JP3577907B2 - Method for producing positive electrode for non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3577907B2
JP3577907B2 JP23813697A JP23813697A JP3577907B2 JP 3577907 B2 JP3577907 B2 JP 3577907B2 JP 23813697 A JP23813697 A JP 23813697A JP 23813697 A JP23813697 A JP 23813697A JP 3577907 B2 JP3577907 B2 JP 3577907B2
Authority
JP
Japan
Prior art keywords
positive electrode
metal oxide
porosity
particles
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23813697A
Other languages
Japanese (ja)
Other versions
JPH10188955A (en
Inventor
潤 河合
安達  紀和
小島  久尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP23813697A priority Critical patent/JP3577907B2/en
Publication of JPH10188955A publication Critical patent/JPH10188955A/en
Application granted granted Critical
Publication of JP3577907B2 publication Critical patent/JP3577907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、正極を構成する活物質として金属酸化物を用いる非水電解液二次電池用正極の製造方法に関するものである。
【0002】
【従来の技術】
従来より正極の活物質として種々の金属酸化物が用いられているが、その多くは金属酸化物自体の導電率が低いため、金属酸化物に対して炭素粉末からなる導電剤を添加している。導電剤を添加することにより、個々の金属酸化物間に電子電導性を与えて電池反応を促進させている。
【0003】
ところで、電池の放電性能に影響を与える原因の一つとして、金属酸化物と導電剤との混合状態が問題となる。即ち、金属酸化物と上記炭素粉末とが如何に均一にしかも頻度よく接触しているかということである。
例えば、特開昭61−214362号公報には二酸化マンガン粒子表面に微細な黒鉛粉末を層状に形成した正極の活物質が提案されている。又、特公平7−36332号公報には金属酸化物粉末と人造黒鉛粉末との粒径比を10−1〜10−5とし、金属酸化物に対する黒鉛粉末の被覆率を0.5%〜15%とした正極の活物質が提案されている。
【0004】
【発明が解決しようとする課題】
しかし、上記何れの活物質も電極化に際し、導電性を高めるために活物質相互の接触性を図る必要があるが、その反面、活物質相互の接触により電解液が正極を通して金属酸化物粒子に到達しにくくなる。
このことは、いわゆる電解液と正極とのぬれ性が悪化すること、即ち電解液が正極内部に浸入しにくいことを意味し、正極の初期放電容量が低下するという問題を生じる。
【0005】
本発明者等は、上記の点に鑑みて鋭意、研究の結果、電解液の正極への浸入性と、活物質相互の導電層を介しての接触性という相反する特性を満足できる手法を見出し、本発明を完成するに到った。
そして、本発明はこれら両特性を満足することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者等よれば、特定の電極構造で且つその空隙率を所定範囲に設定することにより、正極の初期放電容量が上記空隙率の範囲外より突出して高く、しかもその空隙率の範囲内において変化せず一ほぼ定であるという驚くべき新事実を突き止めたのである。
【0007】
即ち、請求項1のように、リチウムマンガン酸化物、リチウムニッケル酸化物、リチウム鉄酸化物、リチウムコバルト酸化物、酸化マンガンの少なくとも1種からなる金属酸化物粒子と炭素質物質からなる導電粒子と結着剤とを配合する工程と、
前記金属酸化物粒子の表面に前記導電粒子を層状に被覆して多数の活物質を形成する工程と、
該多数の活物質と結着剤とを混合してペースト状物を形成する工程と、
該ペースト状物の表面を圧縮して空隙率を18%〜25%の範囲に設定する工程と、を具備し、
前記金属酸化物粒子と前記導電粒子とに圧縮剪断応力を加えて前記金属酸化物粒子の表面に前記導電粒子を層状に被覆させて該導電層の比表面積を10m2/g〜30 2/gとすることにより、電解液の正極内部への浸入性を維持しながら、導電層を介しての活物質相互の接触性を確保することができる。
【0008】
従って、正極の初期放電容量を高くすることができる。
また、正極の活物質を構成する金属酸化物粒子の表面の導電層は多孔質であるため、該金属酸化物粒子の表面を被覆していても導電層を通して電解液が金属酸化物粒子の表面に到達するので、金属酸化物が本来示す電気化学的な電位は得られる。なお、導電層が金属酸化物粒子の表面全面を被覆しておれば、導電層を介しての金属酸化物粒子どうしの密着の機会が増え、正極の活物質としての導電性がより向上する。
【0009】
請求項1および2によれば、正極を圧縮するという平易な方法で所定の空隙率を有する正極を得ることができる
【0010】
【発明の実施の形態】
本発明に使用する金属酸化物としては、リチウムマンガン酸化物、リチウムニッケル酸化物、リチウム鉄酸化物、リチウムコバルト酸化物、酸化マンガン等の、リチウムイオンを放出又は受容する構造の公知の金属酸化物を使用できる。
本発明に使用する多孔質な導電層の材料としては炭素質物質があり、該炭素質物質としては、アセチレンブラック、ケッチェンブラック、黒鉛等が使用できる。或いは金属粒子によって導電層を形成することも可能である。
【0011】
又、導電層における多孔性の指標である比表面積は10m/g〜30m/gがよい。この範囲は導電層を通しての金属酸化物粒子に対する電解液の接触性、及び後述の結着剤の導電層内への取り込まれ性を考慮して設定され、上記の範囲がよい。なお、比表面積が小さくなると電解液が金属酸化物粒子に接触しにくくなり、又比表面積が大きくなると結着剤が導電層内に入り込み、結着剤を介しての活物質相互の結着が行われにくくなる。
【0012】
本発明において、金属酸化物粒子の表面に導電層を被覆する態様としては、導電層を金属酸化物粒子の表面の全面に被覆させる構成、該表面の全体的に島状に点在するように被覆させる構成である。
上記導電層の金属酸化物粒子の表面に対する被覆率は製造時における上記炭素質物質等の導電層形成材料の金属酸化物粒子に対する混合割合を調整することにより適宜設定できる。
【0013】
本発明において、正極の空隙率を所望の値に設定する方法としては、ローラプレスにより正極材料の表面をプレスする方法、平プレスや静水圧等を用いて正極材料の表面をプレスする方法、正極を成形する際に、例えば成形スリット内から正極材料を押し出し成形する等により、正極の形成と同時に空隙率の設定を行う方法等が使用できる。
【0014】
本発明に使用する結着剤としては、ポリビニルアルコール、フッ素樹脂、ポリフッ化ビニリデン等、公知のものが使用できる。
本発明に使用する電解液としては、プロピレンカーボレート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等、公知のものが使用できる。
【0015】
本発明に使用する負極としては、リチウム金属又はその合金、或いはリチウムイオンをドープ、アンドープする非晶質炭素、結晶質炭素、等公知のものが使用できる。
本発明において、導電層を金属酸化物粒子の表面に形成する方法としては、圧縮剪断応力により導電粒子を金属酸化物粒子の表面に擦り込む方法、化学蒸着や結着剤を用いる方法がある。
【0016】
次に、本発明の実施の形態について説明する。図1は非水電解液二次電池に本発明を適用した例を説明したものである。図1において、非水電解液二次電池1は正極11と、負極12と、両者の間に配置されたセパレータ13と、非水電解液14と、電池容器15と、から構成されている。
上記正極11としては、リチウムイオンを放出又は受容する構造を有した活物質母材であるLiMn の表面には、結着剤としてのPVDF(ポリフッ化ビニリデン)を用いて被覆されたカーボンからなる多孔質な導電層が形成されている。又、正極11は、正極側集電体110に担持されており、該正極側集電体110はアルミニウム板から構成されている。
【0017】
上記負極12は、リチウム金属からなる。又、負極12の上面にはニッケル板から構成された負極側集電体が配置されている。
非水電解液14は、体積において当量混合したエチレンカーボネートと1,2−ジメトキシエタンとの混合溶液に濃度1mol /lにてLiPF を含有させた溶液により構成されている。
【0018】
上記セパレータ13はポリプロピレン製の多孔質フィルムにより構成されている。
上記容器15は、正極缶150と、負極缶151と、両者をシールするためのポリプロピレン製のガスケット16と、から構成されている。なお、正極缶150と負極缶151とはステンレス製より構成されている。
【0019】
ここで、本実施形態においては、正極を構成する活物質22は、図2A、図2Bに示すように、LiMn よりなる金属酸化物粒子20と、該粒子20の表面の全面に形成された多孔質なカーボンからなる導電層21、とから構成されている。なお、導電層21のカーボンはケッチェンブラックからなる。
LiMn よりなる金属酸化物粒子20の表面上に、カーボンからなる導電層21を被覆する方法として、カーボンと上記粒子とを混合した混合粉末を図3に示すカーボン被覆装置を用いて行う。この装置は、内周径が200mm、軸長さが70mmの内部空間10を有する回転ドラム1と、該回転ドラム1の内部の固定軸2に固定され回転ドラム1の内周面近くにまで延びる半円形状の押圧剪断ヘッド3を有する第1アーム4と、該第1アーム4の回転後方に所定角度を隔てて固定軸2に固定され、回転ドラム1の内周面近くにまで延びる爪5を有する第2アーム6と、により構成されている。
【0020】
上記装置の内部空間10内に所定量の上記混合粉末を投入し、回転ドラム1を所定時間、高速回転して回転ドラム1の内周面と押圧剪断ヘッド3との間で圧縮剪断応力を加え、その後、爪5で掻き落として混合することで上記粒子20の表面の全面にカーボンからなる導電層21を被覆する。
上記のようにして粒子20の表面の全面にカーボンからなる導電層21を被覆してなる活物質22は、例えば結着剤、溶剤とともに混合されてペースト状にされる。そして、ペースト状にされた正極の活物質22は上記集電体110の上にコーティグされる。
【0021】
集電体110の上に担持された正極11は、図4に模式的に示すように、ローラドラムの間に通され、ローラプレスされる。このとき、ローラドラム間のローラギャップの設定により、正極11に対するプレス圧が制御される。
図5A〜Cは、正極11に対するプレス圧によって、該正極11の空隙率がどのように変化するかを説明するものであり、図5Aから分かるように、プレス圧が低いと活物質22どうしが離れ離れとなる。このことは、正極11の空隙率が大となり、正極11への電解液の浸入が容易であることを意味する。又、正極11における電池反応、即ちリチウムイオンが正極11に出入りすることに伴う電流の取り出しが困難になるという、正極11の体積抵抗が低くなることを意味する。
【0022】
一方、図5Cのように、プレス圧が高いと、活物質22どうしが導電層21を介して密着する。このことは、正極11の体積抵抗が高くなることを意味し、又正極11への電解液の浸入が困難であることを意味する。他方、図5Bのように適切なプレス圧であると、正極11の空隙率が適正となり、電解液の正極11への浸入性と体積抵抗との相反する特性をバランスさせることができる。
【0023】
正極の初期放電容量は正極の活物質どうしの導電性と、リチウムイオンが正極の活物質に出入りする量と、によって決定される。前者の特性は正極の体積抵抗を意味し、後者の特性は正極への電解液の浸入性を意味する。
従って、正極の空隙率を適正なものとすることにより、正極の初期放電容量を向上することが可能となる。
【0024】
この点については、後述の実施例により、説明する。
〔実施例1〕
活物質母材として、LiMn を、又導電層材料としてカーボンブラックの一員であるケッチェンブラックを用意した。ケッチェンブラックはライオン株式会社製の商品名ECP−600JDを用い、比表面積は1270m /gである。
【0025】
これらを、重量比でLiMn 97重量%、ケッチェンブラック3重量%となるように配合し、この配合物を前記した装置で回転数1800rpmで、20分間処理し、LiMn の全表面にケッチェンブラックからなる導電層を被覆してなる活物質を得た。図6に活物質断面のオージェ電子分光写真を示す。図6において、中央の黒い部分がLiMn の粒子を示し、その周囲の白い部分が導電層材料としてのケッチェンブラック層を示す。
【0026】
なお、導電層の比表面積は約10m /gであり、LiMn の比表面積は約1m /gであった。導電層の比表面積は約10m /gは充分に多孔質であり、非水電解液中のイオンのLiMn への出入りは妨げられることがない。
次に、この活物質97重量部に対して結着剤のPVDF(ポリフッ化ビニリデン)を3重量部混合し、更に溶剤のN−メチル−2ピロリドンを52重量部加えて混練し、ペースト状とした。
【0027】
そして、このペースト状の活物質をドクターブレード法により、箔状のアルミニウム集電体の両面上にコーティングし、その後80℃で1時間、乾燥した。得られたコーティング膜自体の体積抵抗は10 Ωcmであった。
又、体積において当量混合したエチレンカーボネートと1,2−ジメトキシエタンとの混合溶液に濃度1mol /lにてLiPF を含有させた溶液により構成された非水電解液を用意した。該非水電解液を上記コーティング膜に滴下して、非水電解液の該コーティング膜に対する接触角を測定した結果、0degであり、電解液はコーティング膜に完全に浸入した。更に、空隙率を測定したところ、42%であった。
【0028】
次に、コーティング膜を図4に示したローラプレス(ローラギャップは115μm)に通過させて、コーティング膜を圧縮して最終的に電極となした。この電極におけるコーティング膜の体積抵抗率は7×10−3Ωcm、非水電解液との接触角は7deg、空隙率は20%であった。
なお、ここで、接触角は接触角計で、体積抵抗は四端子抵抗率測定器にて測定した。又、空隙率は[1−(嵩密度)/真密度)]×100で算出した。
【0029】
さて、上記電極を直径15mmの円板状に打ち抜いて正極とし、図1に示したボタン型電池を製作した。この電池において、対極である負極は前述したように金属リチウムであり、非水電解液は前述した組成であり、セパレータはポリプロピレン製フィルム(商品名セルガード3501)である。
電池の評価は次のようにして行った。充電は、先ず2mA/cm の定電流で4.2Vに到達するまで行い、その後4.2Vの定電圧で合計5時間行った。放電は2mA/cm の定電流で2.0Vに到達するまで行った。
【0030】
この実施例の活物質を用いた正極の初期放電容量は210mAh/g、活物質当たり(前記結着剤を除いたもの)の放電容量は223mAh/g(理論容量の75%に相当)であった。
次に、実施例1のローラプレス時のローラギャップを135μm、95μm、155μm、45μm、75μmに設定し、他の設定は上記実施例と同じにして正極を得た。この正極の体積抵抗、非水電解液との接触角、正極の空隙率を求めた。
【0031】
又、これら正極を上記実施例1と同じようにして電池を製作し、実施例1と同じ条件で正極の評価を行った。
これらの正極の評価結果を、実施例1のローラギャップ115μmの場合の評価結果とともに表1に示す。又、実施例1に示した、ローラプレスで圧縮する前の評価結果も比較例として表1に示す。
【0032】
【表1】
(以下余白)

Figure 0003577907
図7は、上記実施例1〜6により得た上記表1中の体積抵抗及び接触角と空隙率との関係を示したものである。
【0033】
図8は、表1中の空隙率と正極の初期放電容量との関係を示したものである。なお、図8には実施例1における未プレス品の空隙率(42%)に対する初期放電容量も示した。
図7から理解されるように、正極の接触角/体積抵抗と正極の空隙率との関係において、正極の空隙率が大きくなるに従って体積抵抗が高くなり、一方正極の空隙率が小さくなるに従って接触角が大きい、即ち電解液とのぬれ性が悪くなることが分かる。
【0034】
又、図8から理解されるように、正極の初期放電容量と正極の空隙率との関係において、所定の空隙率の範囲で初期放電容量を最大とすることができることが分かる。即ち、図8から、空隙率が18%〜25%の範囲で初期放電容量は最大値となり、この範囲では初期放電容量はほぼ一定である。
この空隙率18%〜25%の範囲は、正極の活物質相互の導電性と電解液の浸み込み性との両立をはかることができるから、高い初期放電容量を得ることができるのである。この特性は、本発明者が見出したものである。
【0035】
〔変形例〕
金属酸化物粒子としてLiNiO (導電率10−1S/cm)やLiCoO (導電率10−2S/cm)を活物質として用いても、これらの活物質の導電性は実施例1〜6のLiMn よりも高い(LiMn の導電率は10 S/cm)。
【0036】
このため、上記空隙率の範囲においてこれらLiNiO 、LiCoO の体積抵抗はLiMn を活物質として用いた正極よりも低くなるのが当然であるから、実施例1〜6と同様に、上記空隙率18%〜25%の範囲内において正極の初期放電容量は最大値となる。即ち、正極の活物質母材をなす金属酸化物粒子の種類が異なっても本発明の空隙率の範囲は普遍性がある。
【図面の簡単な説明】
【図1】本発明の電池を示す断面図である。
【図2】(a)活物質を模式的に示す断面図である。
(b)図2Aの一部を拡大して示す模式的な断面図である。
【図3】実施例1で使用したカーボン被覆装置の概略断面図である。
【図4】正極をローラプレスする状態を模式的に示す図である。
【図5】(a)正極の空隙率が大きい状態を模式的に示す図である。
(b)正極の空隙率が適正な状態を模式的に示す図である。
(c)正極の空隙率が小さい状態を模式的に示す図である。
【図6】活物質の粒子構造を示す顕微鏡写真である。
【図7】正極の空隙率と接触角/体積抵抗との関係を示す図である。
【図8】正極の空隙率と電極の初期放電容量との関係を示す図である。
【符号の説明】
1 電池
11正極
12 負極
13 セパレータ
14 非水電解液
15 容器
20 金属酸化物粒子
21 導電層
22 活物質[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a positive electrode for a non-aqueous electrolyte secondary battery using a metal oxide as an active material constituting the positive electrode.
[0002]
[Prior art]
Conventionally, various metal oxides have been used as the active material of the positive electrode, but most of them have a low conductivity of the metal oxide itself. Therefore, a conductive agent composed of carbon powder is added to the metal oxide. . The addition of the conductive agent imparts electronic conductivity between the individual metal oxides to promote the battery reaction.
[0003]
By the way, as one of the factors affecting the discharge performance of the battery, the mixed state of the metal oxide and the conductive agent becomes a problem. That is, how uniformly and frequently the metal oxide and the carbon powder are in contact with each other.
For example, Japanese Patent Application Laid-Open No. 61-214362 proposes a positive electrode active material in which fine graphite powder is formed in layers on the surface of manganese dioxide particles. Japanese Patent Publication No. 7-33632 discloses that the particle ratio of the metal oxide powder to the artificial graphite powder is 10 -1 to 10 -5, and the coverage of the metal oxide on the graphite powder is 0.5% to 15%. % Of the positive electrode active material has been proposed.
[0004]
[Problems to be solved by the invention]
However, when any of the above active materials is used as an electrode, it is necessary to make contact between the active materials in order to increase the conductivity, but on the other hand, the contact between the active materials causes the electrolyte to pass through the positive electrode to the metal oxide particles. It is difficult to reach.
This means that the wettability between the so-called electrolyte and the positive electrode deteriorates, that is, the electrolyte does not easily enter the inside of the positive electrode, and the initial discharge capacity of the positive electrode decreases.
[0005]
The present inventors have earnestly studied in view of the above points, and as a result of research, have found a method capable of satisfying conflicting characteristics such as infiltration of an electrolyte into a positive electrode and contact between active materials via a conductive layer. Thus, the present invention has been completed.
The present invention aims to satisfy both of these characteristics.
[0006]
[Means for Solving the Problems]
According to the present inventors, by setting the porosity of the specific electrode structure and its porosity in a predetermined range, the initial discharge capacity of the positive electrode is prominently higher than the porosity, and within the porosity. They have found an amazing new fact that it is almost constant without change.
[0007]
That is, as set forth in claim 1, metal oxide particles comprising at least one of lithium manganese oxide, lithium nickel oxide, lithium iron oxide, lithium cobalt oxide, and manganese oxide, and conductive particles comprising a carbonaceous material. A step of compounding with a binder,
A step of forming a large number of active materials by coating the conductive particles in a layer on the surface of the metal oxide particles,
Mixing the large number of active materials and a binder to form a paste,
Compressing the surface of the paste-like material to set the porosity in the range of 18% to 25%,
A compressive shear stress is applied to the metal oxide particles and the conductive particles to cover the surfaces of the metal oxide particles with the conductive particles in a layered manner, and the specific surface area of the conductive layer is 10 m 2 / g to 30 m 2 / By setting to g, it is possible to ensure the contact between the active materials via the conductive layer while maintaining the infiltration of the electrolyte into the inside of the positive electrode.
[0008]
Therefore, the initial discharge capacity of the positive electrode can be increased.
In addition, since the conductive layer on the surface of the metal oxide particles constituting the active material of the positive electrode is porous, even if the surface of the metal oxide particles is covered, the electrolytic solution passes through the conductive layer through the surface of the metal oxide particles. , The electrochemical potential inherently exhibited by the metal oxide is obtained. If the conductive layer covers the entire surface of the metal oxide particles, the chance of adhesion between the metal oxide particles via the conductive layer increases, and the conductivity as the active material of the positive electrode is further improved.
[0009]
According to claims 1 and 2, it is possible to obtain a positive electrode having a predetermined porosity in a simple way that compressing the positive electrode.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
As the metal oxide used in the present invention, a known metal oxide having a structure that releases or accepts lithium ions, such as lithium manganese oxide, lithium nickel oxide, lithium iron oxide, lithium cobalt oxide, and manganese oxide Can be used.
As a material of the porous conductive layer used in the present invention, there is a carbonaceous substance, and as the carbonaceous substance, acetylene black, Ketjen black, graphite and the like can be used. Alternatively, the conductive layer can be formed by metal particles.
[0011]
Further, the specific surface area is indicative of the porosity in the conductive layer is good 10m 2 / g~30m 2 / g. This range is set in consideration of the contact property of the electrolytic solution with the metal oxide particles through the conductive layer and the incorporation of a binder described below into the conductive layer, and the above range is preferable. When the specific surface area is small, the electrolyte is less likely to come into contact with the metal oxide particles, and when the specific surface area is large, the binder enters the conductive layer, and the binding of the active materials through the binder may occur. Less likely to be done.
[0012]
In the present invention, as a mode of coating the conductive layer on the surface of the metal oxide particles, a configuration in which the conductive layer is coated on the entire surface of the metal oxide particles, so that the entire surface of the surface is scattered in an island shape. It is a configuration to be covered.
The coverage of the conductive layer on the surface of the metal oxide particles can be appropriately set by adjusting the mixing ratio of the conductive layer forming material such as the carbonaceous substance to the metal oxide particles at the time of production.
[0013]
In the present invention, as a method of setting the porosity of the positive electrode to a desired value, a method of pressing the surface of the positive electrode material by a roller press, a method of pressing the surface of the positive electrode material using a flat press or hydrostatic pressure, a positive electrode, When forming the positive electrode, for example, a method of setting the porosity simultaneously with the formation of the positive electrode by extruding the positive electrode material from inside the forming slit or the like can be used.
[0014]
Known binders such as polyvinyl alcohol, fluororesin, and polyvinylidene fluoride can be used as the binder used in the present invention.
As the electrolytic solution used in the present invention, known electrolytes such as propylene carbonate, ethylene carbonate, dimethyl carbonate, and diethyl carbonate can be used.
[0015]
As the negative electrode used in the present invention, known materials such as lithium metal or an alloy thereof, or amorphous carbon or crystalline carbon doped or undoped with lithium ions can be used.
In the present invention, as a method of forming the conductive layer on the surface of the metal oxide particles, there are a method of rubbing the conductive particles on the surface of the metal oxide particles by compressive shear stress, a method of using chemical vapor deposition, and a method of using a binder.
[0016]
Next, an embodiment of the present invention will be described. FIG. 1 illustrates an example in which the present invention is applied to a non-aqueous electrolyte secondary battery. In FIG. 1, the non-aqueous electrolyte secondary battery 1 includes a positive electrode 11, a negative electrode 12, a separator 13 disposed between the two, a non-aqueous electrolyte 14, and a battery container 15.
As the positive electrode 11, the surface of LiMn 2 O 4 , which is an active material base material having a structure to release or receive lithium ions, is formed by coating a surface of LiMn 2 O 4 with PVDF (polyvinylidene fluoride) as a binder. Is formed. The positive electrode 11 is supported on a positive electrode current collector 110, and the positive electrode current collector 110 is made of an aluminum plate.
[0017]
The negative electrode 12 is made of lithium metal. On the upper surface of the negative electrode 12, a negative electrode-side current collector made of a nickel plate is arranged.
The non-aqueous electrolyte 14 is composed of a mixed solution of ethylene carbonate and 1,2-dimethoxyethane mixed in equivalent amounts by volume and containing LiPF 6 at a concentration of 1 mol / l.
[0018]
The separator 13 is made of a porous film made of polypropylene.
The container 15 includes a positive electrode can 150, a negative electrode can 151, and a polypropylene gasket 16 for sealing the both. The positive electrode can 150 and the negative electrode can 151 are made of stainless steel.
[0019]
Here, in the present embodiment, the active material 22 constituting the positive electrode is formed on the metal oxide particles 20 made of LiMn 2 O 4 and over the entire surface of the particles 20 as shown in FIGS. 2A and 2B. And a conductive layer 21 made of porous carbon. The carbon of the conductive layer 21 is made of Ketjen black.
As a method of coating the conductive layer 21 made of carbon on the surface of the metal oxide particles 20 made of LiMn 2 O 4, a mixed powder obtained by mixing carbon and the above particles is performed using a carbon coating apparatus shown in FIG. . The apparatus has a rotating drum 1 having an inner space 10 having an inner diameter of 200 mm and a shaft length of 70 mm, and is fixed to a fixed shaft 2 inside the rotating drum 1 and extends near the inner peripheral surface of the rotating drum 1. A first arm 4 having a semicircular pressing and shearing head 3 and a claw 5 fixed to the fixed shaft 2 at a predetermined angle behind the rotation of the first arm 4 and extending to near the inner peripheral surface of the rotary drum 1 And a second arm 6 having the following.
[0020]
A predetermined amount of the mixed powder is charged into the internal space 10 of the apparatus, and the rotary drum 1 is rotated at a high speed for a predetermined time to apply a compressive shear stress between the inner peripheral surface of the rotary drum 1 and the pressing shear head 3. Thereafter, the conductive layer 21 made of carbon is coated on the entire surface of the particle 20 by scraping and mixing with the nail 5.
The active material 22 obtained by covering the entire surface of the particle 20 with the conductive layer 21 made of carbon as described above is mixed with, for example, a binder and a solvent to form a paste. Then, the paste-like positive electrode active material 22 is coated on the current collector 110.
[0021]
The positive electrode 11 carried on the current collector 110 is passed between roller drums and roller-pressed, as schematically shown in FIG. At this time, the pressing pressure on the positive electrode 11 is controlled by setting the roller gap between the roller drums.
FIGS. 5A to 5C illustrate how the porosity of the positive electrode 11 changes depending on the pressing pressure applied to the positive electrode 11. As can be seen from FIG. 5A, when the pressing pressure is low, the active materials 22 are separated from each other. Get away. This means that the porosity of the positive electrode 11 becomes large, and the infiltration of the electrolyte into the positive electrode 11 is easy. Further, it means that the battery reaction in the positive electrode 11, that is, it is difficult to take out a current due to lithium ions entering and leaving the positive electrode 11, which means that the volume resistance of the positive electrode 11 is low.
[0022]
On the other hand, as shown in FIG. 5C, when the pressing pressure is high, the active materials 22 adhere to each other via the conductive layer 21. This means that the volume resistance of the positive electrode 11 is increased, and that it is difficult for the electrolyte to enter the positive electrode 11. On the other hand, if the pressing pressure is appropriate as shown in FIG. 5B, the porosity of the positive electrode 11 becomes appropriate, and the opposite properties between the infiltration property of the electrolytic solution into the positive electrode 11 and the volume resistance can be balanced.
[0023]
The initial discharge capacity of the positive electrode is determined by the conductivity between the active materials of the positive electrode and the amount of lithium ions entering and leaving the active material of the positive electrode. The former characteristic means the volume resistance of the positive electrode, and the latter characteristic means the infiltration of the electrolyte into the positive electrode.
Therefore, by setting the porosity of the positive electrode to an appropriate value, the initial discharge capacity of the positive electrode can be improved.
[0024]
This will be described with reference to the embodiments described later.
[Example 1]
LiMn 2 O 4 was prepared as an active material base material, and Ketjen black, a member of carbon black, was prepared as a conductive layer material. Ketjen Black uses ECP-600JD (trade name, manufactured by Lion Corporation), and has a specific surface area of 1270 m 2 / g.
[0025]
These are blended so as to be 97% by weight of LiMn 2 O 4 and 3% by weight of Ketjen black in a weight ratio, and the blend is treated with the above-mentioned apparatus at a rotation speed of 1800 rpm for 20 minutes to obtain LiMn 2 O 4 . An active material was obtained in which the entire surface was coated with a Ketjen black conductive layer. FIG. 6 shows an Auger electron spectroscopic photograph of a cross section of the active material. In FIG. 6, a black portion at the center indicates particles of LiMn 2 O 4 , and a white portion around the black portion indicates a Ketjen black layer as a conductive layer material.
[0026]
Note that the specific surface area of the conductive layer was about 10 m 2 / g, and the specific surface area of LiMn 2 O 4 was about 1 m 2 / g. The specific surface area of the conductive layer is about 10 m 2 / g, which is sufficiently porous, so that ions in the non-aqueous electrolyte do not enter or leave LiMn 2 O 4 .
Next, 3 parts by weight of PVDF (polyvinylidene fluoride) as a binder were mixed with 97 parts by weight of the active material, and 52 parts by weight of N-methyl-2-pyrrolidone as a solvent were added and kneaded to form a paste. did.
[0027]
The paste-like active material was coated on both sides of a foil-like aluminum current collector by a doctor blade method, and then dried at 80 ° C. for 1 hour. The volume resistance of the obtained coating film itself was 10 4 Ωcm.
Further, a non-aqueous electrolyte solution was prepared which was composed of a mixed solution of ethylene carbonate and 1,2-dimethoxyethane mixed in equivalent amounts by volume and containing LiPF 6 at a concentration of 1 mol / l. The non-aqueous electrolyte was dropped on the coating film, and the contact angle of the non-aqueous electrolyte with respect to the coating film was measured. As a result, it was 0 deg, and the electrolyte completely entered the coating film. Further, when the porosity was measured, it was 42%.
[0028]
Next, the coating film was passed through a roller press (roller gap: 115 μm) shown in FIG. 4 to compress the coating film to finally form an electrode. The volume resistivity of the coating film in this electrode was 7 × 10 −3 Ωcm, the contact angle with the nonaqueous electrolyte was 7 deg, and the porosity was 20%.
Here, the contact angle was measured with a contact angle meter, and the volume resistance was measured with a four-terminal resistivity meter. The porosity was calculated by [1- (bulk density) / true density) × 100.
[0029]
The above-mentioned electrode was punched into a disk having a diameter of 15 mm to form a positive electrode, and the button-type battery shown in FIG. 1 was manufactured. In this battery, the negative electrode as the counter electrode is metallic lithium as described above, the non-aqueous electrolyte has the composition described above, and the separator is a polypropylene film (trade name: Celgard 3501).
The battery was evaluated as follows. Charging was first performed at a constant current of 2 mA / cm 2 until the voltage reached 4.2 V, and then at a constant voltage of 4.2 V for a total of 5 hours. The discharge was performed at a constant current of 2 mA / cm 2 until the voltage reached 2.0 V.
[0030]
The initial discharge capacity of the positive electrode using the active material of this example was 210 mAh / g, and the discharge capacity per active material (excluding the binder) was 223 mAh / g (corresponding to 75% of the theoretical capacity). Was.
Next, the roller gap at the time of roller pressing in Example 1 was set to 135 μm, 95 μm, 155 μm, 45 μm, and 75 μm, and the other settings were the same as in the above-described example to obtain a positive electrode. The volume resistance of the positive electrode, the contact angle with the non-aqueous electrolyte, and the porosity of the positive electrode were determined.
[0031]
A battery was manufactured using these positive electrodes in the same manner as in Example 1, and the positive electrodes were evaluated under the same conditions as in Example 1.
The evaluation results of these positive electrodes are shown in Table 1 together with the evaluation results of Example 1 when the roller gap was 115 μm. Table 1 also shows the evaluation results before compression by the roller press shown in Example 1 as comparative examples.
[0032]
[Table 1]
(Below)
Figure 0003577907
FIG. 7 shows the relationship between the porosity and the volume resistance and contact angle in Table 1 obtained in Examples 1 to 6 above.
[0033]
FIG. 8 shows the relationship between the porosity in Table 1 and the initial discharge capacity of the positive electrode. FIG. 8 also shows the initial discharge capacity with respect to the porosity (42%) of the unpressed product in Example 1.
As can be understood from FIG. 7, in the relationship between the contact angle / volume resistance of the positive electrode and the porosity of the positive electrode, the volume resistance increases as the porosity of the positive electrode increases, while the contact resistance decreases as the porosity of the positive electrode decreases. It can be seen that the corner is large, that is, the wettability with the electrolytic solution is deteriorated.
[0034]
In addition, as understood from FIG. 8, it can be seen that the relationship between the initial discharge capacity of the positive electrode and the porosity of the positive electrode allows the initial discharge capacity to be maximized within a predetermined porosity range. That is, from FIG. 8, the initial discharge capacity is maximum when the porosity is in the range of 18% to 25%, and the initial discharge capacity is almost constant in this range.
When the porosity is in the range of 18% to 25%, it is possible to achieve compatibility between the mutual conductivity of the active materials of the positive electrode and the ability to penetrate the electrolytic solution, so that a high initial discharge capacity can be obtained. This characteristic has been found by the present inventors.
[0035]
(Modification)
Even when LiNiO 2 (conductivity 10 −1 S / cm) or LiCoO 2 (conductivity 10 −2 S / cm) is used as the active material as the metal oxide particles, the conductivity of these active materials is the same as in Examples 1 to 3. 6 higher than LiMn 2 O 4 (the conductivity of LiMn 2 O 4 is 10 6 S / cm).
[0036]
For this reason, it is natural that the volume resistance of these LiNiO 2 and LiCoO 2 is lower than that of the positive electrode using LiMn 2 O 4 as an active material in the above porosity range. The initial discharge capacity of the positive electrode has a maximum value in the range of the porosity of 18% to 25%. That is, the porosity range of the present invention is universal even if the types of metal oxide particles forming the active material base material of the positive electrode are different.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a battery of the present invention.
FIG. 2A is a cross-sectional view schematically showing an active material.
(B) It is the typical sectional view which expands and shows a part of FIG. 2A.
FIG. 3 is a schematic sectional view of a carbon coating apparatus used in Example 1.
FIG. 4 is a diagram schematically showing a state in which a positive electrode is roller-pressed.
FIG. 5A is a diagram schematically showing a state in which the porosity of a positive electrode is large.
(B) It is a figure which shows typically the state in which the porosity of a positive electrode is proper.
(C) It is a figure which shows typically the state where the porosity of a positive electrode is small.
FIG. 6 is a micrograph showing a particle structure of an active material.
FIG. 7 is a diagram showing the relationship between the porosity of the positive electrode and the contact angle / volume resistance.
FIG. 8 is a diagram showing the relationship between the porosity of the positive electrode and the initial discharge capacity of the electrode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery 11 Positive electrode 12 Negative electrode 13 Separator 14 Nonaqueous electrolyte 15 Container 20 Metal oxide particles 21 Conductive layer 22 Active material

Claims (2)

リチウムマンガン酸化物、リチウムニッケル酸化物、リチウム鉄酸化物、リチウムコバルト酸化物、酸化マンガンの少なくとも1種からなる金属酸化物粒子と炭素質物質からなる導電粒子と結着剤とを配合する工程と、
前記金属酸化物粒子の表面に前記導電粒子を層状に被覆して多数の活物質を形成する工程と、
該多数の活物質と結着剤とを混合してペースト状物を形成する工程と、
該ペースト状物の表面を圧縮して空隙率を18%〜25%の範囲に設定する工程と、を具備し、
前記金属酸化物粒子と前記導電粒子とに圧縮剪断応力を加えて前記金属酸化物粒子の表面に前記導電粒子を層状に被覆させて該導電層の比表面積を10m2/g〜30 2/gとすることを特徴とする非水電解液二次電池用正極の製造方法。
Blending metal oxide particles of at least one of lithium manganese oxide, lithium nickel oxide, lithium iron oxide, lithium cobalt oxide and manganese oxide, conductive particles of carbonaceous material, and a binder; ,
A step of forming a large number of active materials by coating the conductive particles in a layer on the surface of the metal oxide particles,
Mixing the large number of active materials and a binder to form a paste,
Compressing the surface of the paste-like material to set the porosity in the range of 18% to 25%,
A compressive shear stress is applied to the metal oxide particles and the conductive particles to cover the surfaces of the metal oxide particles with the conductive particles in a layered manner, and the specific surface area of the conductive layer is 10 m 2 / g to 30 m 2 / g. A method for producing a positive electrode for a non-aqueous electrolyte secondary battery, the method comprising:
前記圧縮工程はプレスにより行われることを特徴とする請求項1記載の非水電解液二次電池用正極の製造方法The method for producing a positive electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the compression step is performed by pressing.
JP23813697A 1996-11-06 1997-09-03 Method for producing positive electrode for non-aqueous electrolyte secondary battery Expired - Fee Related JP3577907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23813697A JP3577907B2 (en) 1996-11-06 1997-09-03 Method for producing positive electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29364496 1996-11-06
JP8-293644 1996-11-06
JP23813697A JP3577907B2 (en) 1996-11-06 1997-09-03 Method for producing positive electrode for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10188955A JPH10188955A (en) 1998-07-21
JP3577907B2 true JP3577907B2 (en) 2004-10-20

Family

ID=26533548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23813697A Expired - Fee Related JP3577907B2 (en) 1996-11-06 1997-09-03 Method for producing positive electrode for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3577907B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019518B2 (en) * 1998-09-08 2007-12-12 三菱化学株式会社 Lithium secondary battery
CA2270771A1 (en) * 1999-04-30 2000-10-30 Hydro-Quebec New electrode materials with high surface conductivity
JP4649691B2 (en) * 1999-10-20 2011-03-16 株式会社豊田中央研究所 Positive electrode for lithium secondary battery
JP4941692B2 (en) * 2000-05-16 2012-05-30 株式会社豊田中央研究所 Lithium manganese composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP4817505B2 (en) * 2001-01-31 2011-11-16 三洋電機株式会社 Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery using the positive electrode
EP1641060A1 (en) * 2003-06-27 2006-03-29 Zeon Corporation Active material for cathode film, polyether polymer composition for cathode film, cathode film, and method for producing cathode film
EP1652247A4 (en) 2003-07-28 2009-08-19 Showa Denko Kk High density electrode and battery using the electrode
TWI458162B (en) * 2007-01-18 2014-10-21 Lg Chemical Ltd Cathode active material
JP2011204593A (en) * 2010-03-26 2011-10-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
KR101337365B1 (en) * 2010-09-20 2013-12-05 주식회사 엘지화학 Cathode Active Material with High Capacity and Improved Conductivity and Non-aqueous Electrolyte Secondary Battery Comprising the Same
CN105144436B (en) * 2013-07-26 2017-04-12 株式会社Lg 化学 Electrode for secondary battery having improved energy density and lithium secondary battery comprising same
JP6206045B2 (en) * 2013-09-30 2017-10-04 Tdk株式会社 Negative electrode active material, negative electrode including negative electrode active material, and lithium ion secondary battery including negative electrode
JP2020166926A (en) * 2017-06-29 2020-10-08 株式会社村田製作所 Lithium ion secondary battery

Also Published As

Publication number Publication date
JPH10188955A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
JP3601124B2 (en) A positive electrode active material of a secondary battery using a non-aqueous solution, and a positive electrode.
JP4061648B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4237074B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6724571B2 (en) Solid battery
JP3541913B2 (en) Non-aqueous electrolyte secondary battery
JP5557003B2 (en) Negative electrode material, non-aqueous electrolyte secondary battery, and negative electrode material manufacturing method
JP6183360B2 (en) Electrode of lithium ion secondary battery and lithium ion secondary battery using the same
JP6927292B2 (en) All-solid-state lithium-ion secondary battery
JP3577907B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
US20220190381A1 (en) Method of Manufacturing Positive Electrode for All-Solid-State Batteries and Positive Electrode for All-Solid-State Batteries Manufactured Using the Same
EP4131489A1 (en) Coated positive electrode active material and battery using same
US20240250296A1 (en) Method for producing all solid-state battery, and all solid-state battery
JP5743150B2 (en) Non-aqueous secondary battery manufacturing method
EP4303958A1 (en) Electrode material, method of producing electrode material, and method of producing all-solid-state battery
US9059436B2 (en) Method for producing lithium ion secondary battery with tap density and electrode density
JP3496414B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and positive electrode for lithium secondary battery
JP3525710B2 (en) Secondary battery and its positive electrode active material
JP7420949B2 (en) Cathode materials and batteries
JPH11283623A (en) Lithium ion battery and its manufacture
CN116157935A (en) Electrode and method for manufacturing electrode
JP4817505B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery using the positive electrode
JP2000058040A (en) Positive electrode material for lithium secondary battery
JP4534291B2 (en) Lithium secondary battery
JP4780361B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees