JP3582363B2 - Impeller for blower - Google Patents

Impeller for blower Download PDF

Info

Publication number
JP3582363B2
JP3582363B2 JP17860098A JP17860098A JP3582363B2 JP 3582363 B2 JP3582363 B2 JP 3582363B2 JP 17860098 A JP17860098 A JP 17860098A JP 17860098 A JP17860098 A JP 17860098A JP 3582363 B2 JP3582363 B2 JP 3582363B2
Authority
JP
Japan
Prior art keywords
wing
hub
wing member
impeller
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17860098A
Other languages
Japanese (ja)
Other versions
JP2000009097A (en
Inventor
誠司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP17860098A priority Critical patent/JP3582363B2/en
Publication of JP2000009097A publication Critical patent/JP2000009097A/en
Application granted granted Critical
Publication of JP3582363B2 publication Critical patent/JP3582363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/34Blade mountings
    • F04D29/36Blade mountings adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade

Description

【0002】
【発明の属する技術分野】
【0003】
本願発明は、エアフォイル形状の翼を備えた送風機用羽根車に関するものである。
【従来の技術】
【0004】
従来より、送風機用の羽根車の翼形状の一つとして、図10に示すように、前縁部50a側から後縁部50b側に向かって翼厚が漸減するように翼厚に分布をつけた所謂エアフォイル翼50が提案されている。かかるエアフォイル翼50を備えた羽根車は、薄板状の薄翼を備えた羽根車に比して、翼面での空気流の剥離が生じにくく、従って空力性能に優れ、且つ騒音も低く抑えられるという利点がある。
【発明が解決しようとする課題】
【0005】
ところで、一般に、送風機用羽根車においては、その翼形状の如何に拘わらず、ある回転数で所要の風量、静圧を発生するように設計されており、従って、この設計点において羽根車を使用する場合には、翼の前縁部に流入する空気流の流線方向が羽根車の回転軸心「L0」あるいはこれに直交する方向に対してなす角度、即ち、空気流の流入角「β」と、翼の反り線(翼の厚さ中心を結んでできる曲線)が回転方向前縁において回転軸心「L0」方向あるいはこれに直交する方向に対してなす角度、即ち、翼の入口角「α」とが略合致し、翼面における空気流の剥離が生じにくい状態となることから、通常はこの設計点において使用される。
【0006】
ところが、羽根車の使用環境に変化が生じる等により負荷(静圧)が増大した場合(例えば、空気調和機に使用される送風機用羽根車では、熱交換器のフィン面への着霜により目詰まりが生じたような場合)には、例え羽根車がエアフォイル翼を備えたものであったとしても、翼の前縁部に流入する空気流の流入角が、図10に角度「β′」で示すように、負荷の変化に伴って変化することから、空気流の流入角「β」と翼の入口角「α」との間に大きなズレが生じ、その結果、翼面において空気流に剥離が生じ、その乱れにより騒音(所謂、乱流騒音)が上昇するとともに送風効率が低下することになる。また、静圧が設計点よりもかなり大きく上昇したような場合、即ち、過負荷運転状態時には、失速して風量が大幅に減少し、所要の送風能力を得られないという事態が生じ得る。
【0007】
そこで、本願発明は、羽根車の翼の入口角を該翼にかかる負荷に対応して変化させることで、該翼の入口角と空気流の流入角とを該翼にかかる負荷の変化に拘わらず可及的に合致させることで、良好な空力性能を維持し得るようにした送風機用羽根車を提供することを目的としてなされたものである。
【課題を解決するための手段】
【0008】
本願発明ではかかる課題を解決するための具体的手段として次のような構成を採用している。
【0009】
本願の第1の発明では、ハブ3の外周面に複数枚の翼2,2,・・を周方向に所定間隔で配置してなる送風機用羽根車において、上記翼2を、該翼2の前縁部2aとその近傍の負圧面2Bを構成する第1翼部材21と、該第1翼部材21以外の部分を構成する第2翼部材22とからなる分割構造とすると共に、上記第1翼部材21の負圧面2B側部分の周方向における長さS1を、上記翼2の周縁部2dから上記ハブ3寄りの基端部2cにかけて漸増するように構成したことを特徴としている。
【0010】
本願の第2の発明では、ハブ3の外周面に複数枚の翼2,2,・・を周方向に所定間隔で配置してなる送風機用羽根車において、上記翼2を、該翼2の前縁部2aとその近傍の負圧面2Bを構成する第1翼部材21と、該第1翼部材21以外の部分を構成する第2翼部材22とからなる分割構造とする一方、上記ハブ3を、同軸上に配置され且つ相対回転可能とされた第1ハブ部材31と第2ハブ部材32とで構成するとともに、上記第1ハブ部材31はその外周面に上記第1翼部材21を取り付けて該第1翼部材21と共に第1の構造体4を、また上記第2ハブ部材32はその外周面に上記第2翼部材22を取り付けて該第2翼部材22と共に第2の構造体5を、それぞれ構成していることを特徴としている。
【0011】
本願の第3の発明では、ハブ3の外周面に複数枚の翼2,2,・・を周方向に所定間隔で配置してなる送風機用羽根車において、上記翼2を、該翼2の前縁部2aとその近傍の負圧面2Bを構成する第1翼部材21と、該第1翼部材21以外の部分を構成する第2翼部材22とからなる分割構造とするとともに、上記第1翼部材21の負圧面2B側部分の 周方向における長さS1を、上記翼2の周縁部2dから上記ハブ3寄りの基端部2cにかけて漸増するように構成し、さらに、上記ハブ3を、同軸上に配置され且つ相対回転可能とされた第1ハブ部材31と第2ハブ部材32とで構成するとともに、上記第1ハブ部材31はその外周面に上記第1翼部材21を取り付けて該第1翼部材21と共に第1の構造体4を、また上記第2ハブ部材32はその外周面に上記第2翼部材22を取り付けて該第2翼部材22と共に第2の構造体5を、それぞれ構成していることを特徴としている。
【発明の効果】
【0012】
本願発明ではかかる構成とすることにより次のような効果が得られる。
【0013】
(イ) 本願の第1の発明にかかる送風機用羽根車によれば、ハブ3の外周面に複数枚の翼2,2,・・を周方向に所定間隔で配置してなる送風機用羽根車において、上記翼2を、該翼2の前縁部2aとその近傍の負圧面2Bを構成する第1翼部材21と、該第1翼部材21以外の部分を構成する第2翼部材22とからなる分割構造としているので、上記第1翼部材21と第2翼部材22との間において翼回転方向の間隔を拡大変化させることで、上記第1翼部材21と第2翼部材22とからなる上記翼2の翼長がその前縁部2a側において増加し、該翼2の入口角が、例えばこれを回転軸心に対する角度で規定した場合には、増大変化することになる。
【0014】
従って、空気流の流入角の変化に対応して上記翼2の入口角を変化させてこれら流入角と入口角とを可及的に合致させることで、該翼2にかかる負荷の増大にも拘わらず、低騒音で且つ高効率の運転が実現されるとともに、過負荷運転状態においても風量の低下が抑制され所要の性能が確保されることになる。
【0015】
また、過負荷運転時における翼2への空気流の流入抵抗が減少することから、効率低下が防止され、それだけ消費エネルギーの軽減が図れることになる。
【0016】
さらに、上記第1翼部材21と第2翼部材22の間の隙間25を通して翼2の負圧面2B側に流れ出る比較的速度の大きな空気流によって負圧面2Bでの境界層の発達が抑制されることで、乱流騒音が効果的に低減されることになる。
【0017】
一方、本願の第1の発明にかかる送風機用羽根車によれば、上記翼2の「反り」はその周縁部2dから基端部2cに向かうに従ってきつくなっており、このため、該基端部2cに近いほど空気流の乱れが生じ易くなるが、この場合、この発明の如く、上記第1翼部材21の負圧面2B側部分の周方向における長さ「S1」を、上記翼2の周縁部2dから上記ハブ3寄りの基端部2cにかけて漸増するように構成することで、空気流の乱れの分布状態と上記第1翼部材21による乱れ抑制作用とが可及的に対応し、空気流の乱れをより一層効果的に抑制することができ、それだけ乱流騒音のより一層の低減が可能となるものである。
【0018】
また、上記翼2の翼面にかかる負荷による該翼2の曲げモーメントは、該翼2がその基端部2c側のみが支持された片持ち状態であることから、該基端部2cに近いほど大きくなる。この場合、上述のように、上記第1翼部材21の負圧面2B側部分の周方向における長さ「S1」を、上記翼2の周縁部2dから上記ハブ3寄りの基端部2cにかけて漸増するように構成することで、上記第1翼部材21においてはその曲げモーメント分布とその強度分布とが対応することになり、該第1翼部材21の基端部への応力集中が可及的に回避され、その強度上の信頼性が向上するものである。
【0019】
(ロ) 本願の第2の発明にかかる送風機用羽根車によれば、ハブ3の外周面に複数枚の翼2,2,・・を周方向に所定間隔で配置してなる送風機用羽根車において、上記翼2を、該翼2の前縁部2aとその近傍の負圧面2Bを構成する第1翼部材21と、該第1翼部材21以外の部分を構成する第2翼部材22とからなる分割構造としているので、上記第1翼部材21と第2翼部材22との間において翼回転方向の間隔を拡大変化させることで、上記第1翼部材21と第2翼部材22とからなる上記翼2の翼長がその前縁部2a側において増加し、該翼2の入口角が、例えばこれを回転軸心に対する角度で規定した場合には、増大変化することになる。
【0020】
従って、空気流の流入角の変化に対応して上記翼2の入口角を変化させてこれら流入角と入口角とを可及的に合致させることで、該翼2にかかる負荷の増大にも拘わらず、低騒音で且つ高効率の運転が実現されるとともに、過負荷運転状態においても風量の低下が抑制され所要の性能が確保されることになる。
【0021】
また、過負荷運転時における翼2への空気流の流入抵抗が減少することから、効率低下が防止され、それだけ消費エネルギーの軽減が図れることになる。
【0022】
さらに、上記第1翼部材21と第2翼部材22の間の隙間25を通して翼2の負圧面2B側に流れ出る比較的速度の大きな空気流によって負圧面2Bでの境界層の発達が抑制されることで、乱流騒音が効果的に低減されることになる。
【0023】
一方、本願の第2の発明にかかる送風機用羽根車によれば、上記ハブ3を、同軸上に配置され且つ相対回転可能とされた第1ハブ部材31と第2ハブ部材32とで構成するとともに、上記第1ハブ部材31はその外周面に上記第1翼部材21を取り付けて該第1翼部材21と共に第1の構造体4を、また上記第2ハブ部材32はその外周面に上記第2翼部材22を取り付けて該第2翼部材22と共に第2の構造体5を、それぞれ構成している。
【0024】
従って、上記第1ハブ部材31と第2ハブ部材32を相対回転可能とすることで、該第1ハブ部材31と共に第1の構造体4を構成する上記第1翼部材21と、上記第2ハブ部材32と共に第2の構造体5を構成する上記第2翼部材22とを、相対回転可能とすることができ、例えば、上記ハブ3を一体構造とし且つ上記翼2を構成する上記第1翼部材21と第2翼部材22のうちのいずれか一方のみを該ハブ3に固定する構造とする場合に比して、上記第1翼部材21と第2翼部材22との相対回転を容易に且つ簡単な構造によって実現することができ、それだけ製造コストの低廉化により送風機用羽根車をより安価に提供することが可能となるものである。
【0025】
(ハ) 本願の第3の発明にかかる送風機用羽根車によれば、ハブ3の外周面に複数枚の翼2,2,・・を周方向に所定間隔で配置してなる送風機用羽根車において、上記翼2を、該翼2の前縁部2aとその近傍の負圧面2Bを構成する第1翼部材21と、該第1翼部材21以外の部分を構成する第2翼部材22とからなる分割構造としているので、上記第1翼部材21と第2翼部材22との間において翼回転方向の間隔を拡大変化させることで、上記第1翼部材21と第2翼部材22とからなる上記翼2の翼長がその前縁部2a側において増加し、該翼2の入口角が、例えばこれを回転軸心に対する角度で規定した場合には、増大変化することになる。
【0026】
従って、空気流の流入角の変化に対応して上記翼2の入口角を変化させてこれら流入角と入口角とを可及的に合致させることで、該翼2にかかる負荷の増大にも拘わらず、低騒音で且つ高効率の運転が実現されるとともに、過負荷運転状態においても風量の低下が抑制され所要の性能が確保されることになる。
【0027】
また、過負荷運転時における翼2への空気流の流入抵抗が減少することから、効率低下が防止され、それだけ消費エネルギーの軽減が図れることになる。
【0028】
さらに、上記第1翼部材21と第2翼部材22の間の隙間25を通して翼2の負圧面2B側に流れ出る比較的速度の大きな空気流によって負圧面2Bでの境界層の発達が抑制されることで、乱流騒音が効果的に低減されることになる。
【0029】
一方、本願の第3の発明にかかる送風機用羽根車によれば、上記翼2の「反り」はその周縁部2dから基端部2cに向かうに従ってきつくなっており、このため、該基端部2cに近いほど空気流の乱れが生じ易くなるが、この場合、この発明の如く、上記第1翼部材21の負圧面2B側部分の周方向における長さ「S1」を、上記翼2の周縁部2dから上記ハブ3寄りの基端部2cにかけて漸増するように構成することで、空気流の乱れの分布状態と上記第1翼部材21による乱れ抑制作用とが可及的に対応し、空気流の乱れをより一層効果的に抑制することができ、それだけ乱流騒音のより一層の低減が可能となるものである。
【0030】
また、上記翼2の翼面にかかる負荷による該翼2の曲げモーメントは、該翼2がその基端部2c側のみが支持された片持ち状態であることから、該基端部2cに近いほど大きくなる。この場合、上述のように、上記第1翼部材21の負圧面2B側部分の周方向における長さ「S1」を、上記翼2の周縁部2dから上記ハブ3寄りの基端部2cにかけて漸増するように構成することで、上記第1翼部材21においてはその曲げモーメント分布とその強度分布とが対応することになり、該第1翼部材21の基端部への応力集中が可及的に回避され、その強度上の信頼性が向上するものである。
【0031】
さらに、本願の第3の発明にかかる送風機用羽根車によれば、上記ハブ3を、同軸上に配置され且つ相対回転可能とされた第1ハブ部材31と第2ハブ部材32とで構成するとともに、上記第1ハブ部材31はその外周面に上記第1翼部材21を取り付けて該第1翼部材21と共に第1の構造体4を、また上記第2ハブ部材32はその外周面に上記第2翼部材22を取り付けて該第2翼部材22と共に第2の構造体5を、それぞれ構成している。
【0032】
従って、上記第1ハブ部材31と第2ハブ部材32を相対回転可能とすることで、該第1ハブ部材31と共に第1の構造体4を構成する上記第1翼部材21と、上記第2ハブ部材32と共に第2の構造体5を構成する上記第2翼部材22とを、相対回転可能とすることができ、例えば、上記ハブ3を一体構造とし且つ上記翼2を構成する上記第1翼部材21と第2翼部材22のうちのいずれか一方のみを該ハブ3に固定する構造とする場合に比して、上記第1翼部材21と第2翼部材22との相対回転を容易に且つ簡単な構造によって実現することができ、それだけ製造コストの低廉化により送風機用羽根車をより安価に提供することが可能となるものである。
【発明の実施の形態】
【0033】
以下、本願発明にかかる送風機用羽根車を好適な実施形態に基づいて具体的に説明する。
【0034】
図1には、本願発明の実施形態にかかる送風機用羽根車1を示している。この羽根車1は、例えば空気調和機の送風機として適用される所謂プロペラファンであって、ハブ3の外周面に、エアフォイル翼で構成される複数枚(この実施形態では3枚)の翼2,2,・・を、周方向に所定間隔で且つそれぞれ所定の取付角をもって取り付けて構成される。そして、この羽根車1においては、上記各翼2,2,・・に流入する空気流の流入角の変化に対応して該各翼2,2,・・の入口角を変化させることで、流入角の変化に拘わらず常時良好な空力性能が得られるようにしたものであって、かかる課題を実現するための具体的手段として、後述のように上記翼2を第1翼部材21と第2翼部材22とからなる二分割構造とし、また上記ハブ3を第1ハブ部材31と第2ハブ部材32とからなる二分割構造とするとともに、上記第1翼部材21と第1ハブ部材31とを一体化してこれで第1の構造体4を、上記第2翼部材22と上記第2ハブ部材32とを一体化してこれで第2の構造体5を、それぞれ構成するようにしている。以下、これら各構成部材の具体的構造等についてそれぞれ説明する。
【0035】
翼2の構造
上記翼2は、図1、図4〜図6にそれぞれ示すように、その前縁部2aから後縁部2bにかけて次第に翼厚が漸減変化するような翼厚分布をもち、且つその一方の側面を圧力面2A、他方の側面を負圧面2Bとしたエアフォイル翼で構成される。そして、この実施形態においては、上記翼2を、次述する第1翼部材21と第2翼部材22とからなる二分割構造としている。
【0036】
上記第1翼部材21は、上記翼2の前縁部2aとその近傍の負圧面2Bを、該翼2の基端部2cから周縁部2dに跨がる範囲において形成するものであって、上記前縁部2aの上記圧力面2A側の端部と上記負圧面2B側の端部とを結ぶ面を傾斜面21aとした「略楔状」の断面形状をもつ厚肉帯状部材で構成される。そして、この第1翼部材21においては、上記負圧面2B側における周方向長さ「S1」(図4、図5参照)を、翼2の周縁部2dから基端部2cにかけて次第に増大するように設定している。
【0037】
このような構造をもつ上記各翼2,2,・・のそれぞれにおける上記各第1翼部材21,21,・・は、その基端部が次述するハブ3の第1ハブ部材31の外周面にそれぞれ接続されて該第1ハブ部材31と一体化され、該第1ハブ部材31と一体的に回転駆動される第1の構造体4を構成する(図2、図4及び図5参照)。
【0038】
上記第2翼部材22は、上記翼2における上記第1翼部材21以外の部分、具体的には、圧力面2Aの全域と、上記負圧面2Bのうち上記前縁部2aの近傍を除いた部分を構成する略扇形の平面形態をもつ部材であって、その前縁位置において上記圧力面2Aと負圧面2Bとを結ぶ面は、上記第1翼部材21の上記傾斜面21aに対向し且つこれと衝合可能な傾斜面22aとされている(図9を参照)。そして、このような構造をもつ上記各翼2,2,・・のそれぞれにおける上記各第2翼部材22,22,・・は、その基端部が次述するハブ3の第2ハブ部材32の外周面にそれぞれ接続されて該第2ハブ部材32と一体化され、該第2ハブ部材32と一体的に回転する第2の構造体5を構成する(図2、図4及び図5参照)。
【0039】
ハブ3の構造
上記ハブ3は、上記各翼2,2,・・を支持するものであって、その軸方向の一端寄り部分を構成する略円盤状の第1ハブ部材31と、該第1ハブ部材31を除く他の全域を構成する円柱状の第2ハブ部材32とからなる軸方向二分割構造とされている。上記第1ハブ部材31は、上述のように、その外周面に上記各第1翼部材21,21,・・を一体的に取り付けて該各第1翼部材21,21,・・と共に第1の構造体4を構成する。また、上記第2ハブ部材32は、上述のように、その外周面に上記各第2翼部材22,22,・・を一体的に取り付けて該各第2翼部材22と共に第2の構造体5を構成する。
【0040】
そして、上記第1の構造体4を構成する上記第1ハブ部材31と上記負圧面2Bを構成する上記第2翼部材22とは、同軸上に且つ相対回動可能に配置されることで、次述するように、該第1の構造体4と第2の構造体5とからなる上記羽根車1を構成するものである(図1)。
【0041】
上記第1の構造体4と第2の構造体5の組付け
上記第1の構造体4と第2の構造体5は、上記羽根車1の軸方向においては、図1〜図3にそれぞれ示すように、同軸上に重ねて組付けられ、また平面方向においては図1、図4及び図5に示すように上記第1翼部材21の後縁側に上記第2翼部材22が位置するようにして組付けられ、かかる組付け状態において対をなす上記第1翼部材21と第2翼部材22とで一つの翼構成形成されるものである。
【0042】
そして、上記第1の構造体4と第2の構造体5は、上記翼2の前縁部2aを構成する上記第1翼部材21を備えた上記第1の構造体4をモータ6により駆動し、上記第2翼部材22を備えた上記第2の構造体5はこれを上記第1の構造体4により間接的に回転駆動することを基本とし、かかる回転駆動形態を実現する具体的方法として、ここでは以下に述べる二つの具体例を示す。
【0043】
即ち、第1の回転駆動形態は、図2に示すように、羽根車1の吹出側に上記モータ6を配置した時に好適な駆動形態であって、上記モータ6の回転軸7を、上記第2ハブ部材32に対してはこれを遊動自在に嵌挿する一方、上記第1翼部材21に対してはこれを非回動に固着嵌挿し、且つ上記回転軸7の軸端に取り付けたナット8によって上記第1ハブ部材31と第2ハブ部材32とを軸方向に締結するものである。尚、上記回転軸7と上記第1ハブ部材31との固着は、上記回転軸7に面摺部7aを設ける一方、上記第1ハブ部材31の軸穴33には角摺部33aを設け、この回転軸7の面摺部7aと軸穴33の角摺部33aとを相互に嵌合させてこれら両者の回転方向における相対回動を規制することで実現している。従って、上記第1ハブ部材31は上記回転軸7により回転駆動可能とされ、上記第2ハブ部材32は上記回転軸7に対して遊動可能とされる。
【0044】
第2の回転駆動形態は、図3に示すように、羽根車1の吸込側に上記モータ6を配置した時に好適な駆動形態であって、上記モータ6の回転軸7の上記第1ハブ部材31及び第2ハブ部材32に対応する部分の全域に面摺部7aを形成する一方、上記第1ハブ部材31の軸穴33には角摺部33aを設けている。また、上記第2ハブ部材32の軸穴34は、これを丸穴とするとともに、該軸穴34には、角摺部9bをもつ軸穴9aを備えたカラー9を遊動自在に嵌挿している。そして、上記回転軸7の面摺部7aを上記第1翼部材21の軸穴33の角摺部33aと上記第2ハブ部材32側の上記カラー9の角摺部9bに、それぞれ対応させることで、上記第1ハブ部材31は上記回転軸7により回転駆動可能とされ、上記第2ハブ部材32は上記回転軸7に対して遊動可能とされる。
【0045】
一方、上記第1の駆動形態と第2の駆動形態のいずれを採用した場合でも、上記第1の構造体4のみが上記回転軸7を介して上記モータ6により回転駆動されるため、上記第2の構造体5を上記第1の構造体4の回転に追従して回転させる構造を備える必要があるとともに、本願発明の要旨、即ち、上記翼2の入口角を該翼2にかかる負荷の大きさに応じて増減調整する構造、及び該入口角の最大調整幅を所定値に規制する構造を備える必要があり、このため、この実施形態のものにおいては、上記第1の構造体4の第1ハブ部材31に凹部36を形成し、この凹部36内に、上記第1の構造体4と第2の構造体5の間において所要の機能をなす次述の回動制御機構11と回動規制機構15を配置している。
【0046】
上記回動制御機構11は、図2及び図4に示すように、上記第1ハブ部材31の凹部36の周壁と該凹部36に対応するようにして上記第2ハブ部材32の上面に突設した掛止部13との間に配置された付勢部材12で構成される。この付勢部材12は、常時、所定の付勢力で上記第2の構造体5を上記第1の構造体4側、即ち回転方向前方側に付勢するものであって、例えばスプリング、ゴム体、ダンパー等により構成される。
【0047】
尚、この実施形態においては、上記付勢部材12の付勢力を次のように設定している。即ち、上記各翼2,2,・・の各第2翼部材22,22,・・にかかる負荷の総和が所定値以下の状態においては、上記付勢力が上記第2翼部材22にかかる負荷による回転力を上回り、図4〜図6に示すように、上記第1翼部材21の後縁側に上記第2翼部材22の前縁側を密着させた状態で保持し得る一方、該負荷の総和が所定値以上となった状態においては、上記負荷による回転力が上記付勢力を上回り、図7〜図9に示すように、上記第1翼部材21に対して上記第2翼部材22が回転方向後方側へ相対回動されるのを許容し得るように設定している。
【0048】
上記回動規制機構15は、図2及び図4に示すように、上記第1ハブ部材31側に設けた板状のストッパー16と、該ストッパー16を回転方向両側において所定の間隔をもって挟むように上記第2ハブ部材32側に設けられた一対のストッパー17,18とで構成される。そして、図4に示すように、上記第2翼部材22にかかる負荷が所定値以下で、上記第1翼部材21と第2翼部材22とが接している状態においては、上記第1ハブ部材31側のストッパー16が、上記第2ハブ部材32側のストッパー17,18のうちの回転方向前方側に位置しているストッパー18側に近接し、該ストッパー16と回転方向後方側のストッパー17との間には所定の間隔が確保されている。従って、上記第2翼部材22は、図7に示すように、上記ストッパー16が上記ストッパー17に当接するまでの回動範囲内において、上記第1翼部材21に対して回転方向後方側への相対回動が許容されることになる。
【0049】
羽根車1の作動等の説明
続いて、上述の如く構成された羽根車1の作動等について説明する。
【0050】
上記羽根車1は、上記モータ6が起動されると上記回転軸7によって回転駆動される。この場合、上記羽根車1の各翼2,2,・・にかかる負荷が所定値以下である運転領域(即ち、設計点近傍での運転時)においては、上記第1の構造体4と第2の構造体5とは、図4〜図7に示すように、上記回動制御機構11の上記付勢部材12の付勢力により、該第1の構造体4の第1翼部材21の後縁側に上記第2の構造体5の第2翼部材22の前縁側が衝合した状態で一体的に回転し、所要の送風作用をなす。そして、この状態では、図6に示すように、上記翼2の入口角「α」と該翼2に流入する空気流の流入角「β」とが略合致している。従って、この運転状態においては、上記翼2の前縁部2aに流入した空気流の上記負圧面2B側における剥離が可及的に抑制され、乱流騒音の少ない高効率の運転が実現される。
【0051】
一方、上記羽根車1の上記各翼2,2,・・にかかる負荷が所定値以上となった場合、例えば、上記羽根車1が空気調和機の送風機として使用される場合において、熱交換器への着霜によって通風抵抗が増加しその静圧が上昇し、それに伴って上記各翼2,2,・・にかかる負荷が増大したような場合には、上記静圧の上昇によって、図9に示すように、上記翼2に流入する空気流の流入角「β」が大きくなる。このため、上記翼2の入口角「α」が、図6に示すように、該翼2にかかる負荷が所定値以下の状態の時と同じであると、該翼2の入口角「α」と空気流の流入角「β」とのズレが大きくなり、該翼2の負圧面2Bにおける空気流の剥離が生じ易くなり、乱流騒音が上昇するとともに送風効率が低下し、場合によっては失速して風量が大幅に減少し、所要の送風能力を得られないという事態が生じるおそれがあることは既述の通りである。
【0052】
ところが、この実施形態の羽根車1においては、上記翼2にかかる負荷が上昇し、これが所定値以上に達すると、該負荷による回転力が上記各翼2,2,・・のそれぞれに設けられた上記付勢部材12の付勢力を上回り、上記各翼2,2,・・においては、上記付勢力に抗して、上記第2の構造体5が上記第1の構造体4に対して回転方向後方側に相対回動され、図7〜図9に示すように、上記第1の構造体4の第1翼部材21に対して上記第2の構造体5の第2翼部材22が回転方向後方側へ所定量「S2」だけ移動せしめられる。この第2翼部材22の上記第1翼部材21に対する回転方向後方側への移動により、その移動量「S2」だけ上記翼2の翼長がその前縁部2a側において増加し、該翼2の入口角「α」が、図9に示すように、増大変化することになる。しかも、この移動量「S2」は、上記翼2にかかる負荷の大きさに対応して増減するものであることから、上記負荷が所定量以上の領域においては、常時、上記翼2の入口角「α」が、負荷の増大に伴う空気流の流入角「β」に可及的に合致することになる。
【0053】
また、この場合、上記第1翼部材21の後縁側の傾斜面21aと上記第2翼部材22の前縁側の傾斜面22aとの間に形成される隙間25を通って、上記圧力面2A側から上記負圧面2B側に流れる流速の大きい空気流が生じ、この流速の大きい空気流によって負圧面2Bの後縁側での境界層の発達が可及的に抑制される。
【0054】
これらの相乗効果として、上記翼2にかかる負荷の増大に伴う空気流の流入角「β」の変化にも拘わらず、該翼2の負圧面2Bにおける空気流の剥離が可及的に抑制され、低騒音で且つ高効率の運転が実現されるとともに、風量の低下が抑制されることで所要の性能が確実に得られることになる。
【0055】
上記羽根車1においては、上記の如き基本的な作用効果に加えて、次のような作用効果も得られるものである。
【0056】
即ち、上述のように、この実施形態の羽根車1においては、上記第1翼部材21の負圧面2B側部分の周方向における長さ「S1」を、上記翼2の周縁部2dから上記ハブ3寄りの基端部2cにかけて漸増するように構成しているが、かかる構成とすることで、空気流の乱れの分布状態(即ち、上記翼2の「反り」はその周縁部2dから基端部2cに向かうに従ってきつくなっていることから、該基端部2cに近いほど空気流の乱れが大きい状態)と上記第1翼部材21による乱れ抑制作用とが可及的に対応し、空気流の乱れがより一層効果的に抑制され、乱流騒音のより一層の低減が可能となるものである。かかる構成とすることで、上記第1翼部材21においてはその曲げモーメント分布とこれに対抗する強度分布とが対応することになり、該第1翼部材21の基端部への応力集中が可及的に回避され、その強度上の信頼性が向上するものである。
【0057】
さらに、この実施形態の羽根車1においては、上記第1の構造体4を回転軸7に固着して該回転軸7によりこれを回転駆動させる一方、上記第2の構造体5はこれを該第2の構造体5を構成する上記第2翼部材22が上記第1の構造体4を構成する上記第1翼部材21よりも回転方向後方側に位置し、且つ上記第2翼部材22が上記第1翼部材21に対して接離するように相対回動可能としているので、上記第2翼部材22を上記第1翼部材21に対して回転方向後方側へ回動させることによる上記翼2の入口角「α」の拡大を、何ら専用の駆動機構を備えることなく、上記第2翼部材22にかかる負荷を利用して行うことができ、例えば、専用の駆動手段を備える場合に比して、構造の簡略化及び低コスト化が実現できるものである。
【0058】
また、上記羽根車1においては、上記第2の構造体5の上記第1の構造体4に対する移動量を、これら両者間に設けられた上記回動規制機構15によって規制するようにしているので、上記翼2の入口角の増減調整幅が常時適正範囲内に規定され、該入口角の増減調整がより高い信頼性をもって行われ、延いては羽根車1の運転上の信頼性が向上することになる。
【図面の簡単な説明】
【0059】
【図1】本願発明にかかる送風機用羽根車の全体斜視図である。
【図2】図1に示した羽根車のハブ部分の第1の構造例を示す断面図である。
【図3】図1に示した羽根車のハブ部分の第2の構造例を示す断面図である。
【図4】図1に示した羽根車の平面図(一部断面)である。
【図5】図4に示した羽根車の翼形状を示す斜視図である。
【図6】図4に示した羽根車の翼長方向の断面図である。
【図7】図1に示した羽根車の平面図(一部断面)である。
【図8】図7に示した羽根車の翼形状を示す斜視図である。
【図9】図7に示した羽根車の翼長方向の断面図である。
【図10】従来一般のエアフォイル翼の翼長方向の断面図である。
【符号の説明】
【0060】
1は羽根車、2は翼、3はハブ、4は第1の構造体、5は第2の構造体、6はモータ、7は回転軸、8はナット、9はカラー、11は回動制御機構、12は付勢部材、13は掛止部、15は回動規制機構、16〜18はストッパー、21は第1翼部材、22は第2翼部材、25は隙間、31は第1ハブ部材、32は第2ハブ部材、2Aは圧力面、2Bは負圧面である。
[0002]
TECHNICAL FIELD OF THE INVENTION
[0003]
TECHNICAL FIELD The present invention relates to an impeller for a blower provided with airfoil-shaped wings.
[Prior art]
[0004]
Conventionally, as one of the blade shapes of an impeller for a blower, as shown in FIG. 10, a blade thickness distribution is provided so that the blade thickness gradually decreases from the leading edge 50a side to the trailing edge 50b side. A so-called airfoil wing 50 has been proposed. The impeller provided with the airfoil blades 50 is less likely to cause airflow separation on the wing surface than the impeller provided with thin-plate-shaped thin blades, and therefore has excellent aerodynamic performance and low noise. There is an advantage that it can be.
[Problems to be solved by the invention]
[0005]
By the way, in general, an impeller for a blower is designed to generate a required air volume and a static pressure at a certain number of rotations, regardless of the shape of the blade, and therefore, the impeller is used at this design point. In this case, the angle formed by the streamline direction of the airflow flowing into the leading edge of the blade with respect to the rotation axis “L0” of the impeller or a direction perpendicular thereto, that is, the airflow inflow angle “β” ], The angle formed by the blade's warp line (the curve connecting the blade thickness centers) at the leading edge in the rotation direction with respect to the direction of the rotation axis “L0” or a direction perpendicular thereto, ie, the entrance angle of the blade. Since “α” substantially matches and the air flow on the wing surface is hardly separated, it is usually used at this design point.
[0006]
However, when the load (static pressure) increases due to a change in the use environment of the impeller (for example, in the case of an impeller for a blower used in an air conditioner, the frost on the fin surface of the heat exchanger causes an increase in the load). In the case where clogging occurs), even if the impeller is provided with an airfoil blade, the inflow angle of the airflow flowing into the leading edge of the blade is shown by the angle “β ′” in FIG. ), A large deviation occurs between the inflow angle “β” of the airflow and the inlet angle “α” of the blade, and as a result, the airflow Is generated, and the turbulence increases noise (so-called turbulent noise) and lowers the blowing efficiency. Further, in the case where the static pressure rises considerably more than the design point, that is, in the overload operation state, a situation may occur in which the airflow is greatly reduced due to the stall and the required blowing capacity cannot be obtained.
[0007]
Therefore, the present invention changes the inlet angle of the blade of the impeller in accordance with the load applied to the blade, so that the inlet angle of the blade and the inflow angle of the air flow are affected by the change in the load applied to the blade. It is an object of the present invention to provide an impeller for a blower that can maintain good aerodynamic performance by making the best possible match.
[Means for Solving the Problems]
[0008]
The present invention employs the following configuration as specific means for solving such a problem.
[0009]
Of the present applicationAccording to the first aspect of the present invention, in the impeller for a blower in which a plurality of blades 2, 2,... A split structure including a first wing member 21 constituting the portion 2a and a suction surface 2B in the vicinity thereof, and a second wing member 22 constituting a portion other than the first wing member 21,It is characterized in that the length S1 in the circumferential direction of the portion of the first wing member 21 on the suction surface 2B side is gradually increased from the peripheral edge 2d of the wing 2 to the base end 2c near the hub 3. .
[0010]
Of the present applicationAccording to a second aspect of the present invention, in the impeller for a blower in which a plurality of blades 2, 2,... While a divided structure including the first wing member 21 constituting the portion 2a and the suction surface 2B in the vicinity thereof and the second wing member 22 constituting a portion other than the first wing member 21,The hub 3 is composed of a first hub member 31 and a second hub member 32 which are arranged coaxially and are relatively rotatable, and the first hub member 31 has the first wing member on its outer peripheral surface. The second hub member 32 is attached to the outer peripheral surface of the second wing member 22 by attaching the first wing member 21 to the first structure 4 together with the first wing member 21, and the second hub member 32 is attached to the second wing member 22 by the second wing member 22. It is characterized in that the structures 5 are respectively constituted.
[0011]
Of the present applicationAccording to a third aspect of the present invention, in the impeller for a blower in which a plurality of blades 2, 2,... The first wing member has a divided structure including a first wing member 21 constituting a portion 2a and a suction surface 2B in the vicinity thereof, and a second wing member 22 constituting a portion other than the first wing member 21. 21 of the negative pressure surface 2B side portion The length S1 in the circumferential direction is configured to gradually increase from the peripheral edge 2d of the wing 2 to the base end 2c near the hub 3;The hub 3 is composed of a first hub member 31 and a second hub member 32 which are arranged coaxially and are relatively rotatable, and the first hub member 31 has the first wing member on its outer peripheral surface. The second hub member 32 is attached to the outer peripheral surface of the second wing member 22 by attaching the first wing member 21 to the first structure 4 together with the first wing member 21, and the second hub member 32 is attached to the second wing member 22 by the second wing member 22. It is characterized in that the structures 5 are respectively constituted.
【The invention's effect】
[0012]
In the present invention, the following effects can be obtained by adopting such a configuration.
[0013]
(B) of the present applicationFirst inventionAccording to the impeller for a blower described above, in the impeller for a blower in which a plurality of blades 2, 2,... 2 and a second wing member 22 constituting a portion other than the first wing member 21 and a second wing member 22 constituting a portion other than the first wing member 21. By increasing and changing the interval in the blade rotation direction between the first wing member 21 and the second wing member 22, the wing length of the wing 2 including the first wing member 21 and the second wing member 22 is increased. It increases on the leading edge 2a side, and when the entrance angle of the wing 2 is defined, for example, by an angle with respect to the rotation axis, it will increase and change.
[0014]
Therefore, by changing the inlet angle of the wing 2 in accordance with the change of the inflow angle of the air flow to match the inlet angle and the inlet angle as much as possible, the load applied to the wing 2 can be increased. Regardless, low-noise and high-efficiency operation is realized, and even in an overload operation state, a decrease in airflow is suppressed, and required performance is secured.
[0015]
Further, since the inflow resistance of the airflow to the blade 2 during the overload operation is reduced, a decrease in efficiency is prevented, and the energy consumption can be reduced accordingly.
[0016]
Further, the development of the boundary layer on the suction surface 2B is suppressed by the relatively high velocity airflow flowing toward the suction surface 2B side of the blade 2 through the gap 25 between the first wing member 21 and the second wing member 22. Thus, turbulent noise is effectively reduced.
[0017]
On the other hand,First inventionAccording to the impeller for a blower described above, the "warp" of the wing 2 becomes tighter from the peripheral edge 2d toward the base end 2c. However, in this case, as in the present invention, the length “S1” of the first wing member 21 in the circumferential direction of the suction surface 2B side portion is changed from the peripheral edge 2d of the wing 2 toward the hub 3 as in the present invention. By configuring so as to gradually increase toward the base end portion 2c, the turbulence distribution state of the air flow and the turbulence suppressing action of the first wing member 21 correspond as much as possible, and the turbulence of the air flow is further effectively reduced. Turbulence noise can be further reduced.
[0018]
The bending moment of the wing 2 due to the load applied to the wing surface of the wing 2 is close to the base end 2c because the wing 2 is in a cantilever state in which only the base end 2c side is supported. It becomes larger. In this case, as described above, the length “S1” in the circumferential direction of the negative pressure surface 2B side portion of the first wing member 21 is gradually increased from the peripheral edge 2d of the wing 2 to the base end 2c near the hub 3. With this configuration, the bending moment distribution and the strength distribution of the first wing member 21 correspond to each other, so that stress concentration on the base end of the first wing member 21 is possible. And the reliability in terms of strength is improved.
[0019]
(B) of the present applicationSecond inventionAccording to the impeller for a blower described above, in the impeller for a blower in which a plurality of blades 2, 2,... 2 and a second wing member 22 constituting a portion other than the first wing member 21 and a second wing member 22 constituting a portion other than the first wing member 21. By increasing and changing the interval in the blade rotation direction between the first wing member 21 and the second wing member 22, the wing length of the wing 2 including the first wing member 21 and the second wing member 22 is increased. It increases on the leading edge 2a side, and when the entrance angle of the wing 2 is defined, for example, by an angle with respect to the rotation axis, it will increase and change.
[0020]
Therefore, by changing the inlet angle of the wing 2 in accordance with the change of the inflow angle of the air flow to match the inlet angle and the inlet angle as much as possible, the load applied to the wing 2 can be increased. Regardless, low-noise and high-efficiency operation is realized, and even in an overload operation state, a decrease in airflow is suppressed, and required performance is secured.
[0021]
Further, since the inflow resistance of the airflow to the blade 2 during the overload operation is reduced, a decrease in efficiency is prevented, and the energy consumption can be reduced accordingly.
[0022]
Further, the development of the boundary layer on the suction surface 2B is suppressed by the relatively high velocity airflow flowing toward the suction surface 2B side of the blade 2 through the gap 25 between the first wing member 21 and the second wing member 22. Thus, turbulent noise is effectively reduced.
[0023]
On the other hand,According to the impeller for a blower according to the second invention,The hub 3 is composed of a first hub member 31 and a second hub member 32 which are arranged coaxially and are relatively rotatable, and the first hub member 31 has the first wing member on its outer peripheral surface. The second hub member 32 is attached to the outer peripheral surface of the second wing member 22 by attaching the first wing member 21 to the first structure 4 together with the first wing member 21, and the second hub member 32 is attached to the second wing member 22 by the second wing member 22. Each of the structures 5 is configured.
[0024]
Accordingly, by allowing the first hub member 31 and the second hub member 32 to rotate relative to each other, the first wing member 21 constituting the first structure 4 together with the first hub member 31 and the second wing member 21 The second wing member 22 constituting the second structure 5 together with the hub member 32 can be relatively rotatable. For example, the first wing constituting the wing 2 is formed by integrally forming the hub 3 and the wing 2. The relative rotation between the first wing member 21 and the second wing member 22 is easier than in the case where only one of the wing member 21 and the second wing member 22 is fixed to the hub 3. In addition, it is possible to realize the blower impeller at a lower cost by reducing the manufacturing cost accordingly.
[0025]
(C) of the present applicationThird inventionAccording to the impeller for a blower described above, in the impeller for a blower in which a plurality of blades 2, 2,... 2 and a second wing member 22 constituting a portion other than the first wing member 21 and a second wing member 22 constituting a portion other than the first wing member 21. By increasing and changing the interval in the blade rotation direction between the first wing member 21 and the second wing member 22, the wing length of the wing 2 including the first wing member 21 and the second wing member 22 is increased. It increases on the leading edge 2a side, and when the entrance angle of the wing 2 is defined, for example, by an angle with respect to the rotation axis, it will increase and change.
[0026]
Therefore, by changing the inlet angle of the wing 2 in accordance with the change of the inflow angle of the air flow to match the inlet angle and the inlet angle as much as possible, the load applied to the wing 2 can be increased. Regardless, low-noise and high-efficiency operation is realized, and even in an overload operation state, a decrease in airflow is suppressed, and required performance is secured.
[0027]
Further, since the inflow resistance of the airflow to the blade 2 during the overload operation is reduced, a decrease in efficiency is prevented, and the energy consumption can be reduced accordingly.
[0028]
Further, the development of the boundary layer on the suction surface 2B is suppressed by the relatively high velocity airflow flowing toward the suction surface 2B side of the blade 2 through the gap 25 between the first wing member 21 and the second wing member 22. Thus, turbulent noise is effectively reduced.
[0029]
On the other hand,According to the impeller for a blower according to the third invention,The "warp" of the wing 2 becomes tighter from the peripheral edge 2d toward the proximal end 2c. Therefore, the air flow is more likely to be disturbed closer to the proximal end 2c. As in the present invention, a configuration is such that the circumferential length "S1" of the portion of the first wing member 21 on the suction surface 2B side is gradually increased from the peripheral edge 2d of the wing 2 to the base end 2c near the hub 3. By doing so, the turbulence distribution state of the airflow and the turbulence suppressing action of the first wing member 21 correspond as much as possible, and the turbulence of the airflow can be more effectively suppressed. The noise can be further reduced.
[0030]
The bending moment of the wing 2 due to the load applied to the wing surface of the wing 2 is close to the base end 2c because the wing 2 is in a cantilever state in which only the base end 2c side is supported. It becomes larger. In this case, as described above, the length “S1” in the circumferential direction of the negative pressure surface 2B side portion of the first wing member 21 is gradually increased from the peripheral edge 2d of the wing 2 to the base end 2c near the hub 3. With this configuration, the bending moment distribution and the strength distribution of the first wing member 21 correspond to each other, so that stress concentration on the base end of the first wing member 21 is possible. And the reliability in terms of strength is improved.
[0031]
Furthermore, the present applicationAccording to the impeller for a blower according to the third invention,The hub 3 is composed of a first hub member 31 and a second hub member 32 which are arranged coaxially and are relatively rotatable, and the first hub member 31 has the first wing member on its outer peripheral surface. The second hub member 32 is attached to the outer peripheral surface of the second wing member 22 by attaching the first wing member 21 to the first structure 4 together with the first wing member 21, and the second hub member 32 is attached to the second wing member 22 by the second wing member 22. Each of the structures 5 is configured.
[0032]
Accordingly, by allowing the first hub member 31 and the second hub member 32 to rotate relative to each other, the first wing member 21 constituting the first structure 4 together with the first hub member 31 and the second wing member 21 The second wing member 22 constituting the second structure 5 together with the hub member 32 can be relatively rotatable. For example, the first wing constituting the wing 2 is formed by integrally forming the hub 3 and the wing 2. The relative rotation between the first wing member 21 and the second wing member 22 is easier than in the case where only one of the wing member 21 and the second wing member 22 is fixed to the hub 3. In addition, it is possible to realize the blower impeller at a lower cost by reducing the manufacturing cost accordingly.
BEST MODE FOR CARRYING OUT THE INVENTION
[0033]
Hereinafter, an impeller for a blower according to the present invention will be specifically described based on a preferred embodiment.
[0034]
FIG. 1 shows an impeller 1 for a blower according to an embodiment of the present invention. The impeller 1 is a so-called propeller fan applied as, for example, a blower of an air conditioner, and has a plurality of (three in this embodiment) blades 2 composed of airfoil blades on an outer peripheral surface of a hub 3. , 2,... Are mounted at predetermined intervals in the circumferential direction and at predetermined mounting angles. In the impeller 1, by changing the inlet angle of each of the blades 2, 2,... Corresponding to the change of the inflow angle of the airflow flowing into each of the blades 2, 2,. A good aerodynamic performance is always obtained irrespective of the change of the inflow angle. As a specific means for realizing such a problem, the wing 2 is connected to the first wing member 21 and the first wing member 21 as described later. The hub 3 has a two-part structure including a first hub member 31 and a second hub member 32. The first wing member 21 and the first hub member 31 have the same structure. To form the first structure 4, and the second wing member 22 and the second hub member 32 to form the second structure 5. . Hereinafter, specific structures and the like of these constituent members will be described.
[0035]
Structure of wing 2
As shown in FIGS. 1 and 4 to 6, the wing 2 has a wing thickness distribution in which the wing thickness gradually decreases from the leading edge 2a to the trailing edge 2b. Is a pressure surface 2A and the other side surface is a negative pressure surface 2B. In this embodiment, the wing 2 has a two-part structure including a first wing member 21 and a second wing member 22 described below.
[0036]
The first wing member 21 forms the leading edge 2a of the wing 2 and a suction surface 2B near the leading edge 2a in a range extending from the base end 2c of the wing 2 to the peripheral edge 2d. The front edge 2a is formed of a thick band-like member having a "substantially wedge-shaped" cross-sectional shape with an inclined surface 21a connecting the end on the pressure surface 2A side and the end on the negative pressure surface 2B side. . In the first wing member 21, the circumferential length “S1” (see FIGS. 4 and 5) on the negative pressure surface 2B side is gradually increased from the peripheral edge 2d of the blade 2 to the base end 2c. Is set to
[0037]
The first wing members 21, 21,... Of each of the wings 2, 2,. The first hub member 31 is connected to the first hub member 31 and is integrated with the first hub member 31 to form a first structure 4 that is integrally rotated with the first hub member 31 (see FIGS. 2, 4 and 5). ).
[0038]
The second wing member 22 excludes a portion of the wing 2 other than the first wing member 21, specifically, the entire area of the pressure surface 2 </ b> A and the vicinity of the front edge 2 a of the suction surface 2 </ b> B. A member having a substantially fan-shaped plane configuration forming a portion, a surface connecting the pressure surface 2A and the suction surface 2B at a front edge position thereof faces the inclined surface 21a of the first wing member 21 and An inclined surface 22a that can abut this (see FIG. 9). Each of the second wing members 22, 22,... Of each of the wings 2, 2,... Having such a structure is connected to the second hub member 32 of the hub 3 whose base end is described below. Are connected to the outer peripheral surfaces of the second hub member 32 and are integrated with the second hub member 32 to form a second structure 5 that rotates integrally with the second hub member 32 (see FIGS. 2, 4 and 5). ).
[0039]
Hub 3 structure
The hub 3 supports the wings 2, 2,..., And comprises a substantially disk-shaped first hub member 31, which constitutes a portion near one end in the axial direction, and a first hub member 31. An axially-divisional structure including a column-shaped second hub member 32 that constitutes the entire region except for the above-mentioned region is provided. As described above, the first hub member 31 has the first wing members 21, 21,... Integrally attached to the outer peripheral surface thereof, and the first hub member 31, together with the first wing members 21, 21,. Is constituted. Further, as described above, the second hub member 32 has the second wing members 22, 22,... Integrally attached to the outer peripheral surface thereof, and the second structure together with the second wing members 22 is formed. 5 is constituted.
[0040]
The first hub member 31 forming the first structure 4 and the second wing member 22 forming the negative pressure surface 2B are coaxially and relatively rotatably disposed. As described below, the impeller 1 is configured by the first structure 4 and the second structure 5 (FIG. 1).
[0041]
Assembling the first structure 4 and the second structure 5
The first structure 4 and the second structure 5 are assembled coaxially in the axial direction of the impeller 1 as shown in FIGS. As shown in FIGS. 1, 4 and 5, the first wing member 21 is assembled such that the second wing member 22 is located on the trailing edge side of the first wing member 21. In the assembled state, the first wing member 22 forms a pair. The wing member 21 and the second wing member 22 form one wing configuration.
[0042]
The first structure 4 and the second structure 5 are driven by the motor 6 to drive the first structure 4 having the first wing member 21 constituting the leading edge 2 a of the wing 2. The second structure 5 provided with the second wing member 22 is basically indirectly driven to rotate by the first structure 4, and a specific method for realizing such a rotational drive mode is provided. Here, two specific examples described below are shown.
[0043]
That is, the first rotational drive mode is a preferred drive mode when the motor 6 is arranged on the blow-out side of the impeller 1 as shown in FIG. 2, and the rotary shaft 7 of the motor 6 is 2 A nut which is loosely inserted into the hub member 32 while being non-rotatably inserted into the first wing member 21 and is attached to the shaft end of the rotary shaft 7. 8, the first hub member 31 and the second hub member 32 are fastened in the axial direction. The rotation shaft 7 and the first hub member 31 are fixed to each other while the rotation shaft 7 is provided with a surface sliding portion 7a, while the shaft hole 33 of the first hub member 31 is provided with a corner sliding portion 33a. This is realized by fitting the face sliding portion 7a of the rotating shaft 7 and the corner sliding portion 33a of the shaft hole 33 to each other and restricting the relative rotation of the two in the rotating direction. Therefore, the first hub member 31 can be driven to rotate by the rotation shaft 7, and the second hub member 32 can be freely moved with respect to the rotation shaft 7.
[0044]
As shown in FIG. 3, the second rotational drive mode is a preferred drive mode when the motor 6 is arranged on the suction side of the impeller 1, and the first hub member of the rotary shaft 7 of the motor 6 While the surface sliding portion 7a is formed in the entire area corresponding to the portion 31 and the second hub member 32, the shaft hole 33 of the first hub member 31 is provided with a corner sliding portion 33a. The shaft hole 34 of the second hub member 32 is formed as a round hole, and the collar 9 having the shaft hole 9a having the squaring portion 9b is inserted into the shaft hole 34 so as to be freely movable. I have. Then, the facing portion 7a of the rotating shaft 7 is made to correspond to the facing portion 33a of the shaft hole 33 of the first wing member 21 and the facing portion 9b of the collar 9 on the side of the second hub member 32, respectively. Thus, the first hub member 31 can be driven to rotate by the rotation shaft 7, and the second hub member 32 can move freely with respect to the rotation shaft 7.
[0045]
On the other hand, no matter which of the first drive mode and the second drive mode is adopted, only the first structure 4 is rotationally driven by the motor 6 via the rotary shaft 7. It is necessary to provide a structure for rotating the second structure 5 so as to follow the rotation of the first structure 4, and the gist of the present invention, that is, to determine the entrance angle of the wing 2 to the load applied to the wing 2 It is necessary to provide a structure for increasing and decreasing according to the size and a structure for regulating the maximum adjustment width of the entrance angle to a predetermined value. Therefore, in the embodiment, the first structure 4 A concave portion 36 is formed in the first hub member 31, and in the concave portion 36, a rotation control mechanism 11 described below, which performs a required function between the first structure 4 and the second structure 5, is rotated. A movement regulating mechanism 15 is provided.
[0046]
As shown in FIGS. 2 and 4, the rotation control mechanism 11 is provided on the upper surface of the second hub member 32 so as to correspond to the peripheral wall of the concave portion 36 of the first hub member 31 and the concave portion 36. And a biasing member 12 disposed between the engaging portion 13 and the engaging portion 13. The urging member 12 always urges the second structure 5 toward the first structure 4, that is, the front side in the rotation direction with a predetermined urging force. , Dampers and the like.
[0047]
In this embodiment, the urging force of the urging member 12 is set as follows. That is, when the sum of the loads applied to the second wing members 22, 22,... Of the wings 2, 2,. 4 to 6, the leading edge of the second wing member 22 can be held in close contact with the trailing edge of the first wing member 21, while the sum of the loads is maintained. Is greater than or equal to a predetermined value, the rotational force due to the load exceeds the urging force, and the second wing member 22 rotates relative to the first wing member 21 as shown in FIGS. It is set so as to be allowed to be relatively rotated backward in the direction.
[0048]
As shown in FIGS. 2 and 4, the rotation restricting mechanism 15 is configured to sandwich a plate-like stopper 16 provided on the first hub member 31 side at a predetermined interval on both sides in the rotation direction. It comprises a pair of stoppers 17 and 18 provided on the second hub member 32 side. As shown in FIG. 4, when the load on the second wing member 22 is equal to or less than a predetermined value and the first wing member 21 and the second wing member 22 are in contact with each other, the first hub member The stopper 16 on the 31st side is close to the stopper 18 located on the front side in the rotation direction among the stoppers 17 and 18 on the second hub member 32 side, and the stopper 16 and the stopper 17 on the rear side in the rotation direction are connected to each other. A predetermined interval is secured between them. Therefore, as shown in FIG. 7, the second wing member 22 is rotated rearward in the rotation direction with respect to the first wing member 21 within a rotation range until the stopper 16 comes into contact with the stopper 17. Relative rotation will be allowed.
[0049]
Explanation of the operation and the like of the impeller 1
Next, the operation and the like of the impeller 1 configured as described above will be described.
[0050]
The impeller 1 is rotationally driven by the rotating shaft 7 when the motor 6 is started. In this case, in an operation region in which the load on each of the blades 2, 2,... Of the impeller 1 is equal to or less than a predetermined value (that is, during operation near the design point), the first structure 4 and the second The second structure 5 is, as shown in FIGS. 4 to 7, behind the first wing member 21 of the first structure 4 by the urging force of the urging member 12 of the rotation control mechanism 11. When the leading edge side of the second wing member 22 of the second structure 5 abuts on the edge side, the second wing member 22 rotates integrally with the leading edge side to perform a required blowing action. In this state, as shown in FIG. 6, the inlet angle “α” of the wing 2 substantially matches the inflow angle “β” of the airflow flowing into the wing 2. Therefore, in this operating state, the separation of the airflow flowing into the leading edge 2a of the blade 2 on the side of the negative pressure surface 2B is suppressed as much as possible, and a highly efficient operation with less turbulent noise is realized. .
[0051]
On the other hand, when the load applied to each of the blades 2, 2,... Of the impeller 1 becomes a predetermined value or more, for example, when the impeller 1 is used as a blower of an air conditioner, the heat exchanger In the case where the ventilation resistance increases due to frost on the wings and the static pressure increases, and the load applied to each of the wings 2, 2,... Increases accordingly, the static pressure increases as shown in FIG. As shown in (2), the inflow angle “β” of the airflow flowing into the blade 2 increases. For this reason, if the entrance angle “α” of the wing 2 is the same as when the load on the wing 2 is equal to or less than a predetermined value, as shown in FIG. 6, the entrance angle “α” of the wing 2 And the inflow angle “β” of the air flow becomes large, the air flow is easily separated on the negative pressure surface 2B of the blade 2, the turbulence noise increases, the blowing efficiency decreases, and in some cases, the stall As described above, there is a possibility that the air volume may be significantly reduced and a required air blowing capacity may not be obtained.
[0052]
However, in the impeller 1 of this embodiment, when the load applied to the wing 2 increases and reaches a predetermined value or more, the rotational force due to the load is provided to each of the wings 2, 2,. , The second structure 5 with respect to the first structure 4 in each of the wings 2, 2,... Against the urging force. 7 to 9, the second wing member 22 of the second structure 5 is moved relative to the first wing member 21 of the first structure 4 as shown in FIGS. It is moved by a predetermined amount “S2” backward in the rotation direction. Due to the movement of the second wing member 22 rearward in the rotation direction with respect to the first wing member 21, the wing length of the wing 2 increases by the movement amount "S2" on the leading edge 2a side, and the wing 2 Is increased and increased as shown in FIG. In addition, since the movement amount “S2” increases and decreases in accordance with the magnitude of the load applied to the blade 2, in the region where the load is equal to or more than a predetermined amount, the entrance angle of the blade 2 is constantly increased. “Α” will match as much as possible the inflow angle “β” of the airflow with increasing load.
[0053]
In this case, the pressure surface 2A side is passed through a gap 25 formed between the inclined surface 21a on the trailing edge side of the first wing member 21 and the inclined surface 22a on the leading edge side of the second wing member 22. Thus, an airflow having a large flow velocity flowing toward the negative pressure surface 2B is generated, and the development of the boundary layer on the trailing edge side of the negative pressure surface 2B is suppressed as much as possible by the high airflow.
[0054]
As a synergistic effect of these, the separation of the air flow on the negative pressure surface 2B of the blade 2 is suppressed as much as possible, despite the change of the inflow angle “β” of the air flow accompanying the increase in the load on the blade 2. In addition, low-noise and high-efficiency operation is realized, and required performance is reliably obtained by suppressing a decrease in air volume.
[0055]
In the impeller 1, the following operation and effect can be obtained in addition to the above basic operation and effect.
[0056]
That is, as described above, in the impeller 1 of this embodiment, the circumferential length “S1” of the portion on the negative pressure surface 2B side of the first wing member 21 is changed from the peripheral portion 2d of the wing 2 to the hub. Although it is configured to gradually increase toward the base end 2c closer to the third side, the distribution state of the turbulence of the airflow (that is, the “warp” of the wing 2 is changed from the peripheral edge 2d to the base end 2c). Since the air flow becomes tighter toward the portion 2c, the turbulence of the air flow increases as the distance from the base end portion 2c increases) and the turbulence suppressing action of the first wing member 21 corresponds as much as possible. Is more effectively suppressed, and turbulence noise can be further reduced. With this configuration, in the first wing member 21, the bending moment distribution and the strength distribution corresponding thereto correspond to each other, and stress concentration on the base end of the first wing member 21 is possible. This is avoided as much as possible, and the reliability in strength is improved.
[0057]
Further, in the impeller 1 of this embodiment, the first structure 4 is fixed to the rotating shaft 7 and is driven to rotate by the rotating shaft 7, while the second structure 5 is The second wing member 22 forming the second structure 5 is located rearward in the rotation direction of the first wing member 21 forming the first structure 4, and the second wing member 22 is Since the first wing member 21 is relatively rotatable relative to the first wing member 21, the wing is formed by rotating the second wing member 22 rearward in the rotation direction with respect to the first wing member 21. 2 can be increased by using the load on the second wing member 22 without providing any dedicated driving mechanism, for example, as compared with the case where dedicated driving means is provided. Thus, the structure can be simplified and the cost can be reduced.
[0058]
In the impeller 1, the amount of movement of the second structure 5 with respect to the first structure 4 is regulated by the rotation regulating mechanism 15 provided therebetween. The width of the increase / decrease of the inlet angle of the blade 2 is always defined within an appropriate range, and the increase / decrease of the inlet angle is performed with higher reliability. As a result, the operational reliability of the impeller 1 is improved. Will be.
[Brief description of the drawings]
[0059]
FIG. 1 is an overall perspective view of an impeller for a blower according to the present invention.
FIG. 2 is a sectional view showing a first structural example of a hub portion of the impeller shown in FIG.
FIG. 3 is a sectional view showing a second example of the structure of the hub portion of the impeller shown in FIG. 1;
FIG. 4 is a plan view (partial cross section) of the impeller shown in FIG.
FIG. 5 is a perspective view showing a blade shape of the impeller shown in FIG.
6 is a sectional view of the impeller shown in FIG. 4 in a blade length direction.
FIG. 7 is a plan view (partial cross section) of the impeller shown in FIG.
FIG. 8 is a perspective view showing a blade shape of the impeller shown in FIG.
9 is a sectional view of the impeller shown in FIG. 7 in a blade length direction.
FIG. 10 is a sectional view of a conventional general airfoil blade in a blade length direction.
[Explanation of symbols]
[0060]
1 is an impeller, 2 is a wing, 3 is a hub, 4 is a first structure, 5 is a second structure, 6 is a motor, 7 is a rotating shaft, 8 is a nut, 9 is a collar, and 11 is rotating. A control mechanism, 12 is an urging member, 13 is a hook, 15 is a rotation restricting mechanism, 16 to 18 are stoppers, 21 is a first wing member, 22 is a second wing member, 25 is a gap, and 31 is a first wing member. The hub member 32 is a second hub member, 2A is a pressure surface, and 2B is a suction surface.

Claims (3)

ハブ(3)の外周面に複数枚の翼(2),(2),・・を周方向に所定間隔で配置してなる送風機用羽根車であって、
上記翼(2)が、該翼(2)の前縁部(2a)とその近傍の負圧面(2B)を構成する第1翼部材(21)と、該第1翼部材(21)以外の部分を構成する第2翼部材(22)とからなる分割構造とされると共に、
上記第1翼部材(21)の負圧面(2B)側部分の周方向における長さ(S1)が、上記翼(2)の周縁部(2d)から上記ハブ(3)寄りの基端部(2c)にかけて漸増するように構成されていることを特徴とする送風機用羽根車。
An impeller for a blower comprising a plurality of blades (2), (2),... Arranged at predetermined intervals in a circumferential direction on an outer peripheral surface of a hub (3),
The wing (2) includes a first wing member (21) constituting a leading edge (2a) of the wing (2) and a suction surface (2B) near the wing (2), and a member other than the first wing member (21). A divided structure including a second wing member (22) forming a portion,
The circumferential length (S1) of the negative pressure surface (2B) side portion of the first wing member (21) is from the peripheral edge (2d) of the wing (2) toward the hub (3). An impeller for a blower, wherein the impeller is configured to increase gradually toward 2c).
ハブ(3)の外周面に複数枚の翼(2),(2),・・を周方向に所定間隔で配置してなる送風機用羽根車であって、
上記翼(2)が、該翼(2)の前縁部(2a)とその近傍の負圧面(2B)を構成する第1翼部材(21)と、該第1翼部材(21)以外の部分を構成する第2翼部材(22)とからなる分割構造とされる一方、
上記ハブ(3)が、同軸上に配置され且つ相対回転可能とされた第1ハブ部材(31)と第2ハブ部材(32)とで構成されるとともに、
上記第1ハブ部材(31)はその外周面に上記第1翼部材(21)を取り付けて該第1翼部材(21)と共に第1の構造体(4)を、また上記第2ハブ部材(32)はその外周面に上記第2翼部材(22)を取り付けて該第2翼部材(22)と共に第2の構造体(5)を、それぞれ構成していることを特徴とする送風機用羽根車。
An impeller for a blower comprising a plurality of blades (2), (2),... Arranged at predetermined intervals in a circumferential direction on an outer peripheral surface of a hub (3),
The wing (2) includes a first wing member (21) constituting a leading edge (2a) of the wing (2) and a suction surface (2B) near the wing (2), and a member other than the first wing member (21). While a divided structure including a second wing member (22) constituting a portion is provided,
The hub (3) is composed of a first hub member (31) and a second hub member (32) which are arranged coaxially and are relatively rotatable,
The first hub member (31) has the first wing member (21) attached to the outer peripheral surface thereof, and the first wing member (21) and the first structural body (4) together with the second hub member (31). 32) a blade for a blower, wherein the second wing member (22) is attached to an outer peripheral surface thereof to form a second structure (5) together with the second wing member (22). car.
ハブ(3)の外周面に複数枚の翼(2),(2),・・を周方向に所定間隔で配置してなる送風機用羽根車であって、
上記翼(2)が、該翼(2)の前縁部(2a)とその近傍の負圧面(2B)を構成する第1翼部材(21)と、該第1翼部材(21)以外の部分を構成する第2翼部材(22)とからなる分割構造とされるとともに、
上記第1翼部材(21)の負圧面(2B)側部分の周方向における長さ(S1)が、上記翼(2)の周縁部(2d)から上記ハブ(3)寄りの基端部(2c)にかけて漸増するように構成され、
さらに、上記ハブ(3)が、同軸上に配置され且つ相対回転可能とされた第1ハブ部材(31)と第2ハブ部材(32)とで構成されるとともに、
上記第1ハブ部材(31)はその外周面に上記第1翼部材(21)を取り付けて該第1翼部材(21)と共に第1の構造体(4)を、また上記第2ハブ部材(32)はその外周面に上記第2翼部材(22)を取り付けて該第2翼部材(22)と共に第2の構造体(5)を、それぞれ構成していることを特徴とする送風機用羽根車。
An impeller for a blower comprising a plurality of blades (2), (2),... Arranged at predetermined intervals in a circumferential direction on an outer peripheral surface of a hub (3),
The wing (2) includes a first wing member (21) constituting a leading edge (2a) of the wing (2) and a suction surface (2B) near the wing (2), and a member other than the first wing member (21). A divided structure including a second wing member (22) constituting a portion,
The circumferential length (S1) of the negative pressure surface (2B) side portion of the first wing member (21) is from the peripheral edge (2d) of the wing (2) toward the hub (3). 2c) is configured to increase gradually,
Further, the hub (3) is composed of a first hub member (31) and a second hub member (32) which are arranged coaxially and are relatively rotatable,
The first hub member (31) has the first wing member (21) attached to the outer peripheral surface thereof, and the first wing member (21) and the first structural body (4) together with the second hub member (31). 32) a blade for a blower, wherein the second wing member (22) is attached to an outer peripheral surface thereof to form a second structure (5) together with the second wing member (22). car.
JP17860098A 1998-06-25 1998-06-25 Impeller for blower Expired - Fee Related JP3582363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17860098A JP3582363B2 (en) 1998-06-25 1998-06-25 Impeller for blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17860098A JP3582363B2 (en) 1998-06-25 1998-06-25 Impeller for blower

Publications (2)

Publication Number Publication Date
JP2000009097A JP2000009097A (en) 2000-01-11
JP3582363B2 true JP3582363B2 (en) 2004-10-27

Family

ID=16051296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17860098A Expired - Fee Related JP3582363B2 (en) 1998-06-25 1998-06-25 Impeller for blower

Country Status (1)

Country Link
JP (1) JP3582363B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW546443B (en) 2002-09-27 2003-08-11 Delta Electronics Inc Axial flow fan with a plurality of segment blades
JP4662438B2 (en) * 2004-12-01 2011-03-30 東芝キヤリア株式会社 Axial fan, outdoor unit of air conditioner
DE102007024840A1 (en) * 2007-05-29 2008-12-04 Rolls-Royce Deutschland Ltd & Co Kg Turbomachinery bucket with multi-profile design
JP6709741B2 (en) * 2017-01-18 2020-06-17 テラル株式会社 Rotor
PL234339B1 (en) * 2018-03-05 2020-02-28 Politechnika Wroclawska Rotor of an axial fan
CN113757170A (en) * 2021-09-30 2021-12-07 苏州浪潮智能科技有限公司 High-air-volume low-noise fan blade, fan and design method of fan blade

Also Published As

Publication number Publication date
JP2000009097A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JP3204208B2 (en) Mixed-flow blower impeller
WO2007114090A1 (en) Multi-blade fan
AU2006276567B2 (en) Axial flow fan
JP2010133254A (en) Centrifugal blower, and air conditioner provided with the same
JP3050144B2 (en) Axial fan
JP3598900B2 (en) Impeller for blower
EP1210264B1 (en) Centrifugal impeller with high blade camber
JP4014887B2 (en) Centrifugal fan and cooking device equipped with the centrifugal fan
TW201804087A (en) Propeller fan and fluid feeding device
JP3582363B2 (en) Impeller for blower
AU2010202406A1 (en) An axial fan
WO2018123519A1 (en) Propeller fan
JP2008223741A (en) Centrifugal blower
JP6739656B2 (en) Impeller, blower, and air conditioner
JP2012107538A (en) Axial-flow fan or diagonal-flow fan, and air conditioner mounted outdoor unit with the same
JPH09195988A (en) Multiblade blower
JP2000018194A (en) Impeller for blower
JP2001159396A (en) Centrifugal fan and air conditioner equipped with the same
JP2004011423A (en) Air flow control structure of air blowing section
JP6414268B2 (en) Propeller fan
JP2000345995A (en) Fan
JP4492060B2 (en) Blower impeller
JP2000314394A (en) Blower
JP4152158B2 (en) Axial fan
JP3111963B2 (en) Impeller for blower and impeller for blower

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040719

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees