k)]
各適応フィルタ11,…,11のフィルタ係数ベクトル1m(k), 2m(k),…, Nm(k)を結合して
(k)=[1m (k), 2m (k),…, Nm (k)]
と適応フィルタ結合係数ベクトル(k)の更新は、例えばNLMSアルゴリズム(学習同定法)を用いた場合
(k+1)=(k)+αe(k)(k)/( (k) (k))
αはステップサイズパラメータである。
となる。つまり修正係数計算部13ではこの式の右辺第2項αe(k) (k)/( (k) (k))を計算して、各適応フィルタ11,…,11に対するフィルタ係数の修正係数を得、これら修正係数により適応フィルタ11,…,11の各フィルタ係数をそれぞれ係数更新部14,…,14で更新する。適応フィルタ11,…,11ではそのフィルタ係数を用いてフィルタ処理部15,…,15でフィルタ係数ベクトルと受話信号ベクトルとの内積演算(フィルタ処理)y^1m(k)=1m (k) (k),…,y^Nm(k)=Nm (k) (k)が行われて、疑似エコー信号が生成される。
【0005】
各フィルタ係数ベクトルは
Figure 0003583998
であって、前記修正を繰返すことにより、これらフィルタ係数ベクトルを、各スピーカ2,…,2からマイクロホン3への各エコー経路のインパルス応答h1m(k,n),…,hNm(k,n)の時系列を各要素とするエコー経路ベクトル
Figure 0003583998
と一致させることができ、残留信号e(k)を小さくすることができる。
【0006】
なお、各フィルタ処理部とその係数更新部及び対応する修正係数計算部分を含めて本来の適応フィルタが構成されるが、ここでは便宜上フィルタ処理部と係数更新部を適応フィルタと呼ぶ。
【0007】
【発明が解決しようとする課題】
多チャネルの再生系及び収音系よりなる音響システムにおいては、スピーカ2,…,2中には音量が大きなものと、小さいものとがあり、同様にマイクロホン3,…,3中には収音利得が大きいものと、小さいものとがある。音量が小さいスピーカからの再生音が収音利得が小さいマイクロホンに混入したエコー信号のレベルは小さなものとなる。従ってこのエコー信号をある所定レベルまで減算させるには適応フィルタの長さは短かくてよい。逆に音量が大きいスピーカからの再生音が収音利得が大きいマイクロホンに混入したエコー信号のレベルは大きなものとなり、これを前記ある所定レベルまで減衰させるには、適応フィルタ長を長くする必要がある。
【0008】
しかし、従来においては適応フィルタ11,…,11のフィルタ長は全て同一としていた。このためレベルが小さいエコー信号のエコー経路と対応する適応フィルタには必要以上のフィルタ長を与え、それだけ不必要に多くの演算処理を行い、あるいはハードウェア規模を不必要に大きくすることになっていた。逆にレベルが大きいエコー信号のエコー経路と対応する適応フィルタには不十分なフィルタ長が与えられ、エコー信号を十分抑圧することができないことがあった。この問題はNLMSアルゴリズムを用いる場合に限らず、適応フィルタのフィルタ係数を、エコー経路のインパルス応答に近ずける他の適応アルゴリズムを用いた場合も同様のことが言える。
【0009】
この発明の目的は、多チャネルエコー消去系において、全体適応フィルタのフィルタ長が与えられた時、各適応フィルタに適切なフィルタ長を与える多チャネルエコー消去方法、その装置、そのプログラム及びその記録媒体を提供することにある。
【0010】
【課題を解決するための手段】
この発明によれば、各チャネルについて、そのチャネルの受話信号を再生するスピーカと、収音信号を出力するマイクロホン間、つまり受話信号の再生信号と収音信号との間の間接音による音響結合量を求め、対数領域では、この各チャネルの間接音による音響結合量とそのチャネルの受話信号量との加算と、これらから目標誤差信号量の減算とを行った値を、目標間接音抑圧量として求め、チャネルの目標間接音抑圧量に比例してそのチャネルの適応フィルタ長を決定する。
【0011】
【発明の実施の形態】
全体の適応フィルタのフィルタ長が与えられた時に、各適応フィルタに適切なフィルタ長を与えるエコー消去として考えられるものを示す図1を参照して説明する。図1で図6と対応する部分に同一参照符号を付けて重複説明を省略する。また修正係数算出部13を省略してある。
各適応フィルタ111 ,…,11N と対応してフィルタ長決定部211 ,…,21N が設けられ、フィルタ長決定部211 は間接音音響結合量計算部22及びフィルタ長計算部23からなる。フィルタ長決定部212 ,…,21N も、図に示していないが、それぞれ同様に間接音音響結合量計算部22及びフィルタ長計算部23から構成されている。
【0012】
この適応フィルタ長を求める原理を以下に説明する。スピーカ2i からマイクロホン3m へのエコー経路における残響曲線Ci(k)はそのエコー経路に対応するインパルス応答hi を、その最後から自乗積分したものである。
i(k)=Σhj(k+j)2,Σは、j=0,1,2,・・・に関する総和。
i(0)はインパルス応答の自乗積分値であるからスピーカ2iとマイクロホン3m 間の音響結合量Ai に等しい。音響結合量Ai のうち直接音によるものをDi 、間接音によるものをRi とするとAi =Di +Ri である。スピーカが11 と12 の二つつまりエコー経路が二つの場合における、これらエコー経路の残響曲線C1 ,C2 は図2に示すようになる。図2において横軸は時間軸であり、縦軸は残響音量である。時刻k=0における値C1(0),C2(0)は各エコー経路のインパルス応答の自乗積分値であり、音響結合量A1 ,A2 であり、図2においてk=0付近での曲線C1 ,C2 の平らな部分は、エコーの遅延時間であり、この部分を明示するため、つまり縦軸から離してあるが、実際にはフィルタ長L1 ,L2 と比べ著しく短かく、例えば数msから数十msであって無視できる程度である。なおk=0付近での平らな部分も雑音等のために若干の傾きを持つが、直接音や間接音による傾きに比べると小さく、平らと見なしてよい。図2中のEは目標音響結合量であって、各エコー経路の残響が目標音響結合量Eになるまでのエコー信号を、適応フィルタ111 ,112 でそれぞれ模擬すればよい。つまり、スピーカ21 ,22 からの再生音が生じてからそのエコー経路の残響のレベルが目標音響結合量Eになるまでの時間L1 ,L2 を適応フィルタ111 ,112 のフィルタ長にすればよい。
【0013】
残響曲線C,Cは音響結合量A,Aからそれぞれ直接音による音響結合量D,Dを差し引いた値、つまり間接音による音響結合量R,R(対数値)から時間と共に対数領域で直線的に減少する。また、同一室内では、間接音による残響曲線の減少の傾きがスピーカ、マイクロホンの位置によらず一定である。従って、前述したようにほぼk=0の時刻から残響曲線が直線的に減少するとみなすことができるから、全体のフィルタ長L=L+Lとすると、
:L≡log R−log E:log R−log E
が成立する。よって、フィルタ長Lは次式により求まる。
【0014】
Figure 0003583998
となる。スピーカの数がNの一般的な場合における各適応フィルタ11のフィルタ長Lは次式により求まる。
=[(log R−log E)/Σ(log R−log E)]L
Σはi=1からNまでの総和である。
以上の説明から理解されるように、図1において例えばフィルタ長決定部21においてフィルタ長計算部23に全体のフィルタ長Lと、目標音響結合量Eが設定入力され、間接音音響結合量計算部22からの間接音による音響結合量Rも入力され、その減算部23aで目標間接音結合抑圧量log R−log Eが計算される。同様に各フィルタ長決定部21,… ,21でそれぞれ目標間接音結合抑圧量log R−log E,…,log R−log Eが計算される。これら目標間接音結合抑圧量log R−log E,…,log R−log Eにそれぞれ比例して対応する適応フィルタ11,…,11にそのフィルタ長を図中に破線で示すように設定してもよい。
【0015】
適応フィルタ11,…,11のフィルタ長L,…,Lの和Lが決められている場合は更に次のようにする。目標間接音結合抑圧量log R−log E,…,log R−log Eは加算部24で加算され、つまりΣi=1 (log R−log E)=PREA が得られ、この加算値PREA が各フィルタ長決定部21,…,21の各フィルタ長計算部23に入力され、各フィルタ長計算部23では割算部23bにより(log R−log E)/PREA =Lがそれぞれ計算され、これら計算されたL,…,Lがそれぞれ対応する適応フィルタ11,…,11にそのフィルタ長として設定される。
【0016】
このようにして適応フィルタ11,…,11はそれぞれそのエコーレベルに応じたフィルタ長に設定される。
所で間接音音響結合量計算部22における間接音による音響結合量Rを求めるには次の手法が考えられる。
図3Aに示すようにインパルス応答測定部25において、予め各エコー経路についてインパルス応答を測定し、そのインパルス応答を用いる。つまり各スピーカ2,…,2の各1つからインパルス音響を再生させ、その時のマイクロホン3の出力のパワーの減衰状態を測定してインパルス応答における各時刻のhを求め、この測定したインパルス応答を間接音音響結合量計算部22に入力し、この計算部22において先に述べたようにそのインパルス応答の自乗積分値C(0)を求め、この値C(0)=Aから、インパルス応答の時刻k=0における測定パワーh(0)、つまり直接音による音響結合量Dを対数領域では差し引いて間接音による音響結合量Rを求める。
【0017】
あるいは図3Bに示すように適応フィルタ11からそのフィルタ係数hを入力して、図3Aの場合と同様に自乗積分値C(0)を求め、更にこの値からh(0)=Dを対数領域では差し引いて間接音に与える音響結合量Rを求める。
図2に示した特性から理解されるように、C(k)/C(k+τ)>θであるような最小の整数kを直接音の到来時刻と考える。ここでτは数msに相当する値、θは2〜4程度である。つまり図2において直接音から間接音(残響)に変化する、急激にレベルが下がる時刻kを求め、直接音による音響結合をD=C(k)/C(k+τ)とする。図2は対数値であるから引き算となる。よって間接音RはR=C(0)/Bにより求まる。直接音が到来してしまっているはずの時刻をkが過ぎても先の条件が満たされない場合は、間接音が優勢と判断し、Dは1とθの中間に設定する。
【0018】
あるいは図3Cに示すように各受話信号x(k),…,x(k)を共分散計算部26に入力して、これらを要素とする入力信号列ベクトルをXとする時、Xの共分散を要素とする列ベクトルの時間的平均値r(k)を求める。受話信号がx(m)とx(m)の二つの場合は
r(k)=αr(k−1)+(1−α)[x(k)(k),x(k)(k),x(k)x(k),x(k)(k)]
は転置行列、は共役を表わす。0≦α<1
である。マイクロホン3の出力y(k)を2乗平均値計算部27に入力して2乗平均値
(k)=βy(k−1)+(1−β)y (k),0≦β<1
を求める。r(k)とy(k)を音響結合推定部28に入力して、次式を計算する。
【0019】
min(E[y(k)−g(k)r(k)],g
ここでE[ ]は平均をとる演算を表わし、E[a(k)]=Σw(i)a(k−i),i=0,1,…である。窓関数w( )のとり方には、ある一定の区間Nだけ1/Nで他は0という方形窓や、w(i)=λ,(0<λ<1)という指数減衰窓がよく用いられる。
min(J,a)はJが最小になるようにaを選ぶという演算を意味する。y(k)とg(k)r(k)の差の2乗が最小になるように、最小2乗法、再帰的最小2乗法、共役勾配法、適応フィルタリング手法などにより列ベクトルg(k)を求める。ここでgはy(k)とx,…,xを関係づける列ベクトルである。受話信号がxとxの二つの場合、gは次式を表わす。
【0020】
g=[G1111 ,G1211 ,G1112 ,G1212
ここでG11 はスピーカ2とマイクロホン3間の音響結合量であり、G1212 はスピーカ2とマイクロホン3間の音響結合量である。
このようにして得られた各スピーカ2,…,2とマイクロホン3間の音響結合量A,…,Aから減算部29で直接音による音響結合量とみなす適当な値D′を対数領域では差し引いて間接音による音響結合量Rを求める。直接音による音響結合量Dはlog R−log Eと比較して1桁程度は小さい値であり、経験的に予測できる数dB程度の値であって、その程度の値をD′として減算部29に設定入力すればよい。g(k)をより正しく求めるには、逐次得られるg(k)中のG1111 の最小値又は最頻値(例えばヒストグラムを作って)を求め、gG1111 のg(k)を用いればよい。
【0021】
この場合は各フィルタ長決定部211 ,…,21N に用いる間接音による音響結合量R1 ,…,RN が1つ1つの間接音音響結合量計算部22により求まる。
図3B及び図3Cに示した手法によれば、この多チャネルエコー消去装置を使用中に、音響結合量が変化した場合に適応的に各チャネルに適したフィルタ長を変更することができる。
次にこの発明の実施形態を図4に、図1と対応する部分に同一参照符号を付けて示す。この実施形態ではフィルタ長決定部311 ,…,31N が適応フィルタ111 ,…,11N と対応して設けられる。フィルタ長決定部311 ,…,31Nは同一構成であり、フィルタ長決定部311 に示すように間接音音響結合量計算部22とフィルタ長計算部32とより構成される。間接音音響結合量計算部22は図1中のそれと同様であるが、フィルタ長計算部32には、間接音音響結合量R1、全体のフィルタ長Lの他に目標誤差信号レベルEeと、対応する受話信号x1 が入力される。
【0022】
フィルタ長計算部32ではその加減算部32aで受話信号xのパワーXとEとRとから目標間接音抑圧量log R+log X−log Eが計算される。この場合も図中に波線で示すように目標間接音抑圧量Elog R+log X−log Eに比例した値を適応フィルタ11,…,11にそれぞれフィルタ長L,…,Lとして設定してもよい。全体のフィルタ長Lが決められている場合は更に次のようにする。各フィルタ長決定部31,…,31からの目標間接音抑圧量log R+log X−log Eが加算部33で加算され、その加算値PREA′が各フィルタ長計算部32へ供給される。
【0023】
各フィルタ長計算部32ではその割算部32b(log R+log X−log E)/PREA′=Lを計算し、そのLを対応する適応フィルタ11のフィルタ長に設定する。
この場合は適応フィルタ長Lの決定に、その受話信号xも考慮されているため、例えば受話信号xが大きなレベルの場合はそれに応じて、対応適応フィルタのフィルタ長が長くされ、そのエコー信号を十分抑圧することができる。間接音による音響結合量Rの推定は図3に示した各種手法を用いることができる。
【0024】
上述では各種計算を対数領域で行ったが、線形領域で行ってもよい。対数領域での引算は線形領域では割算となる。
上述したこの発明の実施形態を、コンピュータによりプログラムを実行させて機能させることができる。つまりそのためのプログラムを記録したCD−ROM、フロッピー(登録商標)ディスク、磁気ディスク、あるいは伝送路を通じて別の場所に記憶されている記憶媒体から、コンピュータ内の動作プログラムメモリ内にインストールして、そのプログラムメモリ上のプログラムをコンピュータにより実行させて機能させてもよい。
【0025】
【発明の効果】
以上述べたようにこの発明によれば、全チャネルに用いられる適応フィルタのフィルタ長が与えられた時、つまりそのため演算量が与えられた時に、各チャネルに適したフィルタが設定され、不必要にフィルタ長が長い適応フィルタが生じたり、適応フィルタ長が短かいためにエコー信号を十分抑圧することができなかったりするおそれがない。
特に受話信号のレベルも考慮するため、話者の発声音量に応じて適切なフィルタ長を設定することができる。
【図面の簡単な説明】
【図1】適切なフィルタ長の設定が可能とされた多チャネルエコー消去装置を示す機能構成図。
【図2】この発明の原理を説明するための残響曲線の例を示す図。
【図3】間接音による音響結合量を求める具体例の機能構成を示す図。
【図4】この発明の実施形態を示す機能構成図。
【図5】多チャネルエコー消去系の一般的な構成を示す図。
【図6】従来の多チャネルエコー消去装置の機能構成を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is applied to, for example, a communication conference system having a multi-channel sound reproduction system, and relates to a multi-channel echo canceling method for canceling acoustic echoes that cause howling and impair hearing, a device therefor, a program therefor, and a recording medium therefor. Things.
[0002]
[Prior art]
2. Description of the Related Art With the recent development of digital networks and high-efficiency audio-video coding technology, a multi-channel loudspeaker communication system that allows a plurality of people to easily participate and provide a more natural communication environment has been studied. To achieve this, it is necessary to consider the technical issues and solutions of multi-channel acoustic echo cancellation that cancels acoustic sneak from multiple speakers into the microphone.
A communication conference system including a reproduction system of N (≧ 2) channels and a sound collection system of M (≧ 1) channel cancels an acoustic echo by a configuration as shown in FIG. That received signal from each receiving terminal 1 1 to 1 N is reproduced as an acoustic signal at the speakers 2 1 to 2 N, the N-number of the acoustic echo path 10 1 to 10 via the N respective microphone 3 m (m = 1 , ..., M). And the reception terminal 1 1 to 1 N for all N channels of the receiving side, an acoustic connect the N-channel echo canceling part 4 1 to 4 M between the transmitter terminal 5 1 to 5 M each of M channel transmitting end Cancel the echo.
[0003]
The N-channel echo canceller 4 m has a configuration to process the N inputs and one output time-series signal between total N-channel sound collection side of one channel of the reproduction side for each sound collection channel. FIG. 6 shows the configuration of the N-channel echo canceling unit 4 m (m = 1,..., M).
Each received signal x 1 (k), x 2 (k), ..., x N (k) , respectively the adaptive filter 11 1, 11 2, ..., 11 are filtered by N pseudo-echo signal y ^ 1m (k) , Y ^ 2m (k),..., Y ^ Nm (k) are generated, and these pseudo echo signals are subtracted from the picked-up signal y m (k) of the microphone 3 m by subtraction units 12 1 , 12 2 ,. in sequentially subtracted, the echo signal is output to the transmitter terminal 5 m are suppressed. In correction coefficient calculating unit 13, the received signals x 1 (k), ..., x N (k) and residual echo signal (error signal) and e m is input each adaptive filter output to the transmitter terminal 5 m The correction coefficients for the filter coefficients are calculated. That is, the following received signal vector is generated from each received signal.
Figure 0003583998
L is the number of taps (filter length) of the adaptive filters 11 1 ,..., 11 N.
[0004]
The received signal vector x 1 (k),..., X N (k) is defined as a vector X (k) of the following equation.
X (k) = [x 1 T (k), x 2 T (k), ..., x N T (k)] T
Each adaptive filter 11 1, ..., 11 N of the filter coefficient vector h ^ 1m (k), h ^ 2m (k), ..., to combine h ^ Nm (k)
h ^ m (k) = [ h ^ 1m T (k), h ^ 2m T (k), ..., h ^ Nm T (k)] T
And the adaptive filter coupling coefficient vector hベ ク ト ルm (k) are updated, for example, by using the NLMS algorithm (learning identification method).
h ^ m (k + 1) = h ^ m (k) + αe m (k) x (k) / (x T (k) x (k))
α is a step size parameter.
It becomes. That correction coefficient calculation unit 13 in the second term on the right side .alpha.e m of the equation (k) x (k) / (x T (k) x (k)) by calculating the respective adaptive filter 11 1, ..., 11 N obtain the correction coefficients of the filter coefficients for the adaptive filter 11 1 these correction factors, ..., 11 each coefficient update unit 14 1 each filter coefficients of N, ..., to update at 14 N. Adaptive filter 11 1, ..., 11 filter processing unit 15 1 using the filter coefficients in N, ..., 15 the inner product calculation (filtering) of the filter coefficient vector and the reception signal vector N y ^ 1m (k) = h ^ 1m T (k) x 1 (k), ..., y ^ Nm (k) = h ^ Nm T (k) x N (k) is performed, the pseudo echo signal is generated.
[0005]
Each filter coefficient vector is
Figure 0003583998
By repeating the above correction, these filter coefficient vectors are converted into the impulse responses h 1m (k, n),..., H Nm of each echo path from each speaker 2 1 ,..., 2 N to the microphone 3 m . Echo path vector with (k, n) time series as each element
Figure 0003583998
Can be matched with, it is possible to reduce the residual signal e m (k).
[0006]
Note that the original adaptive filter is configured to include each filter processing unit, its coefficient updating unit, and the corresponding correction coefficient calculation unit. For convenience, the filter processing unit and the coefficient updating unit are referred to as adaptive filters.
[0007]
[Problems to be solved by the invention]
In multi-channel audio system consisting reproduction system and sound collection system of the speaker 2 1, ..., and volume during a 2 N is large, there is a small, likewise microphone 3 1, ..., 3 M in Some have a large sound collection gain and some have a small sound collection gain. The level of the echo signal in which the reproduced sound from the speaker having a small volume is mixed into the microphone having a small sound collection gain is small. Therefore, in order to subtract this echo signal to a certain predetermined level, the length of the adaptive filter may be short. Conversely, the level of an echo signal in which a reproduced sound from a loud speaker is mixed into a microphone having a large sound pickup gain becomes large, and to attenuate the echo signal to the predetermined level, it is necessary to lengthen the adaptive filter length. .
[0008]
However, conventionally, the filter lengths of the adaptive filters 11 1 ,..., 11 N are all the same. For this reason, an adaptive filter corresponding to the echo path of the echo signal having a small level is provided with an unnecessarily large filter length, so that unnecessarily many computations are performed or the hardware scale is unnecessarily increased. Was. Conversely, an adaptive filter corresponding to the echo path of an echo signal having a large level is given an insufficient filter length, and the echo signal may not be sufficiently suppressed. This problem is not limited to the case where the NLMS algorithm is used, and the same can be said for a case where the filter coefficients of the adaptive filter use another adaptive algorithm that approaches the impulse response of the echo path.
[0009]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multi-channel echo canceling method, an apparatus, a program, and a recording medium for giving an appropriate filter length to each adaptive filter when a filter length of the entire adaptive filter is given in a multi-channel echo canceling system. Is to provide.
[0010]
[Means for Solving the Problems]
According to the present invention, for each channel, the amount of acoustic coupling between the speaker that reproduces the reception signal of the channel and the microphone that outputs the pickup signal, that is, the indirect sound between the reproduction signal of the reception signal and the pickup signal In the logarithmic domain, a value obtained by adding the acoustic coupling amount due to the indirect sound of each channel and the received signal amount of the channel and subtracting the target error signal amount therefrom is defined as the target indirect sound suppression amount. Then, the adaptive filter length of the channel is determined in proportion to the target indirect sound suppression amount of the channel.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Given the filter length of the entire adaptive filter, reference is made to FIG. 1 which illustrates what may be considered as echo cancellation to provide an appropriate filter length for each adaptive filter. In FIG. 1, portions corresponding to those in FIG. 6 are denoted by the same reference numerals, and redundant description will be omitted. The Ru omitted correction coefficient calculating unit 13 tare.
Each adaptive filter 11 1, ..., 11 N corresponds to the filter length determining unit 21 1, ..., 21 N are provided, the filter length determining unit 21 1 is indirect sound acoustic coupling amount calculating section 22 and the filter length calculating section 23 Consists of The filter length determining units 21 2 ,..., 21 N are each also formed of an indirect sound / acoustic coupling amount calculation unit 22 and a filter length calculation unit 23, although not shown.
[0012]
The principle of obtaining the adaptive filter length will be described below. Reverberation curve C i in the echo path from the speaker 2 i to the microphone 3 m (k) is the impulse response h i corresponding to the echo path, it is obtained by squaring integration from the last.
C i (k) = {hj (k + j) 2 ,} is the sum of j = 0, 1, 2 ,.
Since C i (0) is the square integral of the impulse response, it is equal to the acoustic coupling amount A i between the speaker 2 i and the microphone 3 m . D i and by direct sound of the acoustic coupling amount A i, if the the R i by indirect sound is A i = D i + R i. When two clogging echo path speakers 1 1 and 1 2 are two, the reverberation curve C 1, C 2 of the echo path is as shown in FIG. In FIG. 2, the horizontal axis is the time axis, and the vertical axis is the reverberation volume. The values C 1 (0) and C 2 (0) at the time k = 0 are the square integration values of the impulse responses of the respective echo paths, and are the acoustic coupling amounts A 1 and A 2 . The flat portions of the curves C 1 and C 2 are echo delay times, which are clearly shown, that is, separated from the vertical axis, but are actually significantly shorter than the filter lengths L 1 and L 2. Thus, for example, several ms to several tens ms, which is negligible. The flat part near k = 0 also has a slight inclination due to noise or the like, but is smaller than the inclination due to a direct sound or an indirect sound and may be regarded as flat. E in FIG. 2 is a target acoustic coupling amount, the echo signal to the reverberation of the echo path becomes the target acoustic coupling amount E, the adaptive filter 11 1, 11 2 may be simulated, respectively. That is, the time L 1 , L 2 from when the reproduced sound from the speakers 2 1 , 2 2 is generated to when the reverberation level of the echo path reaches the target acoustic coupling amount E is defined as the filter length of the adaptive filters 11 1 , 11 2 . What should I do?
[0013]
The reverberation curves C 1 and C 2 are values obtained by subtracting the acoustic coupling amounts D 1 and D 2 due to the direct sound from the acoustic coupling amounts A 1 and A 2 , that is, the acoustic coupling amounts R 1 and R 2 due to the indirect sound (logarithmic values). Decreases linearly with time in the logarithmic domain. In the same room, the inclination of the decrease in the reverberation curve due to the indirect sound is constant regardless of the positions of the speaker and the microphone. Therefore, as described above, since the reverberation curve can be considered to decrease linearly from the time of approximately k = 0, assuming that the entire filter length L = L 1 + L 2 ,
L 1 : L 2 ≡log R 1 -log E: log R 2 -log E
Holds. Therefore, the filter length Li is obtained by the following equation.
[0014]
Figure 0003583998
It becomes. The filter length L i of each adaptive filter 11 i in a general case where the number of speakers is N is obtained by the following equation.
L i = [(log R i -log E) / Σ (log R i -log E)] L
Σ is the sum from i = 1 to N.
As understood from the above description, the overall filter length L to the filter length calculating unit 23 in the filter length determining unit 21 1 for example, in FIG. 1, a target acoustic coupling amount E is set input, indirect sound acoustic coupling amount calculated acoustic coupling amount R 1 by indirect sound from part 22 is also inputted, the target indirect sound coupling suppressing amount log R 1 -log E is calculated in the subtraction portion 23a. Similarly the filter length determining unit 21 2, ..., respectively target indirect sound coupling suppressing amount 21 N log R 2 -log E, ..., log R N -log E is calculated. These objectives indirect sound coupling suppressing amount log R 1 -log E, ..., log R N -log adaptive filter 11 1 corresponding in proportion respectively to E, ..., as indicated by the broken line in FIG its filter length 11 N May be set.
[0015]
Adaptive filter 11 1, ..., the filter length L 1 of 11 N, ..., further as follows when the sum L of L N are determined. The target indirect sound coupling suppression amounts log R 1 -log E,..., Log R N -log E are added by the adding unit 24, that is, i i = 1 N (log R i -log E) = P REA is obtained. This added value P REA is input to each filter length calculation unit 23 of each filter length determination unit 21 1 ,..., 21 N. In each filter length calculation unit 23, (log R i −log E) / P REA = L i is calculated respectively, and these calculated L 1, ..., adaptive filter 11 1 L N correspond respectively, ..., it is set as the filter length 11 N.
[0016]
In this way, each of the adaptive filters 11 1 ,..., 11 N is set to a filter length corresponding to its echo level.
Here, the following method can be considered to obtain the acoustic coupling amount R i due to the indirect sound in the indirect acoustic coupling amount calculating unit 22.
As shown in FIG. 3A, the impulse response measurement unit 25 measures an impulse response for each echo path in advance, and uses the impulse response. That the speaker 2 1, ..., 2 from each one of the N to regenerate the impulse sound, seek h i at each time in the impulse response by measuring the attenuation state of the power output of the microphone 3 m at that time, the measurement The impulse response thus obtained is input to the indirect sound / acoustic coupling amount calculation unit 22, and the square integration value C i (0) of the impulse response is obtained in the calculation unit 22, as described above, and this value C i (0) = from a i, measured power h i (0) at time k = 0 of the impulse response 2, i.e. the acoustic coupling amount D i by the direct sound by subtracting the logarithmic domain determine the acoustic coupling amount R i by indirect sound.
[0017]
Or by entering the filter coefficients h i from the adaptive filter 11 i as shown in FIG. 3B, obtains a square integration value C i (0) as in the case of FIG. 3A, h i (0) from this value further 2 = D i is subtracted in the logarithmic domain to determine the acoustic coupling amount R i given to the indirect sound.
As understood from the characteristics shown in FIG. 2, the smallest integer k such that C i (k) / C i (k + τ)> θ is considered as the arrival time of the direct sound. Here, τ is a value corresponding to several ms, and θ is about 2 to 4. That is, in FIG. 2, a time k at which the level changes rapidly from a direct sound to an indirect sound (reverberation) and rapidly decreases is obtained, and the acoustic coupling by the direct sound is set to D i = C i (k) / C i (k + τ). Since FIG. 2 is a logarithmic value, it is subtracted. Thus indirect sound R i is determined by R i = C i (0) / B i. If the direct sound is not satisfied arrival also the time of should have gone past k is the previous conditions, to determine the indirect sound is dominant, D i is set in the middle of 1 and θ.
[0018]
Alternatively, as shown in FIG. 3C, when each received signal x 1 (k),..., X N (k) is input to the covariance calculation unit 26 and an input signal sequence vector having these as elements is X, X , The temporal average value r (k) of the column vector having the covariance of If the received signal is a two x 1 (m) and x 2 (m) r (k ) = αr (k-1) + (1-α) [x 1 (k) * x 1 (k), x 1 (k) * x 2 ( k), x 1 (k) x 2 (k), x 2 (k) * x 2 (k)] T
T represents a transposed matrix, and * represents a conjugate. 0 ≦ α <1
It is. Microphone 3 m of the output y m (k) to be inputted to the mean square value calculating section 27 mean square y 2 (k) = βy 2 (k-1) + (1-β) y 2 m (k ), 0 ≦ β <1
Ask for. r (k) and y 2 (k) are input to the acoustic coupling estimation unit 28, and the following equation is calculated.
[0019]
min (E [y 2 (k ) -g T (k) r (k) 2], g T)
Here, E [] represents an operation for averaging, and E [a (k)] = Σw (i) a (ki), i = 0, 1,. As the window function w (), a rectangular window of 1 / N for a certain interval N and 0 for the other, or an exponential decay window of w (i) = λ i , (0 <λ <1) are often used. Can be
min (J, a) means an operation of selecting a so that J is minimized. The column vector g T is determined by a least squares method, a recursive least squares method, a conjugate gradient method, an adaptive filtering method, or the like so that the square of the difference between y 2 (k) and g T (k) r (k) is minimized. Find (k). Here, g is a column vector that associates y m (k) with x 1 ,..., X N. If the received signal is a two x 1 and x 2, g represents the following formula.
[0020]
g = [G 11 G 11 * , G 12 G 11 * , G 11 G 12 * , G 12 G 12 * ] T
Here G 11 G * is the acoustic coupling amount between the speaker 2 1 and the microphone 3 m, the G 12 G 12 * is an acoustic coupling amount between the speaker 2 2 and the microphone 3 m.
Thus each loudspeaker 2 1 obtained, ..., 2 acoustic coupling amount A 1 between N and the microphone 3 m, ..., suitable values regarded as acoustic coupling amount by direct sound by the subtraction unit 29 from the A N D i Is subtracted in the logarithmic domain to obtain the acoustic coupling amount R i due to the indirect sound. Acoustic coupling amount D i by the direct sound about one order of magnitude compared to the log R i -log E i is smaller, a value of about several dB can be predicted empirically, the values of the degree D i 'May be set and input to the subtraction unit 29. In order to obtain g T (k) more correctly, the minimum value or mode value (for example, by making a histogram) of G 11 G 11 * in sequentially obtained g T (k) is obtained, and the value of gG 11 G 11 * is obtained. g T (k) may be used.
[0021]
In this case the filter length determining unit 21 1, ..., acoustic coupling amount R 1 by indirect sound used in the 21 N, ..., R N is obtained by one single indirect sound acoustic coupling amount calculation unit 22.
According to the method shown in FIGS. 3B and 3C, it is possible to adaptively change the filter length suitable for each channel when the amount of acoustic coupling changes while using the multi-channel echo canceller.
Next, an embodiment of the present invention is shown in FIG. 4 by attaching the same reference numerals to parts corresponding to FIG. Filter length determining unit 31 1 in this embodiment, ..., 31 N adaptive filter 11 1, ..., provided in correspondence with the 11 N. Filter length determining unit 31 1, ..., 31 N are the same configuration, more composed and indirect sound acoustic coupling amount calculating section 22 and the filter length calculating unit 32 as shown in the filter length determining unit 31 1. The indirect sound / acoustic coupling amount calculation unit 22 is the same as that in FIG. 1, but the filter length calculation unit 32 includes the indirect sound / acoustic coupling amount R 1 , the overall filter length L, and the target error signal level E e . , received signals x 1 corresponding is input.
[0022]
Target indirect sound reduction amount from the power X i and E e and R i of the received signal x i by the filter length calculating unit 32 in the adder portion 32a log R i + log X i -log E e is calculated. In this case the target indirect sound suppressing amount Elog R i + log X i -log E adapting the value proportional to e filter 11 1, as shown in broken line in the figure, ..., 11 respectively to the N filter length L 1, ..., L N may be set. If the entire filter length L is determined, the following is further performed. The target indirect sound suppression amount log R i + log X i −log E e from each filter length determining unit 31 1 ,..., 31 N is added by the adding unit 33, and the added value P REA ′ is added to each filter length calculating unit 32 Supplied to
[0023]
Each filter length calculating unit 32 calculates the division portion 32b (log R i + log X i -log E e) / P REA '= L, sets the L i to the filter length of the corresponding adaptive filter 11 i I do.
To determine in this case the adaptive filter length L i, because the have received signals x i be considered, for example, when the received signal x i is the large level accordingly, the filter length of the corresponding adaptive filter is long, the The echo signal can be sufficiently suppressed. Various methods shown in FIG. 3 can be used for estimating the acoustic coupling amount R i by the indirect sound.
[0024]
In the above description, various calculations are performed in the logarithmic domain, but may be performed in the linear domain. Subtraction in the logarithmic domain is division in the linear domain.
The implementation mode of the invention described above can be made to function by executing the program by a computer. That is, a program for that purpose is installed from a CD-ROM, a floppy (registered trademark) disk, a magnetic disk, or a storage medium stored at another location through a transmission line into an operation program memory in a computer. The program on the program memory may be executed by a computer to function.
[0025]
【The invention's effect】
As described above, according to the present invention, when the filter length of the adaptive filter used for all channels is given, that is, when the calculation amount is given, a filter suitable for each channel is set, and unnecessary There is no fear that an adaptive filter having a long filter length is generated or that the echo signal cannot be sufficiently suppressed due to a short adaptive filter length.
In particular, since the level of the received signal is also taken into consideration, an appropriate filter length can be set according to the volume of the utterance of the speaker.
[Brief description of the drawings]
FIG. 1 is a functional configuration diagram showing a multi-channel echo canceller capable of setting an appropriate filter length .
FIG. 2 is a diagram showing an example of a reverberation curve for explaining the principle of the present invention.
FIG. 3 is a diagram showing a functional configuration of a specific example for obtaining an acoustic coupling amount due to an indirect sound.
[4] functional configuration diagram showing an embodiment of the present invention.
FIG. 5 is a diagram showing a general configuration of a multi-channel echo canceling system.
FIG. 6 is a diagram showing a functional configuration of a conventional multi-channel echo canceller.

Claims (8)

各チャネルの受話信号がそれぞれ適応フィルタに入力され、その出力として疑似エコー信号が得られ、収音信号から上記疑似エコー信号が差し引かれ、その差し引いた残りの誤差信号と、そのチャネルの受話信号とから対する適応フィルタのフィルタ係数が更新されるエコー消去装置において、
上記各チャネルごとに設けられ、
そのチャネルの受話信号の再生信号と上記収音信号との間のインパルス応答又は対応する適応フィルタのフィルタ係数が入力されて、上記再生信号と上記収音信号間の間接音の音響結合量を計算する手段と、
上記間接音の音響結合量Ri とそのチャネルの受話信号Xi と、目標誤差信号量Ee が入力され、対数領域ではRi +Xi −Ee を計算した結果を出力する手段と、
そのRi +Xi −Eeの結果 に比例したフィルタ長をそのチャネルの適応フィルタに設定する手段とを備えることを特徴とする多チャネルエコー消去装置。
The received signal of each channel is input to the adaptive filter, a pseudo echo signal is obtained as an output thereof, the pseudo echo signal is subtracted from the collected signal, the remaining error signal obtained by the subtraction, the received signal of the channel and in the echo canceller filter coefficients of the adaptive filter that corresponds is updated from,
Provided for each of the above channels,
An impulse response between a reproduction signal of a reception signal of the channel and the collected signal or a filter coefficient of a corresponding adaptive filter is input, and an acoustic coupling amount of an indirect sound between the reproduction signal and the collected signal is calculated. Means to
Means for receiving the acoustic coupling amount R i of the indirect sound, the reception signal X i of the channel thereof, and the target error signal amount E e, and outputting a result of calculating R i + X i −E e in the logarithmic domain;
The result of R i + X i −E e Means for setting a filter length in proportion to the adaptive filter of the channel to the multi-channel echo canceller.
各チャネルの受話信号がそれぞれ適応フィルタに入力され、その出力として疑似エコー信号が得られ、収音信号から上記疑似エコー信号が差し引かれ、その差し引いた残りの誤差信号と、そのチャネルの受話信号とから対応する適応フィルタのフィルタ数が更新されるエコー消去装置において、
各チャネルの受話信号が入力され、その受話信号を要素とする受話信号列ベクトルxの共分散を要素とする列ベクトルの時間的平均値r(k)を求める共分散計算部と、
上記収音信号ym(k)が入力され、その2乗値の時間的平均値y2(k)を求める2乗平均計算部と、
平均値r(k)と平均値y2(k)が入力され、y2(k)とgT (k)r(k)との差の2乗が最小になる列ベクトルgT(k)を求め、その列ベクトルgT(k)の要素として各チャネルの受話信号の再生信号と上記収音信号間の音響結合量を得る音響結合推定部と、
上記各チャネルの音響結合量と所定値が入力され、各チャネルの上記再生信号と上記収音信号間の間接音の音響結合量を求めて出力する手段と、
上記各間接音の音響結合量と目標音響結合量が入力され、これらより目標間接音結合抑圧量を求めて出力する手段と、
各チャネルの上記目標間接音結合抑圧量に比例したフィルタ長をそのチャネルの適応フィルタに設定する手段とを備えることを特徴とする多チャネルエコー消去装置。
The received signal of each channel is input to the adaptive filter, a pseudo echo signal is obtained as an output thereof, the pseudo echo signal is subtracted from the collected signal, the remaining error signal obtained by the subtraction, the received signal of the channel and in the echo canceller filter coefficients are updated in the corresponding adaptive filter from,
A covariance calculator for receiving a received signal of each channel and calculating a temporal average value r (k) of a column vector having a covariance of a received signal column vector x having the received signal as an element;
A mean-square calculating unit to which the picked-up signal y m (k) is input and for calculating a temporal average y 2 (k) of the squared value;
The average value r (k) and the average value y 2 (k) are input, and the column vector g T (k) that minimizes the square of the difference between y 2 (k) and g T (k) r (k) And a sound coupling estimating unit for obtaining a sound coupling amount between the reproduction signal of the reception signal of each channel and the collected sound signal as an element of the column vector g T (k);
Means for receiving the acoustic coupling amount of each channel and a predetermined value, calculating and outputting the acoustic coupling amount of the indirect sound between the reproduction signal and the collected sound signal of each channel,
Means for inputting the acoustic coupling amount and the target acoustic coupling amount of each of the indirect sounds, obtaining and outputting the target indirect sound coupling suppression amount from these,
Means for setting a filter length in proportion to the target indirect sound coupling suppression amount of each channel to an adaptive filter of the channel.
各チャネルの受話信号がそれぞれ適応フィルタに入力され、その出力として疑似エコー信号が得られ、収音信号から上記疑似エコー信号が差し引かれ、その差し引いた残りの誤差信号と、そのチャネルの受話信号とから対する適応フィルタのフィルタ係数が更新されるエコー消去装置において、
各チャネルの受話信号が入力され、その受話信号を要素とする受話信号列ベクトルxの共分散を要素とする列ベクトルの時間的平均値r(k)を求める共分散計算部と、
上記収音信号ym(k)が入力され、その2乗値の時間的平均値y2(k)を求める2乗平均計算部と、
平均値r(k)と平均値y2(k)が入力され、y2(k)とgT (k)r(k)との差の2乗が最小になる列ベクトルgT(k)を求め、その列ベクトルgT(k)の要素として各チャネルの受話信号の再生信号と上記収音信号間の音響結合量を得る音響結合推定部と、
上記各チャネルの音響結合量と所定値が入力され、各チャネルの上記再生信号と上記収音信号間の間接音の音響結合量を計算する手段と、
上記間接音の音響結合量Ri とそのチャネルの受話信号Xi と、目標誤差信号量Ee が入力され、対数領域ではRi +Xi −Ee を計算した結果を出力する手段と、
そのRi +Xi −Ee の結果 に比例したフィルタ長をそのチャネルの適応フィルタに設定する手段とを備えることを特徴とする多チャネルエコー消去装置。
The received signal of each channel is input to the adaptive filter, a pseudo echo signal is obtained as an output thereof, the pseudo echo signal is subtracted from the collected signal, the remaining error signal obtained by the subtraction, the received signal of the channel and in the echo canceller filter coefficients of the adaptive filter that corresponds is updated from,
A covariance calculator for receiving a received signal of each channel and calculating a temporal average value r (k) of a column vector having a covariance of a received signal column vector x having the received signal as an element;
A mean-square calculating unit to which the picked-up signal y m (k) is input and for calculating a temporal average y 2 (k) of the squared value;
The average value r (k) and the average value y 2 (k) are input, and the column vector g T (k) that minimizes the square of the difference between y 2 (k) and g T (k) r (k) And a sound coupling estimating unit for obtaining a sound coupling amount between the reproduction signal of the reception signal of each channel and the collected sound signal as an element of the column vector g T (k);
A means for calculating an acoustic coupling amount of the indirect sound between the reproduction signal and the collected sound signal of each channel, wherein the acoustic coupling amount of each channel and a predetermined value are input,
Means for receiving the acoustic coupling amount R i of the indirect sound, the reception signal X i of the channel thereof, and the target error signal amount E e, and outputting a result of calculating R i + X i −E e in the logarithmic domain;
The result of R i + X i −E e Means for setting a filter length in proportion to the adaptive filter of the channel to the multi-channel echo canceller.
各チャネルの受話信号を、それぞれ適応フィルタにより処理して疑似エコー信号を生成し、その疑似エコー信号を収音信号から差し引き、その差し引いた残りの誤差信号とそのチャネルの受話信号とから対応する適応フィルタのフィルタ係数を更新するエコー消去方法において、
各チャネルについて、そのチャネルの受話信号の再生信号と上記収音信号との間のインパルス応答、又は対応する適応フィルタのフィルタ係数とから、上記再生信号と上記収音信号間の間接音の音響結合量を求め、
その間接音の音響結合量 i と、そのチャネルの受話信号X i と、目標誤差信号E e により対数領域でR i +X i −E e を計算し、
その計算結果に比例してそのチャネルの適応フィルタのフィルタ長を更新する
ことを特徴とする多チャネルエコー消去方法。
The received signal of each channel is processed by an adaptive filter to generate a pseudo echo signal, the pseudo echo signal is subtracted from the collected signal, and a corresponding adaptive signal is obtained from the remaining error signal and the received signal of the channel. In an echo cancellation method for updating a filter coefficient of a filter,
For each channel, from an impulse response or a corresponding filter coefficient of the adaptive filter between the reproduction signal and the upper KiOsamuoto signal of the receiving signal of the channel, the indirect sound between the reproduced signal and the collected sound signal Find the acoustic coupling amount,
The acoustic coupling amount R i of the indirect sound R i + X i −E e in the logarithmic domain based on the received signal X i of the channel and the target error signal E e ,
A multi-channel echo canceling method characterized by updating a filter length of an adaptive filter of the channel in proportion to the calculation result .
各チャネルの受話信号それぞれ適応フィルタにより処理して疑似エコー信号を生成し、収音信号から上記疑似エコー信号差し引、その差し引いた残りの誤差信号と、そのチャネルの受話信号とから対応する適応フィルタのフィルタ更新るエコー消去方法において、
各チャネルの受話信号からその受話信号を要素とする受話信号列ベクトルxの共分散を要素とする列ベクトルの時間的平均値r(k)を求め、
上記収音信号ym(k)の2乗値の時間的平均値y2(k)を求め、
上記2乗値の時間的平均値y2(k)T (k)r(k)との差の2乗が最小になる列ベクトルgT(k)を求め、その列ベクトルgT(k)の要素として各チャネルの受話信号の再生信号と上記収音信号間の音響結合量を得、
上記各チャネルの音響結合量と所定値とから、各チャネルの上記再生信号と上記収音信号間の間接音の音響結合量を求め、
上記各間接音の音響結合量と目標音響結合量より目標間接音結合抑圧量を求め、
各チャネルの上記目標間接音結合抑圧量に比例したフィルタ長で、そのチャネルの適応フィルタのフィルタ長を更新することを特徴とする多チャネルエコー消去方法
The reception signals of the channels more processes, each adaptive filter generates a pseudo echo signal, Pull insert the pseudo echo signal from the sound collection signal from the remaining error signal obtained by subtracting the, the received signal of the channel in echo cancellation method to update the filter coefficients of the corresponding adaptive filter,
Temporal average value calculated Me a r (k) of the column vector and covariance elements of the received signal column vector x of the received signal as an element from the received signal of each channel,
The collected sound signal y m square value temporal average value y 2 (k) the determined eye (k),
A column vector g T (k) that minimizes the square of the difference between the temporal average y 2 (k) of the squared value and g T (k) r (k) is obtained, and the column vector g T ( k) obtaining the acoustic coupling amount between the reproduction signal of the reception signal of each channel and the collected signal as an element of k) ;
Said from the acoustic coupling amount and the predetermined value for each channel, the acoustic coupling amount determined Me indirect sounds between the reproduced signal and the collected sound signal of each channel,
Acoustic coupling amount of each of the above indirect sound and the target acoustic coupling amount by Ri target indirect sound coupling suppressing the amount of the required Me,
A filter length that is proportional to the target indirect sound coupling suppressing amount of each channel, multi-channel echo cancellation method comprising users update the filter length of the adaptive filter of that channel.
各チャネルの受話信号それぞれ適応フィルタにより処理して疑似エコー信号を生成し、収音信号から上記疑似エコー信号差し引、その差し引いた残りの誤差信号と、そのチャネルの受話信号とから対する適応フィルタのフィルタ係数更新るエコー消去方法において、
各チャネルの受話信号からその受話信号を要素とする受話信号列ベクトルxの共分散を要素とする列ベクトルの時間的平均値r(k)を求め、
上記収音信号ym(k)の2乗値の時間的平均値y2(k)を求め、
上記2乗値の時間的平均値y2(k)と、T (k)r(k)との差の2乗が最小になる列ベクトルgT(k)を求め、その列ベクトルgT(k)の要素として各チャネルの受話信号の再生信号と上記収音信号間の音響結合量を得、
上記各チャネルの音響結合量と所定値とから、各チャネルの上記再生信号と上記収音信号間の間接音の音響結合量を求め
上記間接音の音響結合量Ri とそのチャネルの受話信号Xi と、目標誤差信号量Ee から、対数領域ではRi +Xi −Ee を計算し、
そのRi +Xi −Ee計算結果に比例したフィルタ長で、そのチャネルの適応フィルタのフィルタ長を更新ることを特徴とする多チャネルエコー消去方法
The reception signals of the channels more processes, each adaptive filter generates a pseudo echo signal, Pull insert the pseudo echo signal from the sound collection signal from the remaining error signal obtained by subtracting the, the received signal of the channel in echo cancellation method to update the filter coefficients of the adaptive filter that corresponds,
Temporal average value calculated Me a r (k) of the column vector and covariance elements of the received signal column vector x of the received signal as an element from the received signal of each channel,
The collected sound signal y m square value temporal average value y 2 (k) the determined eye (k),
A column vector g T (k) that minimizes the square of the difference between the temporal average value y 2 (k) of the square value and g T (k) r (k) is obtained, and the column vector g T As an element of (k), an acoustic coupling amount between a reproduction signal of a reception signal of each channel and the collected signal is obtained,
From the acoustic coupling amount of each channel and a predetermined value , the acoustic coupling amount of the indirect sound between the reproduction signal and the collected signal of each channel is determined ,
And the reception signal X i of the channel and the acoustic coupling amount R i of the indirect sound, the target error signal amount E e, in the log domain to calculate the R i + X i -E e,
A filter length proportional to the calculated result of the R i + X i -E e, multi-channel echo cancellation method comprising the Turkey to update the filter length of the adaptive filter of that channel.
請求項乃至の何れかに記載の方法の各課程をコンピュータに実行させるためのプログラム。Program for executing the respective programs of the methods described in the computer in any one of claims 4 to 6. 請求項記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。A computer-readable recording medium on which the program according to claim 7 is recorded.
JP2001033734A 2001-02-09 2001-02-09 Multi-channel echo canceling method, apparatus therefor, and program recording medium Expired - Lifetime JP3583998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001033734A JP3583998B2 (en) 2001-02-09 2001-02-09 Multi-channel echo canceling method, apparatus therefor, and program recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001033734A JP3583998B2 (en) 2001-02-09 2001-02-09 Multi-channel echo canceling method, apparatus therefor, and program recording medium

Publications (2)

Publication Number Publication Date
JP2002237770A JP2002237770A (en) 2002-08-23
JP3583998B2 true JP3583998B2 (en) 2004-11-04

Family

ID=18897440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001033734A Expired - Lifetime JP3583998B2 (en) 2001-02-09 2001-02-09 Multi-channel echo canceling method, apparatus therefor, and program recording medium

Country Status (1)

Country Link
JP (1) JP3583998B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889810B2 (en) 2008-06-11 2012-03-07 三菱電機株式会社 Echo canceller
JP5264686B2 (en) * 2009-11-27 2013-08-14 日本電信電話株式会社 Echo canceling method, echo canceling device, echo canceling program
JP5264687B2 (en) * 2009-11-27 2013-08-14 日本電信電話株式会社 Echo canceling method, echo canceling device, echo canceling program
JP5572445B2 (en) * 2010-04-30 2014-08-13 本田技研工業株式会社 Reverberation suppression apparatus and reverberation suppression method

Also Published As

Publication number Publication date
JP2002237770A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
RU2546717C2 (en) Multichannel acoustic echo cancellation
EP1615463B1 (en) Adaptive howling canceller
US20100150360A1 (en) Audio source localization system and method
CN111213359B (en) Echo canceller and method for echo canceller
JP5391103B2 (en) Multi-channel echo canceling method, multi-channel echo canceling apparatus, multi-channel echo canceling program and recording medium therefor
CN111354368B (en) Method for compensating processed audio signal
JP5662232B2 (en) Echo canceling apparatus, method and program
JP3403473B2 (en) Stereo echo canceller
JP3787088B2 (en) Acoustic echo cancellation method, apparatus, and acoustic echo cancellation program
JP3407392B2 (en) Stereo echo canceller
JP2012039441A (en) Multi-channel echo erasure method, multi-channel echo erasure device, and program of the same
JP3583998B2 (en) Multi-channel echo canceling method, apparatus therefor, and program recording medium
JP2003309493A (en) Method, device and program for reducing echo
JP2003250193A (en) Echo elimination method, device for executing the method, program and recording medium therefor
JP4709714B2 (en) Echo canceling apparatus, method thereof, program thereof, and recording medium thereof
JP2002223182A (en) Echo canceling method, its device, its program and its recording medium
JP3616341B2 (en) Multi-channel echo cancellation method, apparatus thereof, program thereof, and recording medium
JP3628267B2 (en) Multi-channel echo cancellation method, apparatus thereof, program thereof and recording medium thereof
JP3131202B2 (en) Apparatus and method for separating and estimating transfer characteristics of multiple linear transfer paths and recording medium storing the method as a readable program
JP4094523B2 (en) Echo canceling apparatus, method, echo canceling program, and recording medium recording the program
JP3339612B2 (en) Echo cancellation method for multi-channel audio communication conference
JP6356087B2 (en) Echo canceling apparatus, method and program
JP3700838B2 (en) Multi-channel echo cancellation method, multi-channel echo cancellation device, multi-channel echo cancellation program
JP4478045B2 (en) Echo erasing device, echo erasing method, echo erasing program and recording medium therefor
JP2002252577A (en) Method and system for canceling multichannel acoustic echo, its program and its recording medium

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040730

R151 Written notification of patent or utility model registration

Ref document number: 3583998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term