JP3579821B2 - Thermal storage air conditioning system - Google Patents

Thermal storage air conditioning system Download PDF

Info

Publication number
JP3579821B2
JP3579821B2 JP06307299A JP6307299A JP3579821B2 JP 3579821 B2 JP3579821 B2 JP 3579821B2 JP 06307299 A JP06307299 A JP 06307299A JP 6307299 A JP6307299 A JP 6307299A JP 3579821 B2 JP3579821 B2 JP 3579821B2
Authority
JP
Japan
Prior art keywords
cold
heat storage
hot water
heat
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06307299A
Other languages
Japanese (ja)
Other versions
JP2000257920A (en
Inventor
加藤義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP06307299A priority Critical patent/JP3579821B2/en
Publication of JP2000257920A publication Critical patent/JP2000257920A/en
Application granted granted Critical
Publication of JP3579821B2 publication Critical patent/JP3579821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、蓄熱式空調システムに関する。
【0002】
【従来の技術】
従来の蓄熱式空調システムを図8および図9により説明する。建物1の地下には蓄熱槽STが構築され、建物1の外部には、吸収式冷温水発生機(第2の空調機)ARと、外気負荷処理用の水熱源式冷暖兼用空調機(第1の空調機)OHUと、蓄熱用の空気熱源式ヒートポンプチラー(ヒートポンプ式冷凍機)CR1と、通年冷水製造用の空冷式冷凍機CR2が設置されている。冷温水供給ヘッダA1、A2および冷温水戻りヘッダB1、B2が備えられ、ヘッダA1、B1には1次ポンプP1を介してヒートポンプチラーCR1または冷凍機CR2が接続されると共に、1次ポンプP1を介して熱交換器HXに接続され、蓄熱槽STを循環する水を冷却または加熱するようにしている。また、ヘッダA1、B1には、2次ポンプP2を介して各室R内を空調するファンコイルユニットFCUに接続され、ヘッダA2、B2には1次ポンプP1を介して冷凍機CR2が接続されると共に、2次ポンプP2を介してコンピュータ室等の通年冷却系のFCU(図示せず)に接続されている。さらに、空調機OHUにより冷却または加熱された外気はダクトDを介して各室Rに供給されるように構成されている。
【0003】
上記構成からなる蓄熱式空調システムの運転方法を図9により説明する。夏期には、夜間に深夜電力を利用してヒートポンプチラーCR1を運転し、蓄熱槽STに7℃程度の冷水を蓄熱しておく。昼間時には、蓄熱槽STの冷水を熱源として空調機OHUを運転し、外気を冷却して各室Rに供給すると共に、吸収式冷温水発生機ARを運転し、7℃程度の冷水を2次ポンプP2により各室Rおよび通年冷却系のFCUに循環させるようにしている。また、冬季には、夜間に深夜電力を利用してヒートポンプチラーCR1を運転し、蓄熱槽STに45℃程度の温水を蓄熱しておく。昼間時には、蓄熱槽STの温水を熱源として空調機OHUを運転し、外気を加熱して各室Rに供給すると共に、吸収式冷温水発生機ARを運転し、45℃程度の温水を各室RのFCUに循環させ、また、冷凍機CR2を運転し7℃程度の低温冷水を通年冷却系のFCUに循環させるようにしている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来のシステムは、外気負荷処理用の空調機OHUの熱源水と、吸収式冷温水発生機ARにおいて発生する冷温水を供給ヘッダA1で混合させているため、夏期では除湿能力を増大させるため7℃の冷水を、冬季では45℃の温水を維持する必要があり、その結果、図7に示すように、冷凍機COP(運転効率)が低下するとともに蓄熱槽熱損失が増大するという問題を有している。
【0005】
特に、学校等の教室、会議場など室内に多人数を収容する建物においては、各種基準から1人あたりの必要給気量(換気量)が決められており、そのため、図10に示すように、処理すべき外気負荷が多くなり、上記従来の空調システムではさらに効率が低下するという問題を有している。
【0006】
本発明は、上記従来の問題を解決するものであって、外気負荷が大きい場合に蓄熱されたエネルギーを外気負荷の処理のみに用いることにより、冷凍機の運転効率を向上させるとともに蓄熱槽の熱損失を低減させることができる蓄熱式空調システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
そのために本発明の蓄熱式空調システムは、建物に設置される蓄熱槽と、該蓄熱槽を循環する水を冷却加熱する熱交換器と、該熱交換器に接続される蓄熱側の冷温水供給ヘッダおよび冷温水戻りヘッダと、蓄熱側の冷温水供給ヘッダおよび冷温水戻りヘッダに接続されるヒートポンプ式冷凍機および外気を冷却または加熱して建物各室に供給する第1の空調機と、利用側の冷温水供給ヘッダおよび冷温水戻りヘッダに接続され前記第1の空調機とは別系統で各室の冷暖房負荷を処理する第2の空調機と、前記蓄熱側の冷温水供給ヘッダおよび冷温水戻りヘッダと利用側の蓄熱側の冷温水供給ヘッダおよび冷温水戻りヘッダとの間に設けられる開閉弁とを備え、
外気負荷が大きい場合には、前記開閉弁を閉じて蓄熱されたエネルギーにより外気負荷を処理し、外気負荷が小さい場合には、前記開閉弁を開いて蓄熱されたエネルギーにより外気負荷および各室の冷暖房負荷を処理することを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。図1は、本発明の蓄熱式空調システムの1実施形態を示す構成図である。建物1の地下には蓄熱槽STが構築され、建物1の外部には、吸収式冷温水発生機ARと、外気負荷処理用の水熱源式冷暖兼用空調機OHUと、蓄熱用の空気熱源式ヒートポンプチラーCR1と、通年冷水製造用の空冷式冷凍機CR2が設置されている。冷温水供給ヘッダAおよび冷温水戻りヘッダBは、バルブV1、V2の開閉により、蓄熱側ヘッダA1、B1、利用側ヘッダA2、B2および通年冷水側ヘッダA3、B3が連通または分割可能にされている。
【0009】
蓄熱側ヘッダA1、B1には、1次ポンプP1を介してヒートポンプチラーCR1または冷凍機CR2が接続されると共に、1次ポンプP1を介して熱交換器HXに接続され、蓄熱槽STを循環する水を冷却または加熱するようにしている。利用側ヘッダA2、B2には、2次ポンプP2を介して各室R内を空調するファンコイルユニットFCUに接続され、通年冷水側ヘッダA3、B3には1次ポンプP1を介して冷凍機CR2が接続されると共に、2次ポンプP2を介してコンピュータ室等の通年冷却系のFCU(図示せず)に接続されている。さらに、空調機OHUにより冷却または加熱された外気はダクトDを介して各室Rに供給されるように構成されている。
【0010】
上記構成からなる本発明の蓄熱式空調システムの運転方法を図1〜図5により説明する。図1、図3〜図5は、各運転モード示す図、図2は、各モードでの送水温度および蓄熱温度を説明するための図である。
【0011】
図1は、夏モード(図2の6月中旬〜9月)の運転を示し、バルブV1を閉じ、バルブV2を開き、蓄熱側ヘッダA1、B1と利用側ヘッダA2、B2および通年冷水側ヘッダA3、B3を独立させている。夜間に深夜電力を利用してヒートポンプチラーCR1を運転(必要に応じてCR2も運転)し、蓄熱槽STに15℃程度の高温冷水を蓄熱しておく。昼間時には、蓄熱槽STの高温冷水を熱源として空調機OHUを運転し、外気を冷却して各室Rに供給すると共に、吸収式冷温水発生機ARを運転し、7℃程度の低温冷水を2次ポンプP2により各室Rおよび通年冷却系のFCUに循環させるようにしている。
【0012】
図3は、冬モード(図2の12月〜2月)の運転を示し、バルブV1、V2を蓄熱側ヘッダA1、B1、利用側ヘッダA2、B2および通年冷水側ヘッダA3、B3をそれぞれ独立させている。夜間に深夜電力を利用してヒートポンプチラーCR1を運転し、蓄熱槽STに20℃程度の低温温水を蓄熱しておく。昼間時には、蓄熱槽STの低温温水を熱源として空調機OHUを運転し、外気を加熱して各室Rに供給すると共に、吸収式冷温水発生機ARを運転し、45℃程度の高温温水を各室RのFCUに循環させ、また、冷凍機CR2を運転し7℃程度の低温冷水を通年冷却系のFCUに循環させるようにしている。
【0013】
図4は、冬に近い中間期1モード(図2の3月、4月、11月)の運転を示し、バルブV1を開き、バルブV2を閉じ、蓄熱側ヘッダA1、B1と利用側ヘッダA2、B2を連通させるとともに、通年冷水側ヘッダA3、B3を独立させている。夜間に深夜電力を利用してヒートポンプチラーCR1を運転し、蓄熱槽STに30℃程度の低温温水を蓄熱しておく。昼間時には、蓄熱槽STの低温温水を熱源として空調機OHUを運転し、外気を加熱して各室Rに供給すると共に、蓄熱槽STを熱源した低温温水を各室RのFCUに循環させ、吸収式冷温水発生機ARの運転を必要以外はしないようにしている。
【0014】
図5は、夏に近い中間期2モード(図2の5月、10月)の運転を示し、バルブV1を開き、バルブV2を閉じ、蓄熱側ヘッダA1、B1と利用側ヘッダA2、B2を連通させるとともに、通年冷水側ヘッダA3、B3を独立させている。夜間に深夜電力を利用してヒートポンプチラーCR1を運転し、蓄熱槽STに10℃程度の低温温水を蓄熱しておく。昼間時には、蓄熱槽STの低温冷水を熱源として空調機OHUを運転し、外気を冷却して各室Rに供給すると共に、蓄熱槽STを熱源した低温冷水を各室RのFCUに循環させ、吸収式冷温水発生機ARの運転を必要以外はしないようにしている。
【0015】
以上説明した本発明の作用効果について説明する。図6は本発明の基本的な考え方を説明するための図である。すなわち、図6(A)に示す湿り空気線図において、夏期の場合、外気温度が32℃、室温の目標値が26℃としたとき、外気負荷は、蓄熱槽STに蓄熱するヒートポンプチラーCR1と、外気負荷を処理する空調機OHUでまかない、室内のインテリアおよびペリメータ負荷は、吸収式冷温水発生機ARおよびFCUでまかなうようにするもので、これにより、蓄熱槽STの蓄熱温度を低くすることが可能となる。この方式は、図6(B)に示すように夏期のように外気負荷の割合が大きい場合に有効である。図6(C)に示すように中間期は、外気負荷の割合が小さいので、図6(A)の方式は採用せず、図4および図5で説明したように、吸収式冷温水発生機ARを運転しないで、蓄熱源のみにより空調を行う方式に切り替えるようにする。
【0016】
図7は、本発明の効果を説明するための図であり、建物躯体を利用した地下ピット式の場合を想定して算出したもので、従来方式と比較して夏の冷房、冬の暖房、中間期の冷暖房いずれの場合でも、冷凍機の運転効率を向上させるとともに蓄熱槽の熱損失を低減させることができ。
【0017】
以上、本発明の実施の形態について説明したが、本発明はこれに限定されるものではなく種々の変更が可能である。例えば、上記実施形態においては、第2の空調機として吸収式冷温水発生機ARを採用し、冷温水を各室RのFCUに循環させるようにしているが、冷暖兼用のヒートポンプにより、冷温水を各室RのFCUに循環させるようにしてもよいし、また、各室Rにパッケージエアコンを設けてもよい。また、蓄熱槽は建物躯体を利用したものに限らず、地上タンク式においても有効である。
【0018】
【発明の効果】
以上の説明から明らかなように、本発明によれば、外気負荷が大きい場合に蓄熱されたエネルギーを外気負荷の処理のみに用いることにより、蓄熱温度を冷房時には高く、暖房時には低くすることができるため、冷凍機の運転効率を向上させるとともに蓄熱槽の熱損失を低減させることができる。
【図面の簡単な説明】
【図1】本発明の蓄熱式空調システムの1実施形態を示す構成図である。
【図2】本発明の蓄熱式空調システムの運転方法を説明するための図である。
【図3】本発明の蓄熱式空調システムの運転方法を説明するための図である。
【図4】本発明の蓄熱式空調システムの運転方法を説明するための図である。
【図5】本発明の蓄熱式空調システムの運転方法を説明するための図である。
【図6】本発明の基本的な考え方を説明するための図である。
【図7】本発明の効果を説明するための図である。
【図8】従来の蓄熱式空調システムの構成図である。
【図9】図8の空調システムの運転方法を説明するための図である。
【図10】本発明の課題を説明するための図である。
【符号の説明】
1…建物
R…室
ST…蓄熱槽
CR1…ヒートポンプ式冷凍機
OHU…第1の空調機
AR、FCU…第2の空調機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a regenerative air conditioning system.
[0002]
[Prior art]
A conventional regenerative air conditioning system will be described with reference to FIGS. In the basement of the building 1, a heat storage tank ST is constructed, and outside the building 1, an absorption type cold / hot water generator (second air conditioner) AR and a water / heat source type cooling / heating air conditioner (second air conditioner) for treating outside air load. No. 1 air conditioner) OHU, an air heat source type heat pump chiller (heat pump type refrigerator) CR1 for heat storage, and an air-cooled type refrigerator CR2 for year-round chilled water production. Cold / hot water supply headers A1, A2 and cold / hot water return headers B1, B2 are provided. A heat pump chiller CR1 or a refrigerator CR2 is connected to the headers A1, B1 via a primary pump P1, and the primary pump P1 is connected to the header A1, B1. The water connected to the heat exchanger HX via the heat storage tank ST is cooled or heated. The headers A1 and B1 are connected to a fan coil unit FCU for air-conditioning the inside of each room R via a secondary pump P2, and the headers A2 and B2 are connected to a refrigerator CR2 via a primary pump P1. In addition, it is connected via a secondary pump P2 to an FCU (not shown) of a year-round cooling system such as a computer room. Further, the outside air cooled or heated by the air conditioner OHU is supplied to each room R via the duct D.
[0003]
An operation method of the regenerative air conditioning system having the above configuration will be described with reference to FIG. In summer, the heat pump chiller CR1 is operated at night using electric power at midnight, and cold water of about 7 ° C. is stored in the heat storage tank ST. During the daytime, the air conditioner OHU is operated by using the cold water in the heat storage tank ST as a heat source to cool the outside air and supply it to each room R, and the absorption-type cold / hot water generator AR is operated to supply the cold water of about 7 ° C. The pump P2 circulates through each room R and the FCU of the year-round cooling system. In winter, the heat pump chiller CR1 is operated at night using electric power at midnight to store hot water of about 45 ° C. in the heat storage tank ST. During the daytime, the air conditioner OHU is operated by using the hot water in the heat storage tank ST as a heat source, the outside air is heated and supplied to each room R, and the absorption-type cold / hot water generator AR is operated, and hot water of about 45 ° C. is supplied to each room. R is circulated to the FCU, and the refrigerator CR2 is operated to circulate low-temperature chilled water of about 7 ° C. to the FCU of the annual cooling system.
[0004]
[Problems to be solved by the invention]
However, in the conventional system described above, since the heat source water of the air conditioner OHU for processing the outside air load and the cold / hot water generated in the absorption-type cold / hot water generator AR are mixed in the supply header A1, the dehumidifying capacity is increased in summer. Therefore, it is necessary to maintain cold water at 7 ° C. and hot water at 45 ° C. in winter, as a result, as shown in FIG. 7, the refrigerator COP (operating efficiency) decreases and the heat loss in the heat storage tank increases. Have a problem.
[0005]
In particular, in buildings such as schools and classrooms, conference halls, etc. that accommodate a large number of people in a room, the required air supply (ventilation) per person is determined from various standards, and as shown in FIG. However, there is a problem that the external air load to be processed increases, and the efficiency of the conventional air conditioning system further decreases.
[0006]
The present invention solves the above-described conventional problem, and improves the operating efficiency of a refrigerator by using the energy stored when the outside air load is large only for processing the outside air load, and at the same time, improves the heat storage tank. It is an object of the present invention to provide a regenerative air conditioning system capable of reducing loss.
[0007]
[Means for Solving the Problems]
For this purpose, the regenerative air conditioning system of the present invention comprises a heat storage tank installed in a building, a heat exchanger for cooling and heating water circulating in the heat storage tank, and a cold / hot water supply on the heat storage side connected to the heat exchanger. a header and cold water return header, a first air conditioner that supplies heat pump type refrigerator is connected to the heat storage side of the hot and cold water supply header and the cold water return header and the outside air to the cooling or heating the building each chamber, A second air conditioner connected to the use side cold / hot water supply header and the cold / hot water return header to process the cooling / heating load of each room in a separate system from the first air conditioner; and the heat storage side cold / hot water supply header, An on-off valve provided between the cold / hot water return header and the cold / hot water supply header and the cold / hot water return header on the heat storage side of the use side ,
When the outside air load is large, the open / close valve is closed to process the outside air load with the stored energy, and when the outside air load is small, the open / close valve is opened to store the outside air load and the energy of each room by the stored heat. The cooling and heating load is processed .
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of a regenerative air conditioning system of the present invention. In the basement of the building 1, a heat storage tank ST is constructed. Outside the building 1, an absorption-type cold / hot water generator AR, a water heat source type cooling / heating combined air conditioner OHU for external air load treatment, and an air heat source type for heat storage are provided. A heat pump chiller CR1 and an air-cooled refrigerator CR2 for producing cold water all year round are installed. The cold / hot water supply header A and the cold / hot water return header B are configured such that the heat storage side headers A1, B1, the use side headers A2, B2, and the yearly cold water side headers A3, B3 can be communicated or divided by opening and closing the valves V1, V2. I have.
[0009]
A heat pump chiller CR1 or a refrigerator CR2 is connected to the heat storage side headers A1 and B1 via the primary pump P1, and is connected to the heat exchanger HX via the primary pump P1 to circulate through the heat storage tank ST. Water is cooled or heated. The use side headers A2 and B2 are connected to a fan coil unit FCU for air-conditioning the inside of each room R via a secondary pump P2, and the chiller CR2 is connected to the year-round chilled water side headers A3 and B3 via a primary pump P1. And a FCU (not shown) of a year-round cooling system such as a computer room via a secondary pump P2. Further, the outside air cooled or heated by the air conditioner OHU is supplied to each room R via the duct D.
[0010]
An operation method of the regenerative air conditioning system of the present invention having the above configuration will be described with reference to FIGS. 1 and FIGS. 3 to 5 are diagrams showing each operation mode, and FIG. 2 is a diagram for explaining the water supply temperature and the heat storage temperature in each mode.
[0011]
FIG. 1 shows the operation in the summer mode (mid-September to September in FIG. 2), in which the valve V1 is closed, the valve V2 is opened, the heat storage side headers A1 and B1, the use side headers A2 and B2, and the yearly chilled water side header. A3 and B3 are independent. The heat pump chiller CR1 is operated at night using the electric power at midnight (CR2 is also operated as necessary), and high-temperature cold water of about 15 ° C. is stored in the heat storage tank ST. During the daytime, the air conditioner OHU is operated using the high-temperature cold water in the heat storage tank ST as a heat source to cool the outside air and supply it to each room R, and the absorption-type cold / hot water generator AR is operated to supply low-temperature cold water of about 7 ° C. The secondary pump P2 circulates through each room R and the FCU of the year-round cooling system.
[0012]
FIG. 3 shows the operation in the winter mode (December to February in FIG. 2), in which the valves V1, V2 are independent of the heat storage side headers A1, B1, the use side headers A2, B2 and the year-round chilled water side headers A3, B3, respectively. Let me. The heat pump chiller CR1 is operated at night using electric power at midnight, and low-temperature hot water of about 20 ° C. is stored in the heat storage tank ST. During the daytime, the air conditioner OHU is operated by using the low-temperature hot water in the heat storage tank ST as a heat source, the outside air is heated and supplied to each room R, and the absorption-type cold / hot water generator AR is operated to supply high-temperature hot water of about 45 ° C. It is circulated to the FCU of each room R, and the refrigerator CR2 is operated to circulate low-temperature chilled water of about 7 ° C. to the FCU of the annual cooling system.
[0013]
FIG. 4 shows the operation in the intermediate period 1 mode (March, April, November in FIG. 2) near winter, in which the valve V1 is opened, the valve V2 is closed, and the heat storage side headers A1, B1 and the use side header A2. , B2 and the headers A3 and B3 for the whole year are independent. The heat pump chiller CR1 is operated at night using electric power at midnight to store low-temperature hot water of about 30 ° C. in the heat storage tank ST. During the daytime, the air conditioner OHU is operated using the low-temperature hot water in the heat storage tank ST as a heat source to heat and supply outside air to each room R, and circulates low-temperature hot water in the heat storage tank ST to the FCU in each room R, The operation of the absorption-type cold / hot water generator AR is not performed unless it is necessary.
[0014]
FIG. 5 shows the operation in the intermediate two mode (May and October in FIG. 2) near summer, in which the valve V1 is opened, the valve V2 is closed, and the heat storage side headers A1, B1 and the usage side headers A2, B2 are connected. The headers A3, B3 are made independent throughout the year while communicating. The heat pump chiller CR1 is operated at night using electric power at midnight, and low-temperature hot water of about 10 ° C. is stored in the heat storage tank ST. During the daytime, the air conditioner OHU is operated using the low-temperature chilled water in the heat storage tank ST as a heat source to cool the outside air and supply it to each room R, and circulate the low-temperature chilled water from the heat storage tank ST to the FCU in each room R, The operation of the absorption-type cold / hot water generator AR is not performed unless it is necessary.
[0015]
The operation and effect of the present invention described above will be described. FIG. 6 is a diagram for explaining the basic concept of the present invention. That is, in the psychrometric chart shown in FIG. 6A, in the summer season, when the outside air temperature is 32 ° C. and the target value of the room temperature is 26 ° C., the outside air load is equal to the heat pump chiller CR1 that stores heat in the heat storage tank ST. The indoor interior and the perimeter load, which are covered by the air conditioner OHU that processes the outside air load, are covered by the absorption-type cold / hot water generators AR and FCU, thereby lowering the heat storage temperature of the heat storage tank ST. Becomes possible. This method is effective when the ratio of the outside air load is large as in the summer, as shown in FIG. As shown in FIG. 6 (C), in the interim period, the ratio of the outside air load is small, so the method of FIG. 6 (A) is not adopted, and as described with reference to FIGS. The system is switched to a system in which air conditioning is performed only by the heat storage source without operating the AR.
[0016]
FIG. 7 is a diagram for explaining the effect of the present invention, which is calculated assuming the case of an underground pit type using a building frame, and compared with the conventional method, cooling in summer, heating in winter, In any case of cooling and heating in the middle period, the operation efficiency of the refrigerator can be improved and the heat loss of the heat storage tank can be reduced.
[0017]
The embodiments of the present invention have been described above, but the present invention is not limited to these embodiments, and various modifications can be made. For example, in the above-described embodiment, the absorption-type cold / hot water generator AR is adopted as the second air conditioner, and the cold / hot water is circulated to the FCU of each room R. May be circulated to the FCU of each room R, or a package air conditioner may be provided in each room R. Further, the heat storage tank is not limited to the one using the building frame, but is also effective in the above-ground tank type.
[0018]
【The invention's effect】
As is apparent from the above description, according to the present invention, by using the energy stored when the outside air load is large only for processing the outside air load, the heat storage temperature can be high during cooling and low during heating. Therefore, the operation efficiency of the refrigerator can be improved and the heat loss of the heat storage tank can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one embodiment of a regenerative air conditioning system of the present invention.
FIG. 2 is a diagram for explaining an operation method of the regenerative air conditioning system of the present invention.
FIG. 3 is a diagram for explaining an operation method of the regenerative air conditioning system of the present invention.
FIG. 4 is a diagram for explaining an operation method of the regenerative air conditioning system of the present invention.
FIG. 5 is a diagram for explaining an operation method of the regenerative air conditioning system of the present invention.
FIG. 6 is a diagram for explaining a basic concept of the present invention.
FIG. 7 is a diagram for explaining an effect of the present invention.
FIG. 8 is a configuration diagram of a conventional regenerative air conditioning system.
9 is a diagram for explaining an operation method of the air conditioning system of FIG.
FIG. 10 is a diagram for explaining a problem of the present invention.
[Explanation of symbols]
1. Building R ... Room ST ... Heat storage tank CR1 ... Heat pump refrigerator OOH ... First air conditioner AR, FCU ... Second air conditioner

Claims (1)

建物に設置される蓄熱槽と、該蓄熱槽を循環する水を冷却加熱する熱交換器と、該熱交換器に接続される蓄熱側の冷温水供給ヘッダおよび冷温水戻りヘッダと、蓄熱側の冷温水供給ヘッダおよび冷温水戻りヘッダに接続されるヒートポンプ式冷凍機および外気を冷却または加熱して建物各室に供給する第1の空調機と、利用側の冷温水供給ヘッダおよび冷温水戻りヘッダに接続され前記第1の空調機とは別系統で各室の冷暖房負荷を処理する第2の空調機と、前記蓄熱側の冷温水供給ヘッダおよび冷温水戻りヘッダと利用側の蓄熱側の冷温水供給ヘッダおよび冷温水戻りヘッダとの間に設けられる開閉弁とを備え、
外気負荷が大きい場合には、前記開閉弁を閉じて蓄熱されたエネルギーにより外気負荷を処理し、外気負荷が小さい場合には、前記開閉弁を開いて蓄熱されたエネルギーにより外気負荷および各室の冷暖房負荷を処理することを特徴とする蓄熱式空調システム。
A storage tank which is installed in a building, a heat exchanger for cooling heated water circulating in the heat storage tank, the cold water supply header and the cold water return header of the heat storage side connected to the heat exchanger, the heat storage side the heat pump type refrigerator and outside air, which is connected to the cold water supply header and the cold water return header cooling or heating to the first air conditioner supplied to the building each chamber, the return cold water supply header and the hot and cold water utilization side A second air conditioner connected to the header and processing the cooling / heating load of each room in a separate system from the first air conditioner; a cold / hot water supply header and a cold / hot water return header on the heat storage side; An on-off valve provided between the cold / hot water supply header and the cold / hot water return header ,
When the outside air load is large, the open / close valve is closed to process the outside air load with the stored energy, and when the outside air load is small, the open / close valve is opened to store the outside air load and the energy of each room by the stored heat. A regenerative air conditioning system characterized by processing cooling and heating loads .
JP06307299A 1999-03-10 1999-03-10 Thermal storage air conditioning system Expired - Fee Related JP3579821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06307299A JP3579821B2 (en) 1999-03-10 1999-03-10 Thermal storage air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06307299A JP3579821B2 (en) 1999-03-10 1999-03-10 Thermal storage air conditioning system

Publications (2)

Publication Number Publication Date
JP2000257920A JP2000257920A (en) 2000-09-22
JP3579821B2 true JP3579821B2 (en) 2004-10-20

Family

ID=13218786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06307299A Expired - Fee Related JP3579821B2 (en) 1999-03-10 1999-03-10 Thermal storage air conditioning system

Country Status (1)

Country Link
JP (1) JP3579821B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5249709B2 (en) * 2008-10-23 2013-07-31 西松建設株式会社 Water source heat circulation system
CN112393425B (en) * 2019-08-15 2022-07-08 合肥美的暖通设备有限公司 Hot water and air treatment module, hot water air treatment device and control method thereof
JP7075149B1 (en) * 2021-07-12 2022-05-25 株式会社麹町エンジニアリング How to control the air handling unit

Also Published As

Publication number Publication date
JP2000257920A (en) 2000-09-22

Similar Documents

Publication Publication Date Title
CN104453039A (en) Combined type temperature control curtain wall of triplex glass structure and temperature control method of combined type temperature control curtain wall
JP2005195313A (en) Composite air-conditioning system
CN107396608B (en) Cooling system for data center
JP2006292313A (en) Geothermal unit
CN204370630U (en) A kind of Combined temperature control curtain wall of triplex glass structure
JP3579821B2 (en) Thermal storage air conditioning system
KR101131187B1 (en) Air condotioning equipment using underground air as the heat source and control method thereof
JPH11248192A (en) Air conditioner
JPH035505B2 (en)
JPH1054619A (en) Air conditioning method and air conditioning system
CN115419304A (en) Novel temperature-control energy-saving equipment room and temperature control method
CN210840457U (en) Data center machine room
JP2009109086A (en) Air conditioning system
JPH06257799A (en) Personal ice storage cooling system
JPH07174368A (en) Radiation cooling and heating device
JPH09105539A (en) Air-conditioning system and air conditioner
JPS60232440A (en) Heat storage type space cooling and heating system
JPH05620B2 (en)
JP3567422B2 (en) Thermal storage type air conditioning equipment
JP2009210216A (en) Air conditioning system
JP2000329423A (en) Air conditioning system
JP2000304301A (en) Air conditioning system
KR20070008890A (en) Electric generation air condition system and the control method for the same
JPH0615276Y2 (en) Air conditioning equipment unit
KR20210098075A (en) Apparatus for eco-friendly heating and cooling

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees