JP3577868B2 - Triple mode dielectric resonator - Google Patents

Triple mode dielectric resonator Download PDF

Info

Publication number
JP3577868B2
JP3577868B2 JP01893397A JP1893397A JP3577868B2 JP 3577868 B2 JP3577868 B2 JP 3577868B2 JP 01893397 A JP01893397 A JP 01893397A JP 1893397 A JP1893397 A JP 1893397A JP 3577868 B2 JP3577868 B2 JP 3577868B2
Authority
JP
Japan
Prior art keywords
mode
pseudo
cavity
dielectric
dielectric resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01893397A
Other languages
Japanese (ja)
Other versions
JPH10224113A (en
Inventor
準 服部
眞 阿部
徹 栗栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP01893397A priority Critical patent/JP3577868B2/en
Publication of JPH10224113A publication Critical patent/JPH10224113A/en
Application granted granted Critical
Publication of JP3577868B2 publication Critical patent/JP3577868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明はキャビティ内に複合誘電体柱を設けてなる擬似TMモードの誘電体共振器に関する。
【0002】
【従来の技術】
従来の擬似TM2重モードを利用した誘電体共振器の構造を図7に示す。以下の各図において点塗り潰し部分は電極膜が形成された部分を示す。
【0003】
図7に示すように、この誘電体共振器は、導波管として機能するキャビティ1内に、2つの誘電体柱2a,2bの交差形状からなる複合誘電体柱2を一体に設けたものである。キャビティ1および複合誘電体柱2は誘電体セラミックスからなり、キャビティ1の外周面にはAgなどの導電体3を形成している。キャビティ1の2つの開口面には導電体板(図示省略)またはこの誘電体共振器を収納する金属ケースを取り付ける。
【0004】
図7に示した誘電体共振器は、2つの誘電体柱2a,2bがそれぞれTM110モードで共振し、TM2重モードの誘電体共振器として作用する。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来のTM2重モード誘電体共振器では、1つの誘電体共振器で2つの独立した共振器として、または2つの共振器が結合した2段の共振器としてしか用いることができない。そこでたとえば単一の誘電体共振器に3つの共振器を構成するものとして、3つの誘電体柱を互いに直交させた形状の複合誘電体柱をキャビティ内に構成して、3つのTM110モードの共振モードを生じさせるようにしたTM3重モード誘電体共振器が提案されている。しかしながら、このような従来のTM3重モード誘電体共振器では、全体の構造が複雑化し、通常の製造方法では製造コストが嵩むという問題があった。
【0006】
そこで、本願出願人は、2つの誘電体柱の交差形状からなる複合誘電体柱を設けたもので、しかも3つの共振モードを利用できるようにした誘電体共振器として特願平8−21394号を出願している。
【0007】
本願発明の目的は、この先に出願した発明の目的と同様に、2つの誘電体柱の交差形状からなる複合誘電体柱を配して、3重モード構成に相当する特性を有する誘電体共振器を得ることにあり、さらにその製造を容易にした3重モード誘電体共振器を提供することにある。
【0008】
【課題を解決するための手段】
この発明は、開口部を有するキャビテイ内に2つの誘電体柱の交差形状からなる複合誘電体柱を配した誘電体共振器において、前記複合誘電体柱を成す2つの誘電体柱のそれぞれの軸方向の長さを短くし、しかも一体成形を容易にするために、請求項1に記載のとおり、前記キャビティの開口面に平行な面での該キャビティの外壁の断面形状を略一定とし、且つ前記キャビティの外壁に前記2つの誘電体柱のそれぞれの軸方向にくびれたくびれ部を設け、該くびれ部によって、電界分布の対称軸の異なる2つの擬似TM110モードと擬似TM111モードの共振周波数を略同一にする。
【0009】
このようにキャビテイの外壁にくびれ部を設けることによって、複合誘電体柱を成す2つの誘電体柱の軸方向の長さを短縮するようにしたため、電界分布の対称軸の異なる2つの擬似TM110モードと擬似TM111モードの共振周波数をほぼ同一にすることができ、しかもキャビテイの開口面に平行な面での該キャビテイの外壁の断面形状をほぼ一定としたため、複合誘電体柱およびキャビテイの一体成形の際に、キャビテイの開口方向(開口面に垂直な方向)の1軸方向に成形金型を開枠することが可能となり、成形金型が複雑にならずに、製造コストを著しく低減できるようになる。
【0010】
また、この発明は請求項2に記載のとおり、前記キャビティの開口面に平行な面での該キャビティの外壁の断面形状を略一定とし、且つ前記キャビティの外壁に前記2つの誘電体柱のそれぞれの軸方向にくびれたくびれ部を設けるとともに、前記複合誘電体柱の中央部に該複合誘電体柱の成す平面に垂直な方向に穴を形成し、該穴と前記くびれ部によって、電界分布の対称軸の異なる2つの擬似TM110モードと擬似TM111モードの共振周波数を略同一にする。
【0011】
このように複合誘電体柱の中央部に垂直方向に穴を形成することによって、選択的に擬似TM110モードの共振周波数が上昇する。したがって前記くびれ部を設けることによる選択的な擬似TM111モードの共振周波数の低下量が少なくても、すなわち前記くびれ部のくびれ方が少なくても、擬似TM110モードと擬似TM111モードの共振周波数を略同一にすることができ、設計上の自由度が増す。
【0012】
【発明の実施の形態】
この発明の第1の実施形態に係る擬似TM3重モード誘電体共振器の構成を図1〜図4を参照して説明する。
【0013】
図1の(A)は3重モード誘電体共振器の斜視図、(B)はその平面図である。この誘電体共振器はキャビテイ1の内部に2つの誘電体柱の交差形状からなる複合誘電体柱2を一体成形により設けたものである。キャビテイ1は図における上下面を開口面とし、その開口面に平行な面での断面形状を一定とし、複合誘電体柱2を成す2つの誘電体柱のそれぞれの軸方向にくびれたくびれ部5,5,5,5を設けている。また、このキャビテイ1の外周面には導電体3を形成している。図1に示した誘電体共振器を製造する際、図における上下方向に開枠する成形金型を作成すればよく、この1軸方向に開枠する金型によって、キャビテイ1と複合誘電体柱2とを容易に一体成形することができる。
【0014】
図2は上記3重モード誘電体共振器の各モードの電界分布の例を示す図、図3はこれに対比してくびれ部のない状態における各モードの電界分布の例を示す図である。両図の(A)および(C)に示すように、それぞれ擬似TM110モードである第1と第3の共振モードは複合誘電体柱の中央部にまで電界が分布するのに対し、(B)に示すように第2の共振モードである擬似TM111モードは複合誘電体柱の中央部には電界は集中せず、その周囲に分布する。したがってキャビティの壁面に誘電体柱の軸方向にくびれるくびれ部を設ければ、そのくびれ部は擬似TM111モードに対してより大きな影響を与えることになる。このことは、図2および図3に示したように電界分布を4本の矢印で示した場合に、くびれ部5を設ければ擬似TM111モードでは4本とも矢印が短くなるのに対し、擬似TM110モードでは2本のみが大きく短縮されるだけであることから理解できる。このように、くびれ部5は擬似TM110モードより擬似TM111モードに対してより大きく影響を与え、くびれ部5の深さを深くするほど誘電体柱の端面間距離が短くなり、静電容量が増大することにより、擬似TM111モードの共振周波数が大きく低下する。
【0015】
図4は図1に示した3重モード誘電体共振器のくびれ部5の深さを変化させた場合の擬似TM110モードと擬似TM111モードのそれぞれの共振周波数の変化を示す図である。このようにくびれ深さを深くするほど擬似TM110モードと擬似TM111モードの共振周波数は共に低下するが、擬似TM111モードの共振周波数の低下度合いが大きいので、ある深さ寸法(同図においては約13mm)で擬似TM110モードと擬似TM111モードの共振周波数が一致する。したがってくびれ部5の深さがこの所定の値となるように予め成形金型を設計しておけばよい。
【0016】
次に第2の実施形態に係る3重モード誘電体共振器の構成を図5および図6を参照して説明する。
【0017】
図5は3重モード誘電体共振器の斜視図である。この誘電体共振器はキャビテイ1の内部に2つの誘電体柱の交差形状からなる複合誘電体柱2を一体成形により設けたものである。この複合誘電体柱2の中央部には、その複合誘電体柱2の成す平面に垂直な方向に穴6を形成している。キャビテイ1は図における上下面を開口面とし、その開口面に平行な面での断面形状を一定とし、複合誘電体柱2を成す2つの誘電体柱のそれぞれの軸方向にくびれたくびれ部5,5,5,5を設けている。また、このキャビテイ1の外周面には導電体3を形成している。この誘電体共振器を製造する際、図における上下方向に開枠する成形金型を作成すればよく、1軸方向に開枠する金型によって、キャビテイ1と複合誘電体柱2とを容易に一体成形することができる。
【0018】
図6は図5に示したくびれ部5の深さによる擬似TM110モードと擬似TM111モードの共振周波数の変化、および穴6の内径の変化による擬似TM110モードと擬似TM111モードの共振周波数の変化の傾向をそれぞれ示す図である。(A)は穴6の内径を一定としてくびれ部5の深さを変化させたときの例であり、くびれ深さを深くするほど擬似TM111モードの共振周波数が大きく低下し、擬似TM110モードの共振周波数はそれに比べて緩やかに低下する。この傾向は図4に示したものと同様である。同図の(B)はくびれ部5の深さを一定として穴6の内径を変化させたときの例であり、穴6の内径を大きくするほど擬似TM110モードの共振周波数が大きく上昇し、これに対し擬似TM111モードの共振周波数は緩やかに上昇する。このように穴6の内径を大きくするほど擬似TM111モードに比べて擬似TM110モードの共振周波数が大きく上昇するのは、次のように説明できる。すなわち図2に示したように、擬似TM110モードの電磁界は擬似TM111モードに比べて複合誘電体柱の中央部にまで分布しているため、複合誘電体柱中央部の穴は擬似TM110モードに対してより効果的に作用する。そして、この穴6の内径を広げるほど擬似TM110モードについての誘電体柱の端面間の静電容量が小さくなって、その共振周波数が大きな変化割合で上昇することになる。
【0019】
したがってこの第2の実施形態によれば、図5に示したくびれ部5によって擬似TM111モードの共振周波数が低下し、穴6によって擬似TM110モードの共振周波数が上昇するため、極端に深いくびれ部5を設けることなく、また極端に内径の大きな穴6を設けることなく擬似TM110モードと擬似TM111モードの共振周波数を略一致させることができる。
【0020】
なお、上記穴6は複合誘電体柱およびキャビティの一体成形の際に形成することによって、設計段階で擬似TM110モードと擬似TM111モードの両共振モードの共振周波数を定めるか、複合誘電体柱およびキャビティの一体成形の後にリュータ等の切削工具で削除することによって形成することによって擬似TM110モードの共振周波数を調整するようにしてもよい。
【0021】
また、上記穴6は貫通孔であってもよく、また、有底穴であってもよい。有底穴の場合には、その内径と深さによって主に擬似TM110モードの共振周波数を定める。
【0022】
【発明の効果】
請求項1に係る発明によれば、複合誘電体柱を成す2つの誘電体柱の軸方向の長さを短縮するようにしたため、電界分布の対称軸の異なる2つの擬似TM110モードと擬似TM111モードの共振周波数をほぼ同一にすることができ、しかもキャビテイの開口面に平行な面での該キャビテイの外壁の断面形状をほぼ一定としたため、複合誘電体柱およびキャビテイの一体成形の際に、キャビテイの開口方向(開口面に垂直な方向)の1軸方向に成形金型を開枠することが可能となり、成形金型が複雑にならずに、製造コストを著しく低減できるようになる。
【0023】
請求項2に係る発明によれば、複合誘電体柱の中央部に垂直方向に穴を形成して、擬似TM110モードの共振周波数を選択的に上昇させるようにしたため、くびれ部のくびれ方が少なくても、擬似TM110モードと擬似TM111モードの共振周波数を略同一にすることができ、設計上の自由度が増し、しかも複合誘電体柱およびキャビテイの一体成形の際に、1軸方向の開枠が可能となり、成形金型が複雑にならずに、製造コストを著しく低減できるようになる。
【図面の簡単な説明】
【図1】第1の実施形態に係る3重モード誘電体共振器の斜視図および平面図である。
【図2】同誘電体共振器の3つの共振モードにおける電界分布の例を示す図である。
【図3】くびれのない場合の誘電体共振器の3つの共振モードにおける電界分布の例を示す図である。
【図4】第1の実施形態に係る3重モード誘電体共振器の壁面くびれ深さに対する2つの共振モードの共振周波数の変化を示す図である。
【図5】第2の実施形態に係る3重モード誘電体共振器の斜視図である。
【図6】同誘電体共振器の壁面くびれ深さおよび穴の内径による2つの共振モードの共振周波数の変化を示す図である。
【図7】従来のTM2重モード誘電体共振器の斜視図である。
【符号の説明】
1−キャビテイ
2−複合誘電体柱
3−導電体
5−くびれ部
6−穴
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a quasi-TM mode dielectric resonator having a composite dielectric column provided in a cavity.
[0002]
[Prior art]
FIG. 7 shows a structure of a dielectric resonator using a conventional pseudo TM dual mode. In each of the following drawings, the dot-filled portions indicate portions where the electrode film is formed.
[0003]
As shown in FIG. 7, this dielectric resonator has a composite dielectric column 2 having a cross shape of two dielectric columns 2a and 2b integrally provided in a cavity 1 functioning as a waveguide. is there. The cavity 1 and the composite dielectric column 2 are made of dielectric ceramics, and a conductor 3 such as Ag is formed on the outer peripheral surface of the cavity 1. A conductive plate (not shown) or a metal case accommodating the dielectric resonator is attached to the two opening surfaces of the cavity 1.
[0004]
In the dielectric resonator shown in FIG. 7, the two dielectric columns 2a and 2b resonate in the TM110 mode, respectively, and act as a TM dual mode dielectric resonator.
[0005]
[Problems to be solved by the invention]
However, the conventional TM dual mode dielectric resonator described above can only be used as two independent resonators with one dielectric resonator or as a two-stage resonator in which two resonators are coupled. Therefore, for example, assuming that three resonators are formed in a single dielectric resonator, a composite dielectric pillar having a shape in which three dielectric pillars are orthogonal to each other is formed in a cavity, and three TM110 mode resonances are formed. A TM triple mode dielectric resonator in which a mode is generated has been proposed. However, such a conventional TM triple mode dielectric resonator has a problem that the entire structure is complicated and the manufacturing cost is increased by a normal manufacturing method.
[0006]
In view of this, the applicant of the present application has disclosed a Japanese Patent Application No. Hei 8-21394 as a dielectric resonator provided with a composite dielectric column having a cross shape of two dielectric columns and capable of utilizing three resonance modes. Has filed.
[0007]
An object of the present invention is to provide a dielectric resonator having a characteristic equivalent to a triple mode configuration by arranging a composite dielectric column having an intersecting shape of two dielectric columns, similarly to the object of the invention filed earlier. Another object of the present invention is to provide a triple mode dielectric resonator whose manufacture is facilitated.
[0008]
[Means for Solving the Problems]
The present invention relates to a dielectric resonator in which a composite dielectric column having an intersection of two dielectric columns is disposed in a cavity having an opening, and each axis of the two dielectric columns forming the composite dielectric column is provided. In order to shorten the length in the direction and facilitate the integral molding, the cross-sectional shape of the outer wall of the cavity in a plane parallel to the opening surface of the cavity is substantially constant, as described in claim 1, and A constricted portion is provided on the outer wall of the cavity in the axial direction of each of the two dielectric columns, and the constricted portion substantially reduces the resonance frequencies of two pseudo TM110 modes and pseudo TM111 modes having different axes of symmetry of electric field distribution. Make them the same.
[0009]
By providing the constricted portion on the outer wall of the cavity in this way, the length of the two dielectric pillars forming the composite dielectric pillar in the axial direction is shortened. Therefore, two pseudo TM110 modes having different symmetry axes of the electric field distribution. And the resonance frequency of the pseudo TM111 mode can be made substantially the same, and the cross-sectional shape of the outer wall of the cavity is substantially constant in a plane parallel to the opening surface of the cavity. At this time, it is possible to open the molding die in one axial direction of the cavity opening direction (direction perpendicular to the opening surface), so that the molding die is not complicated and the manufacturing cost can be significantly reduced. Become.
[0010]
Further, according to the present invention, the cross-sectional shape of the outer wall of the cavity in a plane parallel to the opening surface of the cavity is substantially constant, and each of the two dielectric columns is formed on the outer wall of the cavity. A constricted portion is provided in the axial direction of the composite dielectric column, and a hole is formed in a central portion of the composite dielectric column in a direction perpendicular to a plane formed by the composite dielectric column, and the hole and the constricted portion define an electric field distribution. The resonance frequencies of two pseudo TM110 modes and two pseudo TM111 modes having different symmetry axes are made substantially the same.
[0011]
By forming a hole in the center of the composite dielectric column in the vertical direction in this manner, the resonance frequency of the pseudo TM110 mode is selectively increased. Therefore, even if the amount of decrease in the resonance frequency of the pseudo pseudo TM111 mode due to the provision of the constricted portion is small, that is, even if the constriction of the constricted portion is small, the resonance frequencies of the pseudo TM110 mode and the pseudo TM111 mode are substantially the same. And the degree of freedom in design increases.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The configuration of the pseudo TM triple mode dielectric resonator according to the first embodiment of the present invention will be described with reference to FIGS.
[0013]
1A is a perspective view of a triple mode dielectric resonator, and FIG. 1B is a plan view thereof. In this dielectric resonator, a composite dielectric column 2 having an intersecting shape of two dielectric columns is provided in a cavity 1 by integral molding. The cavity 1 has upper and lower surfaces as opening surfaces, a cross-sectional shape in a plane parallel to the opening surface is constant, and constricted portions 5 of the two dielectric columns constituting the composite dielectric column 2 are respectively constricted in the axial direction. , 5, 5, 5 are provided. A conductor 3 is formed on the outer peripheral surface of the cavity 1. When the dielectric resonator shown in FIG. 1 is manufactured, a molding die which is opened in the vertical direction in the figure may be prepared, and the cavity 1 and the composite dielectric column are opened by the die which is opened in the uniaxial direction. 2 can easily be integrally formed.
[0014]
FIG. 2 is a diagram showing an example of an electric field distribution of each mode of the triple mode dielectric resonator, and FIG. 3 is a diagram showing an example of an electric field distribution of each mode in a state where there is no constriction. As shown in (A) and (C) of both figures, the first and third resonance modes, which are the pseudo TM110 modes, respectively, distribute the electric field to the center of the composite dielectric column, whereas (B) As shown in (2), in the pseudo TM111 mode, which is the second resonance mode, the electric field is not concentrated at the center of the composite dielectric pillar, but is distributed around it. Therefore, if a constricted portion that is constricted in the axial direction of the dielectric column is provided on the wall surface of the cavity, the constricted portion has a greater effect on the pseudo TM111 mode. This means that, when the electric field distribution is indicated by four arrows as shown in FIGS. 2 and 3, the provision of the constricted portion 5 shortens all four arrows in the pseudo TM111 mode, whereas the pseudo arrows in FIG. It can be understood from the fact that only two lines are greatly reduced in the TM110 mode. As described above, the constricted portion 5 has a greater effect on the pseudo TM111 mode than the pseudo TM110 mode. As the depth of the constricted portion 5 increases, the distance between the end faces of the dielectric pillars decreases and the capacitance increases. By doing so, the resonance frequency of the pseudo TM111 mode is greatly reduced.
[0015]
FIG. 4 is a diagram showing a change in the resonance frequency of each of the pseudo TM110 mode and the pseudo TM111 mode when the depth of the constricted portion 5 of the triple mode dielectric resonator shown in FIG. 1 is changed. As described above, the resonance frequency of the pseudo TM110 mode and the pseudo TM111 mode both decrease as the constriction depth increases. However, since the resonance frequency of the pseudo TM111 mode decreases greatly, a certain depth dimension (about 13 mm in FIG. ), The resonance frequencies of the pseudo TM110 mode and the pseudo TM111 mode match. Therefore, the molding die may be designed in advance so that the depth of the constricted portion 5 becomes the predetermined value.
[0016]
Next, a configuration of a triple mode dielectric resonator according to a second embodiment will be described with reference to FIGS.
[0017]
FIG. 5 is a perspective view of a triple mode dielectric resonator. In this dielectric resonator, a composite dielectric column 2 having an intersecting shape of two dielectric columns is provided in a cavity 1 by integral molding. At the center of the composite dielectric column 2, a hole 6 is formed in a direction perpendicular to the plane formed by the composite dielectric column 2. The cavity 1 has upper and lower surfaces in the drawing as opening surfaces, and has a constant cross-sectional shape in a plane parallel to the opening surface. , 5, 5, 5 are provided. A conductor 3 is formed on the outer peripheral surface of the cavity 1. When manufacturing this dielectric resonator, it is only necessary to create a molding die which is opened vertically in the figure, and the cavity 1 and the composite dielectric column 2 can be easily separated by the die which is opened in one axis direction. It can be integrally molded.
[0018]
FIG. 6 shows a change in the resonance frequency between the pseudo TM110 mode and the pseudo TM111 mode depending on the depth of the constricted portion 5 shown in FIG. 5 and a change in the resonance frequency between the pseudo TM110 mode and the pseudo TM111 mode due to the change in the inner diameter of the hole 6. It is a figure which shows each. (A) shows an example in which the inner diameter of the hole 6 is kept constant and the depth of the constricted portion 5 is changed. The resonance frequency of the pseudo TM111 mode is greatly reduced as the constriction depth is increased, and the resonance of the pseudo TM110 mode is reduced. The frequency decreases more slowly. This tendency is similar to that shown in FIG. FIG. 7B shows an example in which the inner diameter of the hole 6 is changed while the depth of the constricted portion 5 is kept constant. As the inner diameter of the hole 6 increases, the resonance frequency of the pseudo TM110 mode increases. On the other hand, the resonance frequency of the pseudo TM111 mode gradually increases. The reason why the larger the inner diameter of the hole 6 is, the larger the resonance frequency of the pseudo TM110 mode is, as compared with the pseudo TM111 mode, can be explained as follows. That is, as shown in FIG. 2, the electromagnetic field in the pseudo TM110 mode is distributed to the central portion of the composite dielectric column as compared with the pseudo TM111 mode, so that the hole in the central portion of the composite dielectric column is in the pseudo TM110 mode. It works more effectively against it. As the inner diameter of the hole 6 is increased, the capacitance between the end faces of the dielectric columns in the pseudo TM110 mode is reduced, and the resonance frequency is increased at a large change rate.
[0019]
Therefore, according to the second embodiment, the constricted portion 5 shown in FIG. 5 reduces the pseudo-TM111 mode resonance frequency, and the hole 6 increases the pseudo-TM110 mode resonance frequency. And the resonance frequencies of the pseudo-TM110 mode and the pseudo-TM111 mode can be substantially matched without providing the hole 6 having an extremely large inner diameter.
[0020]
The hole 6 is formed at the time of integrally molding the composite dielectric column and the cavity to determine the resonance frequency of both the pseudo TM110 mode and the pseudo TM111 mode in the design stage, The resonance frequency of the pseudo-TM110 mode may be adjusted by forming by integral cutting after removing with a cutting tool such as a router.
[0021]
The hole 6 may be a through hole or a bottomed hole. In the case of a bottomed hole, the resonance frequency of the pseudo TM110 mode is mainly determined by the inner diameter and the depth.
[0022]
【The invention's effect】
According to the first aspect of the present invention, since the axial lengths of the two dielectric pillars forming the composite dielectric pillar are reduced, two pseudo TM110 modes and two pseudo TM111 modes having different symmetry axes of the electric field distribution. Can be made substantially the same, and since the cross-sectional shape of the outer wall of the cavity in a plane parallel to the opening surface of the cavity is made substantially constant, when the composite dielectric pillar and the cavity are integrally formed, It is possible to open the molding die in one axial direction of the opening direction (perpendicular to the opening surface), and the molding die is not complicated and the manufacturing cost can be significantly reduced.
[0023]
According to the second aspect of the present invention, a hole is formed in the center of the composite dielectric column in the vertical direction so as to selectively increase the resonance frequency of the pseudo TM110 mode. However, the resonance frequencies of the pseudo-TM110 mode and the pseudo-TM111 mode can be made substantially the same, so that the degree of freedom in design increases, and when the composite dielectric pillar and the cavity are integrally formed, the frame is opened in one axial direction. It becomes possible to significantly reduce the manufacturing cost without making the molding die complicated.
[Brief description of the drawings]
1A and 1B are a perspective view and a plan view of a triple mode dielectric resonator according to a first embodiment.
FIG. 2 is a diagram showing an example of an electric field distribution in three resonance modes of the dielectric resonator.
FIG. 3 is a diagram illustrating an example of an electric field distribution in three resonance modes of a dielectric resonator when no constriction occurs.
FIG. 4 is a diagram showing a change in resonance frequency of two resonance modes with respect to a wall constriction depth of the triple mode dielectric resonator according to the first embodiment.
FIG. 5 is a perspective view of a triple mode dielectric resonator according to a second embodiment.
FIG. 6 is a diagram showing a change in resonance frequency of two resonance modes depending on a constriction depth of a wall surface and an inner diameter of a hole of the dielectric resonator.
FIG. 7 is a perspective view of a conventional TM dual mode dielectric resonator.
[Explanation of symbols]
1-cavity 2-composite dielectric pillar 3-conductor 5-constriction 6-hole

Claims (2)

開口部を有するキャビティ内に2つの誘電体柱の交差形状から成る複合誘電体柱を配した誘電体共振器において、
前記キャビティの開口面に平行な面での該キャビティの外壁の断面形状を略一定とし、且つ前記キャビティの外壁に前記2つの誘電体柱のそれぞれの軸方向にくびれたくびれ部を設け、該くびれ部によって、電界分布の対称軸の異なる2つの擬似TM110モードと擬似TM111モードの共振周波数を略同一にしたことを特徴とする3重モード誘電体共振器。
A dielectric resonator in which a composite dielectric column having an intersection of two dielectric columns is disposed in a cavity having an opening,
The cross-sectional shape of the outer wall of the cavity in a plane parallel to the opening surface of the cavity is substantially constant, and the outer wall of the cavity is provided with constrictions that are constricted in the respective axial directions of the two dielectric columns. A triple mode dielectric resonator, wherein the resonance frequencies of two pseudo TM110 modes and two pseudo TM111 modes having different symmetry axes of the electric field distribution are made substantially the same depending on the section.
開口部を有するキャビティ内に2つの誘電体柱の交差形状から成る複合誘電体柱を配した誘電体共振器において、
前記キャビティの開口面に平行な面での該キャビティの外壁の断面形状を略一定とし、且つ前記キャビティの外壁に前記2つの誘電体柱のそれぞれの軸方向にくびれたくびれ部を設けるとともに、前記複合誘電体柱の中央部に該複合誘電体柱の成す平面に垂直な方向に穴を形成し、該穴と前記くびれ部によって、電界分布の対称軸の異なる2つの擬似TM110モードと擬似TM111モードの共振周波数を略同一にしたことを特徴とする3重モード誘電体共振器。
A dielectric resonator in which a composite dielectric column having an intersection of two dielectric columns is disposed in a cavity having an opening,
The cross-sectional shape of the outer wall of the cavity in a plane parallel to the opening surface of the cavity is substantially constant, and the outer wall of the cavity is provided with a constricted portion that is constricted in the axial direction of each of the two dielectric columns. A hole is formed in the center of the composite dielectric column in a direction perpendicular to the plane formed by the composite dielectric column, and the pseudo TM110 mode and the pseudo TM111 mode having different symmetry axes of the electric field distribution due to the hole and the constriction. Characterized by having substantially the same resonance frequency.
JP01893397A 1997-01-31 1997-01-31 Triple mode dielectric resonator Expired - Lifetime JP3577868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01893397A JP3577868B2 (en) 1997-01-31 1997-01-31 Triple mode dielectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01893397A JP3577868B2 (en) 1997-01-31 1997-01-31 Triple mode dielectric resonator

Publications (2)

Publication Number Publication Date
JPH10224113A JPH10224113A (en) 1998-08-21
JP3577868B2 true JP3577868B2 (en) 2004-10-20

Family

ID=11985450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01893397A Expired - Lifetime JP3577868B2 (en) 1997-01-31 1997-01-31 Triple mode dielectric resonator

Country Status (1)

Country Link
JP (1) JP3577868B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298485B2 (en) * 1997-02-03 2002-07-02 株式会社村田製作所 Multi-mode dielectric resonator
JP2002026602A (en) * 2000-07-10 2002-01-25 Murata Mfg Co Ltd Dielectric resonator, filter, duplexer and communication unit
US20130049891A1 (en) 2011-08-23 2013-02-28 Mesaplexx Pty Ltd Filter
US9406988B2 (en) 2011-08-23 2016-08-02 Mesaplexx Pty Ltd Multi-mode filter
US20140097913A1 (en) 2012-10-09 2014-04-10 Mesaplexx Pty Ltd Multi-mode filter
US9325046B2 (en) 2012-10-25 2016-04-26 Mesaplexx Pty Ltd Multi-mode filter
US9614264B2 (en) 2013-12-19 2017-04-04 Mesaplexxpty Ltd Filter
CN109461996B (en) 2018-10-10 2021-04-30 香港凡谷發展有限公司 Special-shaped cavity three-mode resonance structure and filter comprising same
CN112928478B (en) * 2021-01-25 2022-07-29 电子科技大学 Wide-beam stepped dielectric resonator antenna based on high-order mode superposition

Also Published As

Publication number Publication date
JPH10224113A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
JP3298485B2 (en) Multi-mode dielectric resonator
JPH0964615A (en) Dielectric resonator device
JP3577868B2 (en) Triple mode dielectric resonator
JP3211547B2 (en) Dielectric filter
JPH05335808A (en) Dielectric resonator
JP2998627B2 (en) Dielectric resonator
JP3309610B2 (en) Dielectric resonator device
JP2808442B2 (en) Multimode cavity resonator for waveguide filter
JPH07235804A (en) Dielectric filter
JP2808441B2 (en) Multimode Cavity Resonator for Waveguide Filter Including Elliptical Waveguide Segment
JP3389673B2 (en) TM multi-mode dielectric resonator device
JP3339194B2 (en) TM mode dielectric resonator
JP3298279B2 (en) Dielectric resonator device, method of adjusting coupling coefficient thereof, and device for manufacturing the same
JP3508224B2 (en) Dielectric resonator device
JPS6239901A (en) Dielectric filter
JP3738916B2 (en) Dielectric resonator
JP3480041B2 (en) TM multi-mode dielectric resonator device
JP3562037B2 (en) TM multimode dielectric resonator
JPH0888503A (en) Dielectric resonator device
JPH10173414A (en) Tm double mode dielectric resonator
JPH07336103A (en) Tm multiplex mode dielectric resonator device
JPH07297602A (en) Dielectric resonant parts and its production
JPH10224112A (en) Tm-mode dielectric resonator
JPH083046Y2 (en) Dielectric resonator
JPH0633690Y2 (en) TM mode dielectric resonator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

EXPY Cancellation because of completion of term