JP3579706B2 - Capacitive material measuring device and material measuring method - Google Patents

Capacitive material measuring device and material measuring method Download PDF

Info

Publication number
JP3579706B2
JP3579706B2 JP2000058309A JP2000058309A JP3579706B2 JP 3579706 B2 JP3579706 B2 JP 3579706B2 JP 2000058309 A JP2000058309 A JP 2000058309A JP 2000058309 A JP2000058309 A JP 2000058309A JP 3579706 B2 JP3579706 B2 JP 3579706B2
Authority
JP
Japan
Prior art keywords
substance
auxiliary electrode
main electrode
electrode
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000058309A
Other languages
Japanese (ja)
Other versions
JP2001249101A (en
Inventor
憲幸 牧
智久 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC INSTRUMENT Inc
Original Assignee
RKC INSTRUMENT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RKC INSTRUMENT Inc filed Critical RKC INSTRUMENT Inc
Priority to JP2000058309A priority Critical patent/JP3579706B2/en
Publication of JP2001249101A publication Critical patent/JP2001249101A/en
Application granted granted Critical
Publication of JP3579706B2 publication Critical patent/JP3579706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は物質塊の組織状態に起因する当該物質の電気的特性を計測する静電容量形物質計測装置および物質計測方法に関する。
【0002】
【従来の技術】
物質には、この組織状態によってその電気的特性が決定されるものがある。例えば日用品雑貨分野における発泡性の合成樹脂製軽石である。
この種の軽石では、製造過程で多孔質気泡が形成されるが、この気泡状態によって角質化した肌を削り落とす時の肌触りが異るから、一定の気泡状態が得られるよう制御しながら製造する必要がある。
【0003】
従来、この種の多孔質物質の気泡状態を検査するには、製造ライン上からサンプルを採取し、試験者による感覚や目視による観察といった人の感覚によって行うのが一般的であった。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した多孔質物質等を検査する場合、試験者による感覚や目視観察では、評価する試験者の健康状態、性別、年齢、その他様々な要素によって基準値が分れたりバラツキが生じ易く、定量的かつ正確に行うことが困難であった。
【0005】
本発明者は、そのような物質に形成される組織状態、例えばその気泡状態や外形形状と電気的特性(インピーダンス値)について鋭意観察・研究した結果、物質の組織状態によって電気的特性が変化するとともにある電気的特性で示すことができる点に着目し、本発明を完成させた。
【0006】
本発明はそのような状況の下になされたもので、物質に形成される組織状態や外形形状によってその電気的特性が決定される物質について、試験者の感覚や目視観察によることなく、その電気的特性を物質の外部から電気的かつ定量的に計測可能な静電容量形物質計測装置および物質計測方法の提供を目的とする。
【0007】
【課題を解決するための手段】
そのような課題を解決する為に本願に係る第1の発明は、所定の発振信号の印加された帯状の補助電極と、この補助電極に対向配置されその補助電極との間のインピーダンスに応じて得られた受信信号を出力する帯状の主電極と、その物質塊がそれら補助電極と主電極に載置されたとき得られた受信信号に基づく電気的特性計測信号を出力する出力部とを具備する静電容量形物質計測装置である。
【0008】
しかも、上記補助電極および主電極をシールド基板に絶縁層を介して平面的に配置するとともに、それら主電極およびシールド基板を上記出力部によって交流的に0電位と同一電位状態にしている。
【0009】
さらに、この第1の発明においては、それら補助電極および主電極を、そのシールド基板に接続されたシールドケースによりその物質塊の配置空間を確保した状態で覆うことが好ましい。
【0010】
また、この第1の発明において、上記補助電極および主電極を、その物質塊に対して移動可能に配置する構成も可能である。
【0011】
他方、本発明に係る第2の発明は、所定の発振信号を印加した帯状の補助電極と、この補助電極との間に形成されるインピーダンスに応じた信号を受信する帯状の主電極とをシールド基板に絶縁層を介して平面的に配置するとともに、それら主電極およびシールド基板を交流的に0電位と同一電位状態にし、それら補助電極と主電極に物質塊を載置し、その主電極から得られた受信信号に基づき当該物質の電気的特性を計測する静電容量形物質計測方法である。
【0012】
そして、この第2の発明において、上記物質塊に対してそれら補助電極および主電極を移動して得られた受信信号から、その電気的特性を計測する方法も可能である。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。なお、静電容量形物質計測装置方法については静電容量形物質計測装置を説明する過程で説明する。
図1および図2は本発明に係る静電容量形物質計測装置を示す図および概略要部斜視図である。
【0014】
図1および図2において、導電性基板1は、従来公知の導電板から偏平で細長い横断面コ字形の台形状に形成されており、この天板1a上面のほぼ全体に絶縁層3が形成されている。
導電性基板1の絶縁層3上には、帯状の細長い補助電極5および主電極7が一定の間隔を隔てて並行に形成され、導電性基板1の長手方向に沿って延びている。
【0015】
これら補助電極5および主電極7は、従来公知の手法によって形成されており、互いに平面的にその厚みで対向するとともに絶縁層3を介して導電性基板1と対面している。
導電性基板1には、補助電極5および主電極7上に被計測物としての多孔質の物質塊9の配置されるスペースを有して横断面コ字状の導電性シールドケース11が被せられ、導電性基板1の例えば脚部1bと電気的に接続されている。
【0016】
この物質塊9は、例えば多孔質物質を例にすれば、図3に示すように、整泡材等を混入させて加工された多孔質部9a中に気泡9bが形成されている。なお、多孔質部9a中にも微少気泡があるが便宜上図示しない。
補助電極5は、図1に示すように、レベルの安定した例えば40KHzの交流信号Vgを発振出力する信号源13が接続されている。
【0017】
主電極7は、シールドケーブル15の芯線15aを介してOP(オペ)アンプ17の反転入力端子が接続され、シールドケーブル15のシールド部15bは導電性基板1およびOPアンプ17の非反転入力端子に接続されている。
OPアンプ17の非反転入力端子は零電位(0電位:大地電位)に固定されており、その出力端子は帰還回路19を介して反転入力端子に接続される一方、整流平滑部21に接続されている。
【0018】
そのため、OPアンプ17の出力端子には、反転入力端子に加えられた電圧の逆極性の電圧が出力され、帰還回路19を適当に選定して非反転入力端子と反転入力端子が交流的に同一電位になっている。
従って、OPアンプ17は、帰還回路19とともに主電極7を交流的に0電位と同一電位状態にする同電位形成部23として機能するとともに、主電極7からの出力電流を電圧に変換する変換部としての機能を有する。
【0019】
整流平滑部21は、OPアンプ17からの出力信号を整流平滑するもので比較部25に接続されている。
この比較部25は、予め基準品としての物質塊9を補助電極5および主電極7間に配置したときOPアンプ17や整流平滑部21を介して得られた基準信号又はこれに相当する基準信号を保持しており、実際に計測する物質塊9に基づく整流平滑部21からの信号と基準信号との差異を、電気的特性計測信号(出力信号)として出力するものである。
【0020】
なお、比較部25は、単に、整流平滑部21からの信号をそのままレベル調整等して出力させるよう形式可能である。
すなわち、OPアンプ17、帰還回路19、整流平滑部21および比較部25は、その物質塊9の組織状態を要因とした静電容量(インピーダンス)に基づく電気的特性計測信号を出力信号として出力する出力部27を形成している。
【0021】
次に、本発明の静電容量形物質計測装置において、多孔質物質塊9のインピーダンスからその電気的特性を計測できる理由を介してその動作を説明する。
多孔質物質塊9は、図4に示すように、抵抗分と静電容量分の並列回路を集合させた等価回路で表すことが可能であり、物質塊9中の気泡9b付近についても、気泡9bを横切る静電容量Cと気泡9bに沿って多孔質部9aに形成される抵抗分の回路分布として考えられる。
【0022】
物質塊9全体としては、図5に示すように、抵抗R分と容量C分の並列回路が縦横に連続して接続されていると考えられ、全体で一つのインピーダンス(Z)として考えることが可能である。
そして、気泡9bの数や大きさによって抵抗や静電容量分、特に静電容量分が変化するから、対向する電極間に物質塊9を配置すれば、それら気泡9bの数や大きさに応じてそれら電極間のインピーダンス変化を介して電気的特性が計測可能となる。
【0023】
従って、図6に示すように、対面するように配置された補助電極29と主電極31間で1個の多孔質物質塊9を挟めば、物質塊9の気泡9bの状態に応じた信号が主電極で受信されるとともに受信信号を出力可能となる。
【0024】
すなわち、物質塊9について、外観の体積が同じ物でも内部の気泡9bが大きければ、気泡9bとその周辺のインピーダンス分の割合が多いため、全体のインピーダンスは大きくなり、補助電極29と主電極31間に配置した物質塊9中の気泡9bの状態に応じてインピーダンスが変化し、信号源13の接続された補助電極29から主電極31に到達する電気力線に基づく電流が減少し、OPアンプ17からの電圧出力値は低くなる。
【0025】
そして、主電極31にはシールドケーブル15を介して図1中のOPアンプ17、帰還回路19、整流平滑部21および比較部25からなる出力部27を接続すれば、物質塊9の電気的特性の計測が可能となる。
さらに、この考え方は、単体の物質塊9の計測に限らず、例えば多数の物質塊9の計測についても同様である。
【0026】
すなわち、対面する補助電極29と主電極31間に複数の物質塊9を挟んだ場合、補助電極29と主電極31間方向における隣合う物質塊9間の空隙に応じた静電容量Caが形成され、補助電極29と主電極31間のインピーダンスは個々の物質塊9が有する静電容量に静電容量Caを加えた値となり、この合成値に応じた受信信号が主電極31から得られる。
【0027】
また、補助電極29と主電極31間方向に対して垂直又は斜め方向で隣合う物質塊9間にも静電容量Cbが形成される場合もあり、補助電極29と主電極31間のインピーダンスは個々の物質塊9が有するそれに静電容量Cbを加えた値となり、この合成値に応じた受信信号が主電極31から得られる。
実際の評価においては、図7および図8を合成した状態の物質塊9についてその電気的特性を計測することになるであろう。
【0028】
もっとも、隣合う物質塊9間の隙間は異なるし、その外形形状も多少の違いがあるが、例えば搬送路上の物質塊9は多いから、例えば一定距離(1m〜数m)や一定期間(30秒〜数分)の平均値の計測が可能となる。
また、本発明においては、図6又は図9に示すように、補助電極29と主電極31を対面するように対向させた場合、補助電極29や主電極31の高さ方向の幅で重なる位置に物質塊9を配置すると、それら補助電極29と主電極31間にある物質塊9の高さがそのまま値として出力されるため、配置する物質塊9に高さ変動がある場合は誤差要因となる心配がある。
【0029】
しかも、物質塊9が、補助電極29や主電極31より高く積み上げられている場合、電極間に存在する電気力線の距離が最短なものと比べて、その高く積み上げられた物質塊9によって結合されている距離はそれほど変わらず、静電容量的にその差が小さく、高さ変動が出力に影響する可能性がある。
従って、この配置構成で良好な計測結果を得るためには、何等かの方法で物質塊9の高さを検知計測し、その結果で出力値を補正する等の対策が必要となる場合がある。
【0030】
その点、図1又は図10に示すように、補助電極5および主電極7を平面的に対向させた構成では、それらの影響がある程度軽減され、より実際の計測に即したものとなって好ましい。
しかも、補助電極5および主電極7間に物質塊9を挟むように配置しないから、計測物の量も制約され難く、それらの間隔や電極自体の形状を小さくできるので、設計の自由度が向上する。
【0031】
ところで、補助電極5および主電極7に人や物体が接近すると、その影響が計測結果に出る場合も予想される。
そこで、図1に示すように、物質塊9の配置スペースを確保した状態でシールドケース11を導電性基板1に被せ、補助電極5、主電極7や発泡状物質塊9をシールドすることが好ましい。すなわち、導電性基板1とシールドケース11によってそれらをシールドする訳である。
【0032】
このように、補助電極5、主電極7や物質塊9をシールドすると、図11に示すように、物質塊9にはインピーダンスZva、Zvbが形成されてこれに電流Iva、Ivbが流れるとともに、インピーダンスZvbの回路網とシールドケース11間に静電容量Cxが形成されてこれに電流Ixが流れ、シールドによって外界からの影響が除去され、その分の誤差がなくなって良好な計測が可能となる。図12は図11を等価回路で示したものである。
【0033】
もっとも、図11においてシールド効果を確実にするためには、物質塊9のインピーダンスをZvとしコンデンサCxのインピーダンスをZxとした場合、Zv<<Zxの範囲内に限られる。
その理由は、図12に示す等価回路からも分かるように、物質塊9の体積量が増加すると、シールドケース11間の距離が縮まる→Cxの値が大きくなる→インピーダンスが下がる→電流が増加する、といった現象が生じてその影響が無視できなくなるためである。
【0034】
また、本発明の静電容量形物質計測装置において、平面的に配置する補助電極5および主電極7は、上述したように直線的な帯状に限定されない。
例えば、図13に示すように、導電性基板1上に図示しない絶縁層を介して櫛歯状の補助電極33および主電極35を所定の間隔で相互に入込ませる構成(同図A)、所定の間隔をおいて方形の補助電極37を枠形の主電極39で囲む構成(同図B)、所定の間隔をおいて補助電極41を複数の主電極43で挟む構成(同図C)、スパイラル状の補助電極45の間に所定の間隔をおいてスパイラル状の主電極47を同心状に入込ませる構成(同図D)等が可能である。
【0035】
そして、図1又は図11に示す導電性基板1は、物質塊9の搬送路に対して固定的に配置すれば、搬送路上を移動する物質塊9の自動計測が簡単に可能となる。物質塊9を個別に採取して計測することも任意である。
導電性基板1等の配置は、物質塊9の下側に配置する以外、例えば空気より比重の軽い物質(例:ガスを充填した風船等)を計測する場合は、上側に配置することも可能である。
【0036】
さらに、本発明の静電容量形物質計測装置において、上述したように補助電極5および主電極7を有する導電性基板1は、搬送される物質塊9に対して静止した位置に固定的に配置する構成の他、計測期間中に位置を静止させた物質塊9に対し、それら補助電極5および主電極7側を移動(走査)させれば、被計測物を搬送することなく自動計測が可能となる。
【0037】
ところで、本願に係る静電容量形物質計測方法を示せば、発振信号を印加した補助電極5と、この補助電極5との間に形成されるインピーダンスに基づく信号を受信する主電極7とを用い、これら補助電極5と主電極7との間に物質塊9を配置し、その主電極7から得られた受信信号に基づく電気的特性計測信号を出力したり、又は予め基準品としての物質塊9によって得られた基準信号との差異を、電気的特性計測信号として出力するものである。
【0038】
しかも、この静電容量形物質計測方法においても、搬送路の途中に補助電極5と主電極7を固定的に配置し、搬送する物質塊9の電気的特性を計測したり、逆に、補助電極5と主電極7側を物質塊9に対して移動(走査)させて得られた受信信号に基づき、その電気的特性を計測することが可能である。
【0039】
さらに、上述した出力部27の構成は一例であり、これ以外に種々の構成が可能である。
なお、本発明における被評価物としての多孔質物質としては、「軽石」の他に例えば「スポンジ」、「多孔質セラミックス」、「発泡プラスチック類」の他、日常生活で使用又は摂取する等の物質についても計測することが可能である。
【0040】
また、発泡構造などの多孔質構造を有する製品に限らず、物質の計測要因として内部の気泡の状態によって、物質の電気的特性(インピーダンス)値が定められるものについて広く応用可能であるし、気泡の有無や物質の有無の計測にも応用可能である。
【0041】
【発明の効果】
以上説明したように本発明の第1の構成に係る物質計測装置は、所定の発振信号の印加された帯状の補助電極と、この補助電極に対向配置されその補助電極との間のインピーダンスに応じて得られた受信信号を出力する帯状の主電極と、その補助電極と主電極に載置された物質塊に応じて得られた受信信号に基づく電気的特性計測信号を出力する出力部を具備し、それら補助電極および主電極をシールド基板に絶縁層を介して平面的に配置するとともに、それら主電極およびシールド基板を上記出力部によって交流的に0電位と同一電位状態にしてなるから、物質中に形成される組織状態によってその電気的特性が決定される物質について、試験者による感覚や目視によることなく、物質の電気的特性をその外部から電気的かつ定量的に計測可能となるうえ、物質塊の高さ方向の量に基づく計測誤差を小さく抑えることが可能となる。
また、この第1の発明において、上記補助電極および主電極を、そのシールド基板に接続されたシールドケースによりその物質塊の配置空間を確保した状態で覆う構成にすれば、外部からインピーダンスの影響を受け難くなり、外部環境に基づく計測誤差を小さく抑えることが可能となる。
そして、本願の第2の発明に係る物質計測方法は、所定の発振信号を印加した帯状の補助電極と、この補助電極との間に形成されるインピーダンスに応じた信号を受信する帯状の主電極とをシールド基板に絶縁層を介して平面的に配置するとともに、それら主電極とシールド基板を交流的に0電位と同一電位状態にし、それら補助電極と主電極に物質塊を載置し、その主電極から得られた受信信号に基づく電気的特性計測信号を出力するから、物質中に形成される組織状態によってその電気的特性が決定される物質について、試験者による感覚や目視によることなく、物質の外部から電気的に計測判定可能となる。
【図面の簡単な説明】
【図1】本発明に係る静電容量形物質計測装置の実施の形態を示す図である
【図2】図1中の基台、補助電極、主電極およびシールドケースの概略を示す概略斜視図である。
【図3】本発明で計測する物質塊を示す断面図である。
【図4】図3の物質塊におけるの電気的構成を示す拡大等価回路図である。
【図5】図3の物質塊全体における電気的構成を示す等価回路図である。
【図6】本発明の物質計測装置および方法において物質塊を計測する考え方を説明する図である。
【図7】本発明の物質計測装置および方法において物質塊を計測する考え方を説明する図である。
【図8】本発明の物質計測装置および方法において物質塊を計測する考え方を説明する図である。
【図9】本発明の物質計測装置および方法において物質塊を計測する考え方を説明する図である。
【図10】本発明の物質計測装置および方法において物質塊を計測する考え方を説明する図である。
【図11】本発明の物質計測装置および方法において物質塊を計測する考え方を説明する図である。
【図12】図11の物質計測装置において評価する物質塊に形成される等価回路図である。
【図13】本発明の物質計測装置に用いる補助電極および主電極について他の構成を示す図である。
【符号の説明】
1 導電性基板(シールド基板)
1a 天板
1b 脚部
3 絶縁層
5、29、33、37、41、45 補助電極
7、31、35、39、43、47 主電極
9 物質塊(被計測物)
9a 多孔質部
9b 気泡
11 シールドケース
13 信号源
15 シールドケーブル
15a 芯線
15b シールド部
17 OP(オペ)アンプ
19 帰還回路
21 整流平滑部
23 同電位形成部
25 比較部
27 出力部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a capacitance-type substance measuring device and a substance measuring method for measuring electric characteristics of a substance caused by a tissue state of a substance mass.
[0002]
[Prior art]
Some substances have their electrical properties determined by their tissue state. For example, it is a foamable synthetic resin pumice in the field of daily necessities.
In this type of pumice, porous bubbles are formed during the manufacturing process, but the texture when shaving off the keratinized skin is different depending on the state of the bubbles, so it is manufactured while controlling to obtain a constant bubble state. There is a need.
[0003]
Conventionally, in order to inspect the bubble state of this kind of porous substance, it has been common practice to take a sample from the production line and perform it based on human senses such as a tester's feeling and visual observation.
[0004]
[Problems to be solved by the invention]
However, when examining the above-mentioned porous material, etc., in the sense and visual observation by the tester, the test condition to be evaluated, the gender, age, the reference value is likely to be separated or varied by various other factors, it is easy to occur, It was difficult to perform quantitatively and accurately.
[0005]
The present inventor has earnestly observed and studied the tissue state formed in such a substance, for example, its bubble state, outer shape, and electrical properties (impedance value). As a result, the electrical properties change depending on the tissue state of the substance. The present invention was completed by focusing on the fact that it can be shown by certain electrical characteristics.
[0006]
The present invention has been made under such circumstances, and a substance whose electrical characteristics are determined by a tissue state and an outer shape formed in the substance, without the tester's feelings or visual observation, is not required It is an object of the present invention to provide a capacitance-type substance measuring device and a substance measuring method capable of electrically and quantitatively measuring a characteristic from outside a substance.
[0007]
[Means for Solving the Problems]
In order to solve such a problem, a first invention according to the present application provides a band-shaped auxiliary electrode to which a predetermined oscillation signal is applied, and a band-shaped auxiliary electrode which is disposed to face the auxiliary electrode and which has an impedance between the auxiliary electrode and the auxiliary electrode. A band-shaped main electrode that outputs the obtained reception signal, and an output unit that outputs an electrical characteristic measurement signal based on the reception signal obtained when the substance mass is placed on the auxiliary electrode and the main electrode. This is a capacitance type substance measuring device.
[0008]
Moreover, the auxiliary electrode and the main electrode are arranged in a plane on the shield substrate via an insulating layer, and the main electrode and the shield substrate are alternately brought to the same potential as the zero potential by the output unit.
[0009]
Further, in the first invention, it is preferable that the auxiliary electrode and the main electrode are covered by a shield case connected to the shield substrate while securing a space for disposing the substance mass.
[0010]
Further, in the first invention, a configuration is also possible in which the auxiliary electrode and the main electrode are arranged so as to be movable with respect to the substance mass.
[0011]
On the other hand, the second invention according to the present invention shields a band-shaped auxiliary electrode to which a predetermined oscillation signal is applied and a band-shaped main electrode for receiving a signal corresponding to impedance formed between the band-shaped auxiliary electrode and the auxiliary electrode. The main electrode and the shield substrate are alternately set to the same potential as the zero potential, and a mass of material is placed on the auxiliary electrode and the main electrode. This is a capacitance-type substance measurement method for measuring electric characteristics of the substance based on an obtained reception signal.
[0012]
In the second invention, a method is also possible in which the electrical characteristics are measured from the received signal obtained by moving the auxiliary electrode and the main electrode with respect to the substance mass.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The method of measuring the capacitance-type substance will be described in the process of describing the capacitance-type substance measurement apparatus.
FIG. 1 and FIG. 2 are a diagram showing a capacitance type substance measuring apparatus according to the present invention and a schematic perspective view of a principal part.
[0014]
1 and 2, a conductive substrate 1 is formed from a conventionally known conductive plate into a flat and elongated trapezoidal shape having a U-shaped cross section, and an insulating layer 3 is formed on almost the entire upper surface of the top plate 1a. ing.
On the insulating layer 3 of the conductive substrate 1, strip-shaped elongated auxiliary electrodes 5 and a main electrode 7 are formed in parallel at a predetermined interval, and extend along the longitudinal direction of the conductive substrate 1.
[0015]
The auxiliary electrode 5 and the main electrode 7 are formed by a conventionally known method, are opposed to each other in a planar manner with their thicknesses, and face the conductive substrate 1 via the insulating layer 3.
The conductive substrate 1 is covered with a conductive shield case 11 having a U-shaped cross section with a space on the auxiliary electrode 5 and the main electrode 7 where a porous substance mass 9 as an object to be measured is arranged. Are electrically connected to, for example, the leg 1 b of the conductive substrate 1.
[0016]
In the substance mass 9, for example, in the case of a porous substance, as shown in FIG. 3, bubbles 9 b are formed in a porous portion 9 a processed by mixing a foam stabilizer and the like. In addition, although there are minute bubbles in the porous portion 9a, they are not shown for convenience.
As shown in FIG. 1, the auxiliary electrode 5 is connected to a signal source 13 which oscillates and outputs an AC signal Vg of, for example, 40 KHz whose level is stable.
[0017]
The main electrode 7 is connected to an inverting input terminal of an OP (op) amplifier 17 via a core wire 15a of the shielded cable 15, and a shield portion 15b of the shielded cable 15 is connected to the conductive substrate 1 and a non-inverting input terminal of the OP amplifier 17. It is connected.
The non-inverting input terminal of the OP amplifier 17 is fixed to zero potential (0 potential: ground potential), and its output terminal is connected to the inverting input terminal via the feedback circuit 19 and connected to the rectifying / smoothing unit 21. ing.
[0018]
Therefore, a voltage having the opposite polarity to the voltage applied to the inverting input terminal is output to the output terminal of the OP amplifier 17, and the feedback circuit 19 is appropriately selected so that the non-inverting input terminal and the inverting input terminal are the same in terms of AC. It is at potential.
Accordingly, the OP amplifier 17 functions as an equipotential forming unit 23 for bringing the main electrode 7 into the same electric potential state as zero potential together with the feedback circuit 19, and also converts the output current from the main electrode 7 into a voltage. As a function.
[0019]
The rectifying / smoothing unit 21 rectifies and smoothes an output signal from the OP amplifier 17 and is connected to the comparing unit 25.
The comparison unit 25 receives a reference signal obtained via the OP amplifier 17 or the rectifying / smoothing unit 21 or a reference signal corresponding thereto when the substance mass 9 as a reference product is previously disposed between the auxiliary electrode 5 and the main electrode 7. And outputs the difference between the signal from the rectifying / smoothing unit 21 based on the substance mass 9 to be actually measured and the reference signal as an electrical characteristic measurement signal (output signal).
[0020]
Note that the comparing unit 25 can be simply configured to output the signal from the rectifying / smoothing unit 21 by directly adjusting the level or the like.
That is, the OP amplifier 17, the feedback circuit 19, the rectifying / smoothing unit 21, and the comparing unit 25 output an electrical characteristic measurement signal based on the capacitance (impedance) due to the tissue state of the substance mass 9 as an output signal. An output section 27 is formed.
[0021]
Next, the operation of the capacitance type substance measuring device of the present invention will be described based on the reason that its electrical characteristics can be measured from the impedance of the porous substance mass 9.
As shown in FIG. 4, the porous substance mass 9 can be represented by an equivalent circuit in which parallel circuits for resistance and capacitance are assembled. It can be considered as a circuit distribution of the capacitance C crossing 9b and the resistance formed in the porous portion 9a along the bubble 9b.
[0022]
As shown in FIG. 5, it is considered that a parallel circuit for the resistor R and the capacitor C is connected vertically and horizontally as a whole, and as a whole, the material lump 9 can be considered as one impedance (Z). It is possible.
Since the resistance and the capacitance, particularly the capacitance, change depending on the number and the size of the bubbles 9b, if the substance mass 9 is arranged between the opposed electrodes, the number and the size of the bubbles 9b depend on the number and the size of the bubbles 9b. Thus, electrical characteristics can be measured through a change in impedance between the electrodes.
[0023]
Therefore, as shown in FIG. 6, when one porous substance mass 9 is sandwiched between the auxiliary electrode 29 and the main electrode 31 which are arranged so as to face each other, a signal corresponding to the state of the bubbles 9b of the substance mass 9 is generated. The signal can be received by the main electrode and can be output.
[0024]
That is, as for the substance lump 9, even if the volume of the substance 9 is the same, if the inside bubble 9 b is large, the ratio of the impedance of the bubble 9 b and its surroundings is large, so that the overall impedance is large, and the auxiliary electrode 29 and the main electrode 31. The impedance changes in accordance with the state of the bubbles 9b in the substance mass 9 disposed therebetween, the current based on the electric flux lines reaching the main electrode 31 from the auxiliary electrode 29 connected to the signal source 13 decreases, and the OP amplifier The voltage output value from 17 decreases.
[0025]
1 is connected to the main electrode 31 via the shielded cable 15, the output circuit 27 including the feedback circuit 19, the rectifying / smoothing unit 21, and the comparison unit 25. Can be measured.
Furthermore, this concept is not limited to measurement of a single substance mass 9, but is the same for measurement of a large number of substance masses 9, for example.
[0026]
That is, when a plurality of substance masses 9 are sandwiched between the facing auxiliary electrode 29 and the main electrode 31, the capacitance Ca corresponding to the gap between the adjacent substance masses 9 in the direction between the auxiliary electrode 29 and the main electrode 31 is formed. Then, the impedance between the auxiliary electrode 29 and the main electrode 31 becomes a value obtained by adding the capacitance Ca to the capacitance of each substance mass 9, and a reception signal corresponding to the composite value is obtained from the main electrode 31.
[0027]
Further, the capacitance Cb may be formed between the substance masses 9 adjacent to the auxiliary electrode 29 and the main electrode 31 in a direction perpendicular or oblique to the direction between the auxiliary electrode 29 and the main electrode 31. A value obtained by adding the capacitance Cb to the individual substance mass 9 is obtained, and a reception signal corresponding to the combined value is obtained from the main electrode 31.
In the actual evaluation, the electrical characteristics of the substance mass 9 in a state where FIGS. 7 and 8 are synthesized will be measured.
[0028]
However, although the gap between the adjacent substance masses 9 is different and the external shape is slightly different, for example, since there are many material masses 9 on the transport path, for example, a certain distance (1 m to several m) or a certain period (30 m) is used. It is possible to measure the average value (seconds to several minutes).
In the present invention, as shown in FIG. 6 or FIG. 9, when the auxiliary electrode 29 and the main electrode 31 face each other so as to face each other, the position where the auxiliary electrode 29 and the main electrode 31 overlap with each other in the width in the height direction. When the substance mass 9 is arranged at a position, the height of the substance mass 9 between the auxiliary electrode 29 and the main electrode 31 is output as a value as it is. I have to worry.
[0029]
In addition, when the substance mass 9 is stacked higher than the auxiliary electrode 29 and the main electrode 31, the material mass 9 stacked by the higher mass is compared with the one having the shortest line of electric force existing between the electrodes. The distance is not so different, the difference is small in terms of capacitance, and there is a possibility that the fluctuation in height affects the output.
Therefore, in order to obtain a good measurement result with this arrangement, it may be necessary to take measures such as detecting the height of the substance mass 9 by some method and correcting the output value based on the result. .
[0030]
In this regard, as shown in FIG. 1 or FIG. 10, a configuration in which the auxiliary electrode 5 and the main electrode 7 are opposed to each other in a plane reduces the influence thereof to some extent and is more suitable for actual measurement. .
Moreover, since the substance mass 9 is not disposed between the auxiliary electrode 5 and the main electrode 7, the amount of the measured object is not easily restricted, and the interval between them and the shape of the electrode itself can be reduced, so that the degree of design freedom is improved. I do.
[0031]
By the way, when a person or an object approaches the auxiliary electrode 5 and the main electrode 7, the influence thereof may be expected in the measurement result.
Therefore, as shown in FIG. 1, it is preferable to cover the conductive substrate 1 with the shield case 11 in a state where the space for disposing the substance mass 9 is secured, and to shield the auxiliary electrode 5, the main electrode 7, and the foamed substance mass 9. . That is, they are shielded by the conductive substrate 1 and the shield case 11.
[0032]
When the auxiliary electrode 5, the main electrode 7, and the substance lump 9 are shielded as described above, impedances Zva and Zvb are formed in the substance lump 9 and currents Iva and Ivb flow through the substance lump 9 as shown in FIG. A capacitance Cx is formed between the Zvb network and the shield case 11, and a current Ix flows through the capacitance Cx. The influence from the outside world is removed by the shield, so that an error corresponding thereto is eliminated and good measurement can be performed. FIG. 12 shows FIG. 11 as an equivalent circuit.
[0033]
However, in order to ensure the shielding effect in FIG. 11, when the impedance of the substance lump 9 is Zv and the impedance of the capacitor Cx is Zx, it is limited to the range of Zv << Zx.
The reason is, as can be seen from the equivalent circuit shown in FIG. 12, when the volume of the substance mass 9 increases, the distance between the shield cases 11 decreases → the value of Cx increases → the impedance decreases → the current increases This is because such effects occur and the effects cannot be ignored.
[0034]
Further, in the capacitance type material measuring apparatus of the present invention, the auxiliary electrode 5 and the main electrode 7 arranged in a plane are not limited to the linear band shape as described above.
For example, as shown in FIG. 13, a configuration in which a comb-shaped auxiliary electrode 33 and a main electrode 35 are mutually inserted at predetermined intervals on a conductive substrate 1 via an insulating layer (not shown) (FIG. 13A), A configuration in which a square auxiliary electrode 37 is surrounded by a frame-shaped main electrode 39 at a predetermined interval (FIG. B), and a configuration in which an auxiliary electrode 41 is sandwiched by a plurality of main electrodes 43 at a predetermined interval (FIG. C). A configuration in which the spiral main electrode 47 is concentrically inserted at a predetermined interval between the spiral auxiliary electrodes 45 (FIG. D) can be used.
[0035]
Then, if the conductive substrate 1 shown in FIG. 1 or FIG. 11 is fixedly arranged with respect to the transport path of the substance lump 9, automatic measurement of the substance lump 9 moving on the transport path can be easily performed. It is optional to individually collect and measure the substance mass 9.
The arrangement of the conductive substrate 1 and the like may be arranged on the lower side of the mass of material 9, for example, when measuring a substance having a specific gravity lower than that of air (eg, a balloon filled with gas). It is.
[0036]
Further, in the capacitance type substance measuring apparatus of the present invention, the conductive substrate 1 having the auxiliary electrode 5 and the main electrode 7 is fixedly arranged at a stationary position with respect to the substance mass 9 to be conveyed as described above. In addition to the above configuration, if the auxiliary electrode 5 and the main electrode 7 are moved (scanned) with respect to the substance mass 9 whose position is stopped during the measurement period, automatic measurement can be performed without transporting the object to be measured. It becomes.
[0037]
By the way, if the capacitance-type substance measuring method according to the present application is described, the auxiliary electrode 5 to which an oscillation signal is applied and the main electrode 7 that receives a signal based on impedance formed between the auxiliary electrode 5 and the auxiliary electrode 5 are used. A substance mass 9 is arranged between the auxiliary electrode 5 and the main electrode 7 to output an electrical characteristic measurement signal based on a reception signal obtained from the main electrode 7 or a material mass 9 as a reference product in advance. The difference from the reference signal obtained in step 9 is output as an electrical characteristic measurement signal.
[0038]
In addition, in this capacitance-type substance measurement method, the auxiliary electrode 5 and the main electrode 7 are fixedly arranged in the middle of the transport path to measure the electrical characteristics of the substance mass 9 to be transported. Based on the received signal obtained by moving (scanning) the electrode 5 and the main electrode 7 with respect to the substance mass 9, it is possible to measure the electrical characteristics thereof.
[0039]
Further, the configuration of the output unit 27 described above is merely an example, and various other configurations are possible.
In addition, as a porous substance as an evaluation object in the present invention, in addition to "pumice", for example, "sponge", "porous ceramics", "foamed plastics", and used or ingested in daily life It is also possible to measure substances.
[0040]
Further, the present invention is not limited to products having a porous structure such as a foamed structure, and can be widely applied to those in which the electrical characteristics (impedance) value of a substance is determined by the state of internal bubbles as a measurement factor of the substance. It can also be applied to the measurement of the presence or absence of substances and the presence or absence of substances.
[0041]
【The invention's effect】
As described above, the substance measuring device according to the first configuration of the present invention has a band-shaped auxiliary electrode to which a predetermined oscillating signal is applied, and a band-shaped auxiliary electrode which is disposed to face the auxiliary electrode according to the impedance between the auxiliary electrode and the auxiliary electrode. A main electrode in the form of a strip for outputting the received signal obtained by the above, and an output unit for outputting an electrical characteristic measurement signal based on the received signal obtained in accordance with the auxiliary electrode and the mass of material placed on the main electrode. Since the auxiliary electrode and the main electrode are arranged in a plane on the shield substrate via an insulating layer, and the main electrode and the shield substrate are alternately brought to the same potential as 0 potential by the output portion, Electrically and quantitatively measure the electrical properties of a substance whose electrical properties are determined by the tissue state formed therein, without the tester's feeling or visual observation. Terms of the ability, it is possible to suppress the measurement error based on the amount of the height direction of the material mass.
In the first invention, if the auxiliary electrode and the main electrode are covered with a shield case connected to the shield substrate in a state where the space for disposing the substance mass is secured, the influence of impedance from outside can be reduced. The measurement error based on the external environment can be reduced.
The substance measuring method according to the second aspect of the present invention includes a band-shaped auxiliary electrode to which a predetermined oscillation signal is applied, and a band-shaped main electrode for receiving a signal corresponding to impedance formed between the band-shaped auxiliary electrode and the auxiliary electrode. Are placed in a plane on the shield substrate with an insulating layer interposed therebetween, and the main electrode and the shield substrate are alternately brought to the same potential as the 0 potential, and a substance mass is placed on the auxiliary electrode and the main electrode. Since the electrical characteristics measurement signal is output based on the received signal obtained from the main electrode, the substance whose electrical properties are determined by the tissue state formed in the substance is not sensed or visually checked by the tester. Measurement and determination can be performed electrically from outside the substance.
[Brief description of the drawings]
FIG. 1 is a view showing an embodiment of a capacitance type substance measuring device according to the present invention; FIG. 2 is a schematic perspective view showing an outline of a base, an auxiliary electrode, a main electrode and a shield case in FIG. 1; It is.
FIG. 3 is a sectional view showing a substance mass measured in the present invention.
FIG. 4 is an enlarged equivalent circuit diagram showing an electrical configuration of the substance mass of FIG. 3;
FIG. 5 is an equivalent circuit diagram showing an electrical configuration of the entire substance mass of FIG. 3;
FIG. 6 is a diagram illustrating the concept of measuring a substance mass in the substance measuring apparatus and method of the present invention.
FIG. 7 is a view for explaining the concept of measuring a substance mass in the substance measuring device and method of the present invention.
FIG. 8 is a view for explaining the concept of measuring a substance mass in the substance measuring apparatus and method of the present invention.
FIG. 9 is a diagram for explaining the concept of measuring a substance mass in the substance measuring apparatus and method of the present invention.
FIG. 10 is a diagram illustrating the concept of measuring a substance mass in the substance measuring device and method of the present invention.
FIG. 11 is a view for explaining the concept of measuring a substance mass in the substance measuring apparatus and method of the present invention.
FIG. 12 is an equivalent circuit diagram formed in a substance mass to be evaluated in the substance measuring device of FIG.
FIG. 13 is a diagram showing another configuration of the auxiliary electrode and the main electrode used in the substance measuring device of the present invention.
[Explanation of symbols]
1 conductive substrate (shield substrate)
1a Top plate 1b Leg 3 Insulating layer 5, 29, 33, 37, 41, 45 Auxiliary electrode 7, 31, 35, 39, 43, 47 Main electrode 9 Material lump (measured object)
9a Porous portion 9b Bubble 11 Shield case 13 Signal source 15 Shield cable 15a Core wire 15b Shield portion 17 OP (op) amplifier 19 Feedback circuit 21 Rectifying smoothing portion 23 Same potential forming portion 25 Comparison portion 27 Output portion

Claims (3)

物質塊の組織状態を要因として決まる当該物質の電気的特性を計測する装置において、
所定の発振信号の印加された帯状の補助電極と、
この補助電極に対向配置され前記補助電極との間のインピーダンスに応じて得られた受信信号を出力する帯状の主電極と、
前記物質塊が前記補助電極と主電極に載置されたとき得られた前記受信信号に基づく前記電気的特性計測信号を出力する出力部と、
を具備し、
前記補助電極および主電極はシールド基板に絶縁層を介して平面的に配置されるとともに、前記主電極およびシールド基板は前記出力部によって交流的に0電位と同一電位状態にされてなることを特徴とする静電容量形物質計測装置。
In a device for measuring the electrical properties of the substance determined by the tissue state of the substance mass,
A belt-shaped auxiliary electrode to which a predetermined oscillation signal is applied,
A belt-shaped main electrode that is arranged to face the auxiliary electrode and outputs a reception signal obtained according to the impedance between the auxiliary electrode and
An output unit that outputs the electrical characteristic measurement signal based on the reception signal obtained when the substance mass is placed on the auxiliary electrode and the main electrode,
With
The auxiliary electrode and the main electrode are arranged in a plane on a shield substrate via an insulating layer, and the main electrode and the shield substrate are alternately brought to the same potential as 0 potential by the output unit. Capacitance type material measuring device.
前記補助電極および主電極は、前記シールド基板に接続されたシールドケースにより前記物質塊の配置空間を確保した状態で覆われてなる請求項1記載の静電容量形物質計測装置。The capacitance-type substance measuring device according to claim 1, wherein the auxiliary electrode and the main electrode are covered by a shield case connected to the shield substrate while securing a space for disposing the substance mass. 物質塊の組織状態を要因として決まる当該物質の電気的特性を計測する方法において、
所定の発振信号を印加した帯状の補助電極と、この補助電極との間に形成されるインピーダンスに応じた信号を受信する帯状の主電極とをシールド基板に絶縁層を介して平面的に配置するとともに、前記主電極およびシールド基板を交流的に0電位と同一電位状態にし、前記補助電極と主電極に前記物質塊を載置し、前記主電極から得られた受信信号に基づき当該物質の電気的特性を計測することを特徴とする静電容量形物質計測方法。
In a method of measuring an electrical property of a substance determined by a tissue state of a substance mass,
A band-shaped auxiliary electrode to which a predetermined oscillation signal is applied and a band-shaped main electrode for receiving a signal corresponding to impedance formed between the auxiliary electrode and the band-shaped auxiliary electrode are arranged in a plane on a shield substrate via an insulating layer. At the same time, the main electrode and the shield substrate are alternately brought to the same potential state as the zero potential, the substance mass is placed on the auxiliary electrode and the main electrode, and the electric power of the substance is set based on a reception signal obtained from the main electrode. A capacitance type substance measuring method characterized by measuring a characteristic characteristic.
JP2000058309A 2000-03-03 2000-03-03 Capacitive material measuring device and material measuring method Expired - Fee Related JP3579706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058309A JP3579706B2 (en) 2000-03-03 2000-03-03 Capacitive material measuring device and material measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058309A JP3579706B2 (en) 2000-03-03 2000-03-03 Capacitive material measuring device and material measuring method

Publications (2)

Publication Number Publication Date
JP2001249101A JP2001249101A (en) 2001-09-14
JP3579706B2 true JP3579706B2 (en) 2004-10-20

Family

ID=18578920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058309A Expired - Fee Related JP3579706B2 (en) 2000-03-03 2000-03-03 Capacitive material measuring device and material measuring method

Country Status (1)

Country Link
JP (1) JP3579706B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989310B2 (en) * 2007-05-22 2012-08-01 日本電信電話株式会社 Reinforcing bar diagnostic equipment

Also Published As

Publication number Publication date
JP2001249101A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
US9664632B2 (en) Cell-impedance sensors
KR930701753A (en) Apparatus and method for measuring dielectric and structural properties of materials
CN104350373B (en) Piezoelectric unit, piezo-electric device, piezoelectricity decision maker and condition judgement method
JP3652671B2 (en) Wiring pattern for measurement and measuring method thereof
KR970000189A (en) Human component analysis using bioelectrical impedance method and its analysis method
Olmo et al. Computer simulation of microelectrode based bio-impedance measurements with COMSOL
JP3158063B2 (en) Non-contact voltage measurement method and device
Kato et al. Influence of cell configuration on measuring interfacial impedances between a solid electrolyte and an electrode
JP3579706B2 (en) Capacitive material measuring device and material measuring method
JP2019028012A (en) Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity
CN109068988A (en) Fiber quality sensor
CN107613862A (en) Dermatopolyneuritis determines device
US3287637A (en) High frequency current means including capacitive probe members for determining the electrical resistance of a semiconductor layer
JP4671490B2 (en) Body impedance measuring device
Szczepanik et al. Frequency analysis of electrical impedance tomography system
JP2946843B2 (en) A method for judging the degree of ripening of fruits and the like and a sensor for judging the degree of ripening
KR940015522A (en) Material surface resistivity measurement method and measuring probe for use therein
KR102570975B1 (en) Apparatus for measuring thickness of metal film and measurement method thereof
JP7076728B2 (en) Capacitive sensor
CN109891223A (en) For determining the sensor element of the particle in fluid media (medium)
JP2000500233A (en) Method and apparatus for measuring axial deviation in a tote wire type alignment device
JPH0427863A (en) Apparatus for discriminating presence and degree of cavity of object to be measured in nondestructive manner and volume measuring apparatus
US6057683A (en) Induction sensor having conductive concentrator with measuring gap
TW201241436A (en) Electrochemical test strip and electrochemical test method
JP6869802B2 (en) Object detection sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees