JP3581868B2 - Cellulose solubilization method - Google Patents

Cellulose solubilization method Download PDF

Info

Publication number
JP3581868B2
JP3581868B2 JP2000275442A JP2000275442A JP3581868B2 JP 3581868 B2 JP3581868 B2 JP 3581868B2 JP 2000275442 A JP2000275442 A JP 2000275442A JP 2000275442 A JP2000275442 A JP 2000275442A JP 3581868 B2 JP3581868 B2 JP 3581868B2
Authority
JP
Japan
Prior art keywords
cellulose
water
component
soluble
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000275442A
Other languages
Japanese (ja)
Other versions
JP2002085100A (en
Inventor
剛 坂木
昌男 柴田
桂一 世利
佳久 井上
斉 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Prefectural Government
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fukuoka Prefectural Government
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Prefectural Government, Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fukuoka Prefectural Government
Priority to JP2000275442A priority Critical patent/JP3581868B2/en
Publication of JP2002085100A publication Critical patent/JP2002085100A/en
Application granted granted Critical
Publication of JP3581868B2 publication Critical patent/JP3581868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、天然高分子化合物の中のセルロース又はセルロース含有物質を効率よく加水分解して、機能性食品素材として有用な水溶性オリゴ糖類及びヘキソースを含む水可溶性成分に転化する方法に関するものである。
【0002】
【従来の技術】
産業・家庭廃棄物には、セルロース成分その他の多量の天然高分子化合物が含まれているが、そのほとんどは再利用されずに廃棄されているのが実状である。しかしながら、これらの化合物は、貴重な化学原料やエネルギー資源となり得るものであり、これらを大量に処理して有効に利用するための技術の開発が望まれている。
【0003】
ところで、代表的な天然高分子化合物であるセルロースは、グルコースが高次元に高分子化した化合物である。オリゴ糖は、単糖が複数個結合したもので、多糖に対して少糖ともいわれ、構成単糖の数が、通常2〜6のものを指すが、最近では10以上のものもオリゴ糖ということがある。
【0004】
オリゴ糖は、甘味性、保湿性、ビフィズス菌増殖性など種々な生理活性を有するため、機能性食品素材として注目されており、現在、フラクトオリゴ糖、ガラクトオリゴ糖、マルトオリゴ糖、イソマルトオリゴ糖、キシロオリゴ糖、大豆オリゴ糖などが実用に供されている。そして、これらのオリゴ糖類については、大豆オリゴ糖以外は、主として原料に酵素を作用させることによって製造されている。
【0005】
一方、セルロースからアルコール発酵の可能な単糖類を生産する方法としては、例えば酸加水分解法、酵素分解法及び腐朽菌による分解法などが知られている。しかしながら、酸加水分解法においては、反応器の腐食や廃液処理の問題があり、また酵素や腐朽菌による分解法においては、セルロースの強固な結晶構造のため、糖化速度が極めて遅いという欠点がある。したがって、後者の方法においては、セルロースの結晶構造を緩めるため、前処理として爆砕処理や摩砕処理が検討されているが、この場合、過分解による糖の損失を生じたり、エネルギーを多量に消費しなければならないという欠点がある。また、最近、上記問題点を解決するため超臨界状態若しくは亜臨界状態の水を用いてセルロースを加水分解処理し、単糖類のグルコースを生産する方法が提案されているが(特開平5−31000号公報、特開平10−327900号公報)、効率の点で問題があり、まだ実用化には至っていない。
【0006】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、セルロース系資源を原料とし、反応器の腐食がなく、短時間で、かつ比較的温和な条件で加水分解することにより、機能性食品素材などとして有用な水溶性オリゴ糖類及びアルコール発酵可能な単糖類を含む、水可溶性成分に転化する方法を提供することを目的としてなされたものである。
【0007】
【課題を解決するための手段】
本発明者らは、セルロース又はセルロース含有物質を高い変換効率で、しかも迅速に可溶化させる方法を開発するために、鋭意研究を重ねた結果、これらを加圧熱水と接触させて加水分解する際に、触媒としてランタノイドイオンを存在させることにより、その目的を達成しうることを見出し、この知見に基づいて本発明をなすに至った。
【0008】
すなわち、本発明は、セルロース又はセルロース含有物質の粉末を、ランタノイドイオン供給物質の存在下、220〜270℃に加熱された加圧熱水と接触させて加水分解することを特徴とするセルロース可溶化方法を提供するものである。
【0009】
【発明の実施の形態】
本発明方法により可溶化しうる材料は、セルロース及びセルロース含有物質であるが、このセルロースは植物に由来するものであってもよいし、また動物や細菌に由来するものであってもよい。また、その構成グルコース単位数についても特に制限はなく、通常知られている2000〜26000個の範囲のもののいずれも用いることができる。
さらに、その構成グルコース単位の一部がエーテル化されたものや、エステル化されたものであってもよい。
【0010】
次に、セルロース含有物質の例としては、セルロースを含有する木質や農業廃棄物を挙げることができる
【0011】
本発明方法においては、加水分解速度の向上をはかる必要上、これらの原料は粉末として用いられる。この粉末の粒径は、できるだけ小さい方が望ましいが、二次凝集物の生成や取り扱いやすさを考慮して10〜200μm、好ましくは20〜100μmの範囲が選ばれる。
【0012】
本発明方法は、触媒としてのランタノイドイオンを供給しうる物質の存在下で行うことが必要である。このランタノイドイオンの存在により、セルロースの加水分解速度は著しく増大し、セルロース又はセルロース含有物質の可溶化を短時間で行うことができる。
【0013】
このランタノイドイオン供給物質としては、ランタノイド金属、例えばランタン、セリウム、プラセオジム、ネオジム、サマリウム、ホルミウム、ツリウム、イッテルビウム、ルテチウムなどのハロゲン化物や塩化物が用いられる。このハロゲン化物としては、フッ化物や塩化物が、また水溶性塩としてはトリフルオロメタンスルホン酸塩、すなわちトリフラートが好ましい。
【0014】
このランタノイドイオン供給物質は、原料のセルロースに基づき5〜50ミリモルの量で用いられるが、多くの場合10ミリモル以上においては、その可溶化は飽和状態に達する上に、これよりも量が多くなるとガス及び揮発性成分の生成が急上昇するので、この量としては10ミリモル程度が好ましい。
【0015】
本発明においては、前記セルロース又はセルロース含有物質の粉末を触媒を含む加圧熱水と接触させ、加水分解することにより可溶化させる。この際、反応形式としては特に制限はないが、例えば固定床型反応器にセルロース又はセルロース含有物質の粉末を充填し、これに所定量の触媒を含む加圧熱水を連続的に通水して、セルロースを加水分解し、生成した可溶化物を熱水と共に系外へ流出させる形式や、セルロース又はセルロース含有物質と触媒と水からなるスラリーを連続的に反応器に流通させる形式が好適である。
【0016】
この際、加圧熱水としては220〜270℃の温度に加熱されたものを用いることが必要である。この温度が220℃未満では、加水分解速度が遅すぎて実用的でないし、270℃を超えるとガス及び揮発性成分の生成量が多くなって、可溶性成分の生成量はそれほど増加せず、むしろ反応装置面やエネルギー消費面から経済的に不利となる。加水分解速度、可溶性成分の生成量及び経済性などを考慮すると、この加圧熱水の温度は240〜260℃の範囲が好ましい。
【0017】
また、セルロース又はセルロース含有物質の粉末と加圧熱水の接触時間は、その中に存在するセルロースの分子量や結晶化度あるいは使用する触媒の種類によって異なるが、一般に加圧熱水の温度が高いほど短かくてよい。通常加圧熱水が250〜270℃の範囲であれば50〜180秒程度であり、これよりも温度が低ければ180秒よりも長くなるし、これよりも温度が高くなれば50秒よりも短かくなるが、一般に30〜200秒の範囲内である。ただし、熱水を流通させる固定床型反応器を用いた場合、可溶性成分を反応系外に追い出すために、さらに数分間の通水が必要になる。
【0018】
反応器から流出した熱水は、その中に含まれる可溶性成分の二次分解を抑制するために、直ちに冷却するのが望ましい。また、反応器内の圧力は、熱水が反応器内で液体状態を保持するように、反応温度の飽和蒸気圧以上に維持される。
本発明方法により可溶化された成分中には、水溶性オリゴ糖類及び少量の単糖とフルフラールが含まれている。
【0019】
【実施例】
次に、実施例により本発明をさらに詳細に説明する。
【0020】
実施例1
乾燥した微結晶セルロース(粒子径100〜120μm)0.5g、蒸留水3.0g、LaCl11.1mg(30μmol)をステンレス鋼製オートクレーブ(内容積6ml)に仕込み、窒素雰囲気下、250℃に加熱された塩浴中で振とうすることにより可溶化を行った。反応時間を30秒から300秒間の範囲内で変え、所定の反応時間経過後に、直ちに反応器を水浴(15℃)に入れて急冷し、反応を終結させた。内部温度のモニタリングは温度測定装置 DP−2MC(理化工業株式会社製)を用いて行った。反応後、反応器内のガスを排出したのち、内容物をビーカーに取り出し、ガラスフィルターを通してろ過し、ろ液を蒸発除去することにより水可溶性成分(WS)を収得し、収率(質量%)を求めた。次に、ガラスフィルターに残った水不溶性成分をメチルアルコール200mlで洗浄し、メチルアルコール可溶性成分(MS)とメチルアルコール不溶性成分(MI)を回収し、それぞれの収率(質量%)を求め、かつ質量損失量からガス及び揮発性成分(G)の収率(質量%)を計算した。
この結果をグラフとして図1に示す。
【0021】
比較例
実施例1で用いたLaCl11.1mgを用いずに、実施例1の実験を繰り返した。この結果をグラフとして図2に示す。
図1と図2を対比すれば分るように、触媒を添加した系(図1)では反応時間とともにメチルアルコール不溶性成分(MI)が減少し、反応時間180秒から240秒で最小値20質量%を示した。また、これにともなって水可溶性成分(WS)が増加し、180秒において56質量%となった。そして、180秒後に水可溶性成分(WS)が減少に転じると、メチルアルコール可溶性成分(MS)とガス及び揮発性成分(G)が増加した。触媒を添加しない系(図2)では反応時間が300秒においてもセルロースは13.3質量%しか分解されておらず、このことからランタノイドイオンの添加がセルロースの分解を促進していることが分る。
ここで生成した水可溶性成分(WS)は、グルコース、セロビオースをはじめとする水溶性多糖類と、グルコースが変換して生成する5‐ヒドロキシメチルフルフラール、5‐ヒドロキシメチルフルフラールが加水分解して生成するレブリン酸である。水可溶性成分(WS)が最も多かった反応時間150秒における、それぞれの分解物生成量はセルロース仕込量に対して、グルコース5.8質量%、セロビオース0.2質量%、5‐ヒドロキシメチルフルフラール19.2質量%、レブリン酸2.3質量%であった。
【0022】
実施例2
LaClの濃度を1〜50ミリモルの範囲で変えた原料混合物を用い、塩浴の温度250℃、反応時間90秒間として、実施例1の実験を繰り返した。このときに得られる水可溶性成分(WS)、メチルアルコール可溶性成分(MS)、メチルアルコール不溶性成分(MI)、ガス及び揮発性成分(G)の収率(質量%)との関係をグラフとして図3に示す。
この図から分るように、メチルアルコール不溶性成分(MI)は、触媒濃度の増大とともに急激に減少し、水可溶性成分(WS)は触媒濃度が多いほど多く生成するが、10mM以上で飽和状態に達した。一方、メチルアルコール可溶性成分(MS)はほとんど生成しないが、ガス及び揮発性成分(G)は触媒濃度が増大すると増加する。このことより、触媒量としては10mM程度が望ましいことが分る。
【0023】
実施例3
塩浴温度を200〜375℃の範囲で変え、触媒濃度10.0ミリモル、反応時間90秒において実施例1の実験を繰り返した。このときの塩浴温度と各成分の収率(質量%)との関係をグラフとして図4に示す。
この図から分るように、メチルアルコール不溶性成分(MI)は225〜275℃において急激に減少し、この温度領域においてセルロースの分解が進行している。また、メチルアルコール不溶性成分(MI)は275℃で極小値をとり、その後は増加する。一方、セルロースの分解により、水可溶性成分(WS)は増加し、250℃を極大にして、その後は減少する。水可溶性成分(WS)の減少に伴い、メチルアルコール可溶性成分(MS)とガス及び揮発性成分(G)は増加する。300℃以上では分解物の生成挙動に大きな変化は認められない。
【0024】
【発明の効果】
本発明によると、酸加水分解の場合のような反応器の腐食なしに、セルロース又はセルロース含有物質を比較的低い温度及び短時間で効率よく水可溶化することができる。
【図面の簡単な説明】
【図1】本発明方法における反応時間と各成分の収率との関係を示すグラフ。
【図2】触媒を用いない場合における反応時間と各成分の収率との関係を示すグラフ。
【図3】本発明方法における触媒濃度と各成分の収率との関係を示すグラフ。
【図4】本発明方法における反応温度と各成分の収率との関係を示すグラフ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for efficiently hydrolyzing cellulose or a cellulose-containing substance in a natural polymer compound to convert it into a water-soluble component containing a water-soluble oligosaccharide and hexose useful as a functional food material. .
[0002]
[Prior art]
Industrial and domestic waste contains a large amount of natural polymer compounds such as cellulose components, but most of them are actually discarded without being reused. However, these compounds can be valuable chemical raw materials and energy resources, and it is desired to develop a technology for treating them in large quantities and effectively utilizing them.
[0003]
By the way, cellulose, which is a typical natural polymer compound, is a compound in which glucose is polymerized in a higher dimension. Oligosaccharides are those in which a plurality of monosaccharides are linked, and are also called oligosaccharides with respect to polysaccharides. The number of constituent monosaccharides usually refers to those having 2 to 6, but recently those having 10 or more are also called oligosaccharides. Sometimes.
[0004]
Oligosaccharides, which have various physiological activities such as sweetness, moisturizing properties, and growth of bifidobacteria, are attracting attention as functional food materials. And soybean oligosaccharides are practically used. And these oligosaccharides, except for the soybean oligosaccharides, are produced mainly by allowing enzymes to act on raw materials.
[0005]
On the other hand, as a method for producing a monosaccharide that can be alcohol-fermented from cellulose, for example, an acid hydrolysis method, an enzymatic decomposition method, a decomposition method using rot fungi, and the like are known. However, in the acid hydrolysis method, there are problems of corrosion of the reactor and waste liquid treatment, and in the decomposition method using enzymes and rot bacteria, there is a disadvantage that the saccharification rate is extremely slow due to the strong crystal structure of cellulose. . Therefore, in the latter method, explosion treatment or grinding treatment is considered as a pretreatment to loosen the crystal structure of cellulose, but in this case, sugar is lost due to over-decomposition or energy is consumed in large amounts. There is a drawback that must be done. Recently, in order to solve the above problems, a method has been proposed in which cellulose is hydrolyzed using water in a supercritical state or subcritical state to produce glucose as a monosaccharide (JP-A-5-31000). JP-A-10-327900), there is a problem in efficiency, and it has not yet been put to practical use.
[0006]
[Problems to be solved by the invention]
Under such circumstances, the present invention uses a cellulosic resource as a raw material, does not corrode the reactor, and is hydrolyzed under a relatively mild condition in a short time to obtain a functional food material or the like. It is intended to provide a method for converting into water-soluble components, including useful water-soluble oligosaccharides and alcohol-fermentable monosaccharides.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to develop a method for solubilizing cellulose or a cellulose-containing substance with high conversion efficiency and rapidly, and as a result, they are hydrolyzed by contact with pressurized hot water. At that time, it was found that the object can be achieved by the presence of a lanthanoid ion as a catalyst, and the present invention has been accomplished based on this finding.
[0008]
That is, the present invention is characterized in that cellulose or cellulose-containing substance powder is hydrolyzed by contact with pressurized hot water heated to 220 to 270 ° C. in the presence of a lanthanoid ion supplying substance. It provides a method.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Materials that can be solubilized by the method of the present invention are cellulose and cellulose-containing substances. The cellulose may be derived from plants, or may be derived from animals or bacteria. There is no particular limitation on the number of constituent glucose units, and any of the generally known ranges of 2000 to 26000 can be used.
Furthermore, a part of the constituent glucose units may be etherified or esterified.
[0010]
Next, examples of the cellulose-containing substance include wood and agricultural waste containing cellulose.
In the method of the present invention, these raw materials are used as powders in order to improve the hydrolysis rate. The particle size of this powder is desirably as small as possible, but is selected in the range of 10 to 200 μm, preferably 20 to 100 μm in consideration of the formation of secondary aggregates and ease of handling.
[0012]
The method of the present invention needs to be performed in the presence of a substance capable of supplying a lanthanoid ion as a catalyst. Due to the presence of the lanthanoid ion, the hydrolysis rate of cellulose is remarkably increased, and the cellulose or the cellulose-containing substance can be solubilized in a short time.
[0013]
As the lanthanoid ion supplying material, a lanthanoid metal, for example, a halide or chloride such as lanthanum, cerium, praseodymium, neodymium, samarium, holmium, thulium, ytterbium, or lutetium is used. The halide is preferably a fluoride or chloride, and the water-soluble salt is preferably a trifluoromethanesulfonate, that is, triflate.
[0014]
The lanthanoid ion supplying substance is used in an amount of 5 to 50 mmol based on the raw material cellulose. In many cases, when the amount is 10 mmol or more, the solubilization reaches a saturated state and the amount becomes larger. Since the generation of gas and volatile components rapidly increases, this amount is preferably about 10 mmol.
[0015]
In the present invention, the powder of the cellulose or the cellulose-containing substance is brought into contact with pressurized hot water containing a catalyst, and is hydrolyzed to be solubilized. At this time, the reaction system is not particularly limited, but for example, a fixed-bed reactor is filled with powder of cellulose or a cellulose-containing substance, and pressurized hot water containing a predetermined amount of a catalyst is continuously passed therethrough. In this manner, a form in which cellulose is hydrolyzed and a generated solubilized substance flows out of the system together with hot water or a form in which a slurry comprising cellulose or a cellulose-containing substance, a catalyst and water is continuously passed through a reactor is preferable. is there.
[0016]
At this time, it is necessary to use hot water heated to a temperature of 220 to 270 ° C. as the pressurized hot water. If this temperature is lower than 220 ° C., the hydrolysis rate is too slow to be practical, and if it is higher than 270 ° C., the production of gas and volatile components increases, and the production of soluble components does not increase so much. It is economically disadvantageous in terms of the reactor and energy consumption. The temperature of the pressurized hot water is preferably in the range of 240 to 260 ° C. in consideration of the hydrolysis rate, the production amount of the soluble component and the economic efficiency.
[0017]
Further, the contact time of the powder of cellulose or cellulose-containing substance and pressurized hot water varies depending on the molecular weight and crystallinity of cellulose present therein or the type of catalyst used, but generally the temperature of pressurized hot water is high. May be as short as possible. Usually, it is about 50 to 180 seconds if the hot water under pressure is in the range of 250 to 270 ° C, longer than 180 seconds if the temperature is lower than this, and longer than 50 seconds if the temperature is higher than this. Although shorter, it is generally in the range of 30 to 200 seconds. However, in the case of using a fixed bed type reactor through which hot water flows, it is necessary to pass water for several minutes in order to drive out soluble components out of the reaction system.
[0018]
It is desirable that the hot water flowing out of the reactor be cooled immediately in order to suppress the secondary decomposition of the soluble components contained therein. The pressure in the reactor is maintained at or above the saturated vapor pressure of the reaction temperature so that the hot water maintains a liquid state in the reactor.
The components solubilized by the method of the present invention contain water-soluble oligosaccharides and small amounts of monosaccharides and furfural.
[0019]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0020]
Example 1
0.5 g of dried microcrystalline cellulose (particle diameter: 100 to 120 μm), 3.0 g of distilled water, and 11.1 mg (30 μmol) of LaCl 3 are charged into a stainless steel autoclave (internal volume: 6 ml), and heated to 250 ° C. under a nitrogen atmosphere. Solubilization was performed by shaking in a heated salt bath. The reaction time was changed within a range of 30 seconds to 300 seconds, and immediately after the predetermined reaction time had elapsed, the reactor was immediately cooled in a water bath (15 ° C.) to terminate the reaction. The internal temperature was monitored using a temperature measuring device DP-2MC (manufactured by Rika Kogyo Co., Ltd.). After the reaction, the gas in the reactor was exhausted, the contents were taken out into a beaker, filtered through a glass filter, and the filtrate was evaporated to obtain a water-soluble component (WS), yield (% by mass). I asked. Next, the water-insoluble component remaining on the glass filter is washed with 200 ml of methyl alcohol, and the methyl alcohol-soluble component (MS) and the methyl alcohol-insoluble component (MI) are recovered, and the respective yields (% by mass) are obtained. The yield (% by mass) of the gas and the volatile component (G) was calculated from the mass loss.
This result is shown in FIG. 1 as a graph.
[0021]
Comparative Example The experiment of Example 1 was repeated without using 11.1 mg of LaCl 3 used in Example 1. This result is shown in FIG. 2 as a graph.
As can be seen by comparing FIG. 1 and FIG. 2, in the system to which the catalyst was added (FIG. 1), the methyl alcohol insoluble component (MI) decreased with the reaction time, and the minimum value of 20 mass was obtained in the reaction time of 180 to 240 seconds. %showed that. In addition, the water-soluble component (WS) increased accordingly, and reached 56% by mass in 180 seconds. Then, after 180 seconds, when the water-soluble component (WS) started to decrease, the methyl alcohol-soluble component (MS) and the gas and volatile components (G) increased. In the system without addition of the catalyst (FIG. 2), only 13.3% by mass of cellulose was decomposed even when the reaction time was 300 seconds, which indicates that the addition of lanthanoid ions accelerates the decomposition of cellulose. You.
The water-soluble component (WS) produced here is produced by hydrolysis of water-soluble polysaccharides such as glucose and cellobiose, and 5-hydroxymethylfurfural and 5-hydroxymethylfurfural generated by conversion of glucose. It is levulinic acid. At a reaction time of 150 seconds when the water-soluble component (WS) was the largest, the amount of each decomposed product was 5.8% by mass of glucose, 0.2% by mass of cellobiose, and 5-hydroxymethylfurfural 19 with respect to the charged amount of cellulose. 0.2% by mass and 2.3% by mass levulinic acid.
[0022]
Example 2
The experiment of Example 1 was repeated using a raw material mixture in which the concentration of LaCl 3 was changed in the range of 1 to 50 mmol, and the temperature of the salt bath was 250 ° C., and the reaction time was 90 seconds. A graph showing the relationship between the water-soluble component (WS), the methyl alcohol-soluble component (MS), the methyl alcohol-insoluble component (MI), the yield of the gas and the volatile component (G) (mass%) obtained at this time. 3 is shown.
As can be seen from this figure, the methyl alcohol-insoluble component (MI) rapidly decreases with an increase in the catalyst concentration, and the water-soluble component (WS) is generated more as the catalyst concentration increases, but becomes saturated at 10 mM or more. Reached. On the other hand, the methyl alcohol-soluble component (MS) is hardly generated, but the gas and the volatile component (G) increase as the catalyst concentration increases. This indicates that the amount of the catalyst is preferably about 10 mM.
[0023]
Example 3
The experiment of Example 1 was repeated at a salt bath temperature in the range of 200 to 375 ° C., a catalyst concentration of 10.0 mmol, and a reaction time of 90 seconds. FIG. 4 is a graph showing the relationship between the salt bath temperature and the yield (% by mass) of each component at this time.
As can be seen from this figure, the methyl alcohol insoluble component (MI) sharply decreases at 225 to 275 ° C., and the decomposition of cellulose proceeds in this temperature range. Further, the methyl alcohol insoluble component (MI) takes a minimum value at 275 ° C. and thereafter increases. On the other hand, due to the decomposition of cellulose, the water-soluble component (WS) increases, reaches a maximum at 250 ° C., and thereafter decreases. As the water-soluble component (WS) decreases, the methyl alcohol-soluble component (MS) and the gas and volatile components (G) increase. At 300 ° C. or higher, no significant change is observed in the decomposition product generation behavior.
[0024]
【The invention's effect】
According to the present invention, cellulose or a cellulose-containing substance can be efficiently water-solubilized at a relatively low temperature and in a short time without corrosion of a reactor as in the case of acid hydrolysis.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the reaction time and the yield of each component in the method of the present invention.
FIG. 2 is a graph showing the relationship between the reaction time and the yield of each component when no catalyst is used.
FIG. 3 is a graph showing the relationship between the catalyst concentration and the yield of each component in the method of the present invention.
FIG. 4 is a graph showing the relationship between the reaction temperature and the yield of each component in the method of the present invention.

Claims (3)

セルロース又はセルロース含有物質の粉末を、ランタノイドイオン供給物質の存在下、220〜270℃に加熱された加圧熱水と接触させて加水分解することを特徴とするセルロース可溶化方法。A method for solubilizing cellulose, comprising: bringing a powder of cellulose or a cellulose-containing substance into contact with hot pressurized water heated to 220 to 270 ° C in the presence of a lanthanoid ion supplying substance to hydrolyze the cellulose. ランタノイドイオン供給物質が、ランタノイド金属のハロゲン化物又はトリフルオロメタンスルホン酸である請求項1記載のセルロース可溶化方法。The method for solubilizing cellulose according to claim 1, wherein the lanthanoid ion supplying substance is a halide of a lanthanoid metal or trifluoromethanesulfonic acid. 加圧熱水と30〜200秒間接触させる請求項1又は2記載のセルロース可溶化方法。3. The method for solubilizing cellulose according to claim 1, wherein the cellulose is contacted with hot pressurized water for 30 to 200 seconds.
JP2000275442A 2000-09-11 2000-09-11 Cellulose solubilization method Expired - Lifetime JP3581868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000275442A JP3581868B2 (en) 2000-09-11 2000-09-11 Cellulose solubilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000275442A JP3581868B2 (en) 2000-09-11 2000-09-11 Cellulose solubilization method

Publications (2)

Publication Number Publication Date
JP2002085100A JP2002085100A (en) 2002-03-26
JP3581868B2 true JP3581868B2 (en) 2004-10-27

Family

ID=18761061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000275442A Expired - Lifetime JP3581868B2 (en) 2000-09-11 2000-09-11 Cellulose solubilization method

Country Status (1)

Country Link
JP (1) JP3581868B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049869A1 (en) * 2003-11-21 2005-06-02 Tama-Tlo Corporation Method of hydrolyzing organic compound
JP4604194B2 (en) * 2004-11-02 2010-12-22 国立大学法人広島大学 Method for hydrolysis of cellulose using catalyst and method for producing glucose using catalyst
EP2039783A4 (en) * 2006-06-26 2009-12-09 Tokyo Inst Tech Method for production of polysaccharide and/or monosaccharide by hydrolysis of other polysaccharide
JP4765073B2 (en) * 2006-07-05 2011-09-07 国立大学法人広島大学 Method for hydrothermal hydrolysis of lignocellulose
JP4877045B2 (en) 2007-04-25 2012-02-15 トヨタ自動車株式会社 Method for decomposing plant fiber materials
JPWO2009004950A1 (en) * 2007-06-29 2010-08-26 新日本石油株式会社 Method for producing monosaccharides and / or water-soluble polysaccharides by hydrolysis of materials containing cellulose
JP4134250B1 (en) 2007-07-03 2008-08-20 崎 隆 川 Method for producing monosaccharides and ethanol using cellulosic substances
JP4240138B1 (en) * 2007-09-05 2009-03-18 トヨタ自動車株式会社 Method for separating saccharification of plant fiber material
JP5263491B2 (en) * 2008-04-22 2013-08-14 独立行政法人産業技術総合研究所 Lactic acid production method
JP4609526B2 (en) 2008-06-03 2011-01-12 トヨタ自動車株式会社 Method for separating saccharification of plant fiber material
JP5114298B2 (en) 2008-06-03 2013-01-09 トヨタ自動車株式会社 Method for separating saccharification of plant fiber material
WO2010067593A1 (en) 2008-12-09 2010-06-17 国立大学法人 北海道大学 Method for producing a sugar-containing liquid in which the primary ingredient is glucose
JP5366128B2 (en) * 2008-12-19 2013-12-11 独立行政法人産業技術総合研究所 Method for producing levulinic acid ester
JP5861820B2 (en) * 2011-09-20 2016-02-16 株式会社エクォス・リサーチ Method for solubilizing cellulose and extracting water-soluble components

Also Published As

Publication number Publication date
JP2002085100A (en) 2002-03-26

Similar Documents

Publication Publication Date Title
JP3581868B2 (en) Cellulose solubilization method
JP4330839B2 (en) Method for producing glucose and / or water-soluble cellooligosaccharide
JP7386164B2 (en) Use in ionic polymer and biomass processing
JP2006129735A (en) Method for hydrolyzing cellulose using catalyst and method for producing glucose using the catalyst
JP5344666B2 (en) Method for producing lactic acid
CN102086464B (en) Method for preparing chitin
WO2005049869A1 (en) Method of hydrolyzing organic compound
JP7220670B2 (en) Method for decomposing polysaccharides using ozone
CN101775079A (en) Method for pre-treating chitin raw material
CN111184026A (en) Preparation method of nano-copper/bismuth vanadate composite antibacterial agent
CN110903488A (en) Preparation method of chitosan @ metal organic framework antibacterial material
JP2008228583A (en) Method for decomposing cellulose and method for producing glucose
CN102108352A (en) Immobilization method of bromelain
CN102304865A (en) Method for extracting cellulose from tobacco
JP5059650B2 (en) Method for producing monosaccharide or oligosaccharide from polysaccharide
CN100365008C (en) Process for preparing red alga oligose
Iborra et al. Picrocrocin hydrolysis by immobilized β-glucosidase
CN110615855A (en) Method for preparing water-soluble oligomeric derivative by dissolving and degrading biological polysaccharide
JPS6244914B2 (en)
JP2849706B2 (en) Adsorbent
JP3128575B2 (en) Method for producing water-insoluble polysaccharide
KR101744817B1 (en) Method for preparing galactose using agarese
CN101555506B (en) Enzymolysis method of wood fiber raw materials
JPS6121102A (en) Preparation of chitosan oligosaccharide
AU2020300853A1 (en) Production of natural organic gluconates

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040625

R150 Certificate of patent or registration of utility model

Ref document number: 3581868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term