JP3577394B2 - Continuous polymerization of propylene - Google Patents

Continuous polymerization of propylene Download PDF

Info

Publication number
JP3577394B2
JP3577394B2 JP27213296A JP27213296A JP3577394B2 JP 3577394 B2 JP3577394 B2 JP 3577394B2 JP 27213296 A JP27213296 A JP 27213296A JP 27213296 A JP27213296 A JP 27213296A JP 3577394 B2 JP3577394 B2 JP 3577394B2
Authority
JP
Japan
Prior art keywords
propylene
polymerization
catalyst component
prepolymerization
solid catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27213296A
Other languages
Japanese (ja)
Other versions
JPH10120719A (en
Inventor
正彦 近藤
秀樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP27213296A priority Critical patent/JP3577394B2/en
Publication of JPH10120719A publication Critical patent/JPH10120719A/en
Application granted granted Critical
Publication of JP3577394B2 publication Critical patent/JP3577394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerisation Methods In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリプロピレンの製造方法に関するものであり、さらに詳しくは、予備重合触媒を本重合器に連続的に供給するプロピレンの連続重合方法に関するものである。
【0002】
【従来の技術】
ポリプロピレンの工業的製法として、近年では後処理工程が簡単であるところから、プロピレン自身を溶媒とするバルク重合や気相重合を用いた連続重合法が多用されている。これらの連続重合法においては、製品品質を良好に保つことは勿論であるが、重合器や後処理工程でのトラブルを防止するために生成パウダーのモルフォロジーを良好に保ち、塊状物や微粉を発生させないことが重要な課題となっており、触媒やその供給方法の改良が行なわれてきている。
【0003】
プロピレン重合用触媒については、従来用いられてきた種々の三塩化チタン触媒から、より高活性で、後処理工程での脱灰処理も不要な、マグネシウム、チタン、ハロゲン及び電子供与性化合物を主成分とする固体触媒成分、すなわち担持型高活性触媒に置き換わりつつある。
しかし、この高活性触媒をそのままバルク重合や気相重合の連続重合に適用すると重合体粒子の破壊が生じ、パウダーモルフォロジーの悪い、微粉の多いポリマーを生成する。パウダーモルフォロジーの悪さは重合系や下流系での運転の不安定さにつながる。
【0004】
そこで、パウダーモルフォロジーの悪化、微粉の多さを改良する目的で、触媒を本重合に供用する前に少量のオレフィンを重合させる、いわゆる予備重合の検討が種々行なわれてきている。
例えば、特開昭53−30681号公報等には、予備重合操作をバッチ操作で行なって、その予備重合触媒を一旦貯蔵した後に本重合で使用する方法が開示されているが、予備重合操作終了後長時間を経た後で使用しているので、触媒活性、立体規則性ともに不十分なものである。また、特開平1−135804号公報には、連続的に予備重合を行なう提案もされているが、操作時間の短縮等の改善はみられるものの、触媒成分をヘキサン等で希釈混合し、プロピレンに接触させる等の操作をおこなっており、触媒活性や立体規則性等はまだ不十分なものである。
【0005】
また一方、予備重合操作を連続的に行なう際には、触媒供給ラインに詰まりを生じやすい等の技術的にも困難な面があり、その実行方法は種々の制限を受け、これまで狭い条件での技術検討しか行われてきていない。
以上のように、触媒活性、立体規則性といった触媒の基本的な性能を最大限に引出し、製品品質、パウダーモルフォロジーを良好な状態に保ちながら、かつ運転安定性、経済性をすべて満足させる技術は提案されていないのが現状である。
【0006】
【発明が解決しようとする課題】
本発明は、バッチ操作で行うよりも高生産性である連続予備重合を用いたプロピレンの連続重合方法において、触媒活性及び立体規則性の向上により製品品質の改善をするとともに重合パウダーの微粉の低減、モルフォロジーの改良を行い、運転安定性を向上させるプロピレンの連続重合方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、鋭意検討した結果、液状プロピレンの存在下、固体触媒成分(A)と有機アルミニウム化合物(B)を接触させ、以下に示す特定の条件下で連続予備重合することで目的を達成できることを見出し、本発明を完成した。
(1)マグネシウム、チタン及びハロゲンを必須成分とする固体触媒成分(A)と有機アルミニウム化合物(B)と電子供与性化合物(C)からなる触媒の存在下でプロピレンを連続重合するにあたり、液状プロピレンの存在下、固体触媒成分(A)と有機アルミニウム化合物(B)を接触させ、60℃以下の温度となる条件下で予備重合を行い、供給される固体触媒成分(A)1g当たり0.3〜8g、かつ、供給される液状プロピレンの5重量%以下となる量のプロピレン予備重合触媒を形成し、これを未反応の液状プロピレンと共に0.3m/秒以上の平均流速で本重合器に連続的に供給することを特徴とするプロピレンの連続重合方法。
(2)予備重合器における平均滞留時間が25秒以下である上記(1)に記載のプロピレンの連続重合方法。
(3)予備重合時に電子供与性化合物(C)を添加する上記(1)又は(2)に記載のプロピレンの連続重合方法。
【0008】
【発明の実施の形態】
本発明はマグネシウム、チタン及びハロゲンを必須成分とする固体触媒成分(A)と有機アルミニウム化合物(B)と電子供与性化合物(C)からなる触媒の存在下でプロピレンを連続重合するにあたり、液状プロピレンの存在下、固体触媒成分(A)と有機アルミニウム化合物(B)を接触させ、60℃以下の温度となる条件下で予備重合を行い、供給された固体触媒成分(A)1g当たり0.3〜8g、かつ、供給される液状プロピレンの5重量%以下の量となるプロピレン予備重合触媒を形成し、これを未反応の液状プロピレンと共に0.3m/秒以上の平均流速で本重合器に連続的に供給することを特徴とするプロピレンの連続重合方法である。
【0009】
ここで、重合器に連続的に供給するとは、バッチ操作と対比して連続的という意味であって、往復動ポンプや間欠作動の触媒供給器等により間欠動作間隔が20分以内で連続的に供給されているものも含めて、連続的に供給するという。
上記のマグネシウム、チタン及びハロゲンを必須成分とする固体触媒成分(A)としては、これらを必須成分とするプロピレン重合用の固体触媒であれば特に制限されないが、代表例について以下に説明する。
【0010】
固体触媒成分の担体としては、実質的に無水の塩化マグネシウム等のハロゲン化マグネシウム、金属マグネシウムとアルコールから得られるマグネシウムジアルコキシド、金属マグネシウムとアルコールとハロゲン及び/又はハロゲン含有化合物から得られる固体生成物を挙げることができる。
これらの中でも金属マグネシウムとアルコールとハロゲン及び/又はハロゲン含有化合物から得られる固体生成物を好ましく用いることができる。この場合、金属マグネシウムは、顆粒状、リボン状、粉末状等のマグネシウムを用いることができる。また、この金属マグネシウムは、表面に酸化マグネシウム等の被覆が生成されていないものが好ましい。
【0011】
アルコールとしては、炭素数1〜6の低級アルコールを用いるのが好ましく、特に、エタノールを用いると、触媒性能の発現を著しく向上させる上記担体が得られる。
ハロゲンとしては、塩素、臭素、又はヨウ素が好ましく、特にヨウ素を好適に使用できる。また、ハロゲン含有化合物としては、MgCl、MgIが好適に使用できる。
【0012】
アルコールの量は、金属マグネシウム1モルに対して好ましくは2〜100モル、特に好ましくは5〜50モルである。
ハロゲン又はハロゲン含有化合物の使用量は、金属マグネシウム1グラム原子に対して、ハロゲン原子又はハロゲン含有化合物中のハロゲン原子が、0.0001グラム原子以上、好ましくは0.0005グラム原子以上、さらに好ましくは、0.001グラム原子以上である。ハロゲン及びハロゲン含有化合物はそれぞれ1種を単独で使用してもよく、2種以上を併用してもよい。
【0013】
金属マグネシウムとアルコールとハロゲン及び/又はハロゲン含有化合物との反応方法は、例えば、金属マグネシウムとアルコールとハロゲン及び/またはハロゲン含有化合物とを、還流下(約79℃)で水素ガスの発生が認められなくなるまで(通常20〜30時間)反応させて、担体を得る方法である。これは、不活性ガス(例えば窒素ガス、アルゴンガス)雰囲気下で行うことが好ましい。
得られた担体を次の固体触媒成分の合成に用いる場合、乾燥させたものを用いてもよく、また濾別後ヘプタン等の不活性溶媒で洗浄したものを用いてもよい。
【0014】
固体触媒成分の調製のため、上記の担体に少なくともチタン化合物を接触させる。
このチタン化合物としては、一般式(1)
TiX (OR4−n ・・・(1)
(式中、Xはハロゲン原子、特に塩素原子が好ましく、Rは炭素数1〜10の炭化水素基、特に直鎖または分岐鎖のアルキル基であり、Rが複数存在する場合にはそれらは互いに同じでも異なってもよい。nは0〜4の整数である。)で表されるチタン化合物を用いることができる。具体的には、Ti(O−i−C、Ti(O−C、TiCl(O−C、TiCl(O−i−C、TiCl(O−C、TiCl(O−C、TiCl(O−i−C、TiCl等を挙げることができるが、特にTiClが好ましい。
固体触媒成分は、上記の担体にさらに電子供与性化合物を接触させて得られるものが好ましい。この電子供与性化合物としては、芳香族ジカルボン酸ジエステルが好ましく、フタル酸ジエチル、フタル酸ジ−n−ブチル、フタル酸ジイソブチル、フタル酸ジヘプチル、フタル酸ジヘキシル、フタル酸ジオクチル、フタル酸ジアリル、フタル酸ジフェニルを特に好ましく用いることができる。これらの電子供与性化合物は、それぞれを単独で用いてもよく、また二種以上を組み合わせて用いてもよい。
【0015】
また、上記の担体にチタン化合物と電子供与性化合物を接触させる際に、四塩化ケイ素等のハロゲン含有ケイ素化合物を接触させるとよい。
上記の固体触媒成分は、公知の方法で調製することができる。例えば、ペンタン、ヘキサン、ヘプタン又はオクタン等の不活性炭化水素を溶媒に、上記の担体、電子供与性化合物及びハロゲン含有ケイ素化合物を投入し、攪拌しながらチタン化合物を投入する方法である。通常は、マグネシウム原子換算で担体1モルに対して電子供与性化合物は、0.01〜10モル、好ましくは0.05〜5モルを加え、また、マグネシウム原子換算で担体1モルに対してチタン化合物は、1〜50モル、好ましくは2〜20モルを加え、0〜200℃にて、5分〜10時間の条件、好ましくは30〜150℃にて30分〜5時間の条件で接触反応を行えばよい。
反応終了後は不活性炭化水素(例えば、n−ヘキサン、n−ヘプタン)で、生成した固体触媒成分を洗浄するのが好ましい。
以上で説明した固体触媒成分は、通常、予備重合器を経て本重合器に供給されるが、場合によっては、一部が直接本重合器に供給されることもある。
【0016】
また、上記の有機アルミニウム化合物(B)としては、一般式(2)
AlR 3−m ・・・(2)
(式中、Rは炭素数1〜10のアルキル基、シクロアルキル基またはアリール基であり、Xはハロゲン原子であり、塩素原子または臭素原子が好ましい。mは1〜3の整数である。)で表される化合物を用いることができ、具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムモノクロリド、ジイソブチルアルミニウムモノクロリド、エチルアルミニウムセスキクロリド等が挙げることができる。好ましくは、トリアルキルアルミニウム化合物であり、特に、トリエチルアルミニウム、トリイソブチルアルミニウムを好ましく用いることができる。これらは、それぞれを単独で用いてもよく、また二種以上を組み合わせて用いてもよい。
この有機アルミニウム化合物(B)は、連続予備重合及び本重合に用いられ、それぞれ同じものや異なったものを用いることができる。
【0017】
さらに、固体触媒成分の調製時に用いるとよい電子供与性化合物とは別に、予備重合及び/又は本重合に用いられる上記の電子供与性化合物(C)としては、含酸素有機化合物(エステル類、エーテル類等)、含窒素有機化合物やSi−O−C結合を有する有機珪素化合物等が挙げられる。
Si−O−C結合を有する有機珪素化合物としては、一般式(3)
Si(OR4−p ・・・(3)
(式中、R及びRは炭素数1〜20の炭化水素基で、好ましくは炭素数1〜10のアルキル基、シクロアルキル基、ペンチル基又はアリール基であり、それぞれが同じものでも異なったものでもよい。pは1〜3の整数である。)で表されるアルコキシ珪素化合物が好ましく、p=2のものがより好ましい。
【0018】
具体例として、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−i−ブトキシシラン、テトラフェノキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、i−プロピルトリメトキシシラン、n−ブチルトリメトキシシラン、i−ブチルトリメトキシシラン、s−ブチルトリメトキシシラン、t−ブチルトリメトキシシラン、フェニルトリメトキシシラン、シクロヘキシルトリメトキシシラン、トリエトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、n−プロピルトリエトキシシラン、i−プロピルトリエトキシシラン、n−ブチルトリエトキシシラン、i−ブチルトリエトキシシラン、s−ブチルトリエトキシシラン、t−ブチルトリエトキシシラン、フェニルトリエトキシシラン、シクロヘキシルトリエトキシシラン、エチルトリ−i−プロポキシシラン、i−ペンチルトリ−n−ブトキシシラン、メチルトリ−n−ヘキソキシシラン、メチルジメトキシシラン、ジメチルジメトキシシラン、n−プロピルメチルジメトキシシラン、n−プロピルエチルジメトキシシラン、ジ−n−プロピルジメトキシシラン、i−プロピルメチルジメトキシシラン、ジ−i−プロピルジメトキシシラン、n−プロピル−i−プロピルジメトキシシラン、n−ブチルメチルジメトキシシラン、n−ブチルエチルジメトキシシラン、n−ブチル−n−プロピルジメトキシシラン、n−ブチル−i−プロピルジメトキシシラン、ジ−n−ブチルジメトキシシラン、i−ブチルメチルジメトキシシラン、ジ−i−ブチルジメトキシシラン、s−ブチルエチルジメトキシシラン、ジ−s−ブチルジメトキシシラン、t−ブチルメチルジメトキシシラン、t−ブチルエチルジメトキシシラン、t−ブチル−n−プロピルジメトキシシラン、ジ−t−ブチルジメトキシシラン、t−ブチル−n−ヘキシルジメトキシシラン、ジ−i−アミルジメトキシシラン、n−ヘキシル−n−プロピルジメトキシシラン、n−デシルメチルジメトキシシラン、ノルボニルメチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、メチルフェニルジメトキシシラン、ジフェニルジメトキシシラン、ジシクロペンチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジ−i−プロピルジエトキシシラン、s−ブチルメチルジエトキシシラン、t−ブチルメチルジエトキシシラン、ジメチルジ−n−ブトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチル−i−プロポキシシラン、トリメチル−n−ブトキシシラン、トリメチル−n−ペントキシシラン等を挙げることができるが、特にシクロヘキシルメチルジメトキシシラン、メチルフェニルジメトキシシラン、ジフェニルジメトキシシラン、ジシクロペンチルジメトキシシラン等を好ましく用いることができる。
【0019】
本発明は、液状プロピレンの存在下において、上記固体触媒成分(A)と有機アルミニウム化合物(B)を接触させることを特徴とするものである。この液状プロピレンの存在下で接触させるとは、液状プロピレン自身を溶媒とし、上記固体触媒成分(A)のスラリー内に含有する溶媒以外は液状プロピレンの存在下で触媒成分を接触させ、連続予備重合を行うことである。
【0020】
具体的には、固体触媒成分(A)と有機アルミニウム化合物(B)をそれぞれ液状プロピレンに分散、溶解させたものを予備重合器に供給する方法、固体触媒成分(A)を液状プロピレンに分散させたものに有機アルミニウム化合物(B)を添加する方法、有機アルミニウム化合物(B)を液状プロピレンに溶解させたものに固体触媒成分(A)を添加する方法等を挙げることができる。
【0021】
また、電子供与性化合物(C)も有機アルミニウム化合物(B)と同様に添加するとよい。
液状プロピレンを存在させないで、固体触媒成分(A)と有機アルミニウム化合物(B)を接触させる場合、例えば、固体触媒成分(A)と有機アルミニウム化合物(B)を接触させた後に液状プロピレンを接触させた場合は、本重合時の活性及び立体規則性が低下する。
本発明における連続予備重合の際の温度は、60℃以下であれば特に限定されないが、通常−10〜60℃、好ましくは0〜50℃の範囲で選定される。60℃を超えるとパウダーモルフォロジーが低下して、凝縮したパウダーや微粉が発生し、重合器及びその導管の閉塞を引き起こしやすい。
【0022】
本発明においる連続予備重合の際の圧力は、上記温度下、プロピレンが液状を維持できれば特に限定されないが、通常5〜100 kg/cmG、好ましくは10〜80kg/cmGの範囲で選定される。予備重合器から本重合器へ予備重合触媒を液状プロピレンとともに円滑に供給するために、連続予備重合の圧力は、本重合の圧力より高く設定するのが好ましい。こうすることで、導管や制御弁等の簡単な装置の接続のみで円滑な供給が可能となる。
本発明においる連続予備重合の際に重合されるプロピレンの量は、供給される固体触媒成分(A)1gあたり0.3〜8g、好ましくは1〜7g、かつ、供給される液状プロピレンの5重量%以下、好ましくは3重量%以下の量にする必要がある。重合されるプロピレンの量が供給される固体触媒成分(A)1gあたり0.3g未満では、予備重合効果が不十分で、パウダーモルフォロジーが低下し、微粉が増加し好ましくない。一方、8gを超えると、予備重合量が増加し、成形したフィルムの透明性の低下やフィッシュアイの増加等の不良現象が発生しやすい。また、供給される液状プロピレンの5重量%を超えると本重合器への導管の閉塞を引き起こしやすい。
本発明における予備重合触媒の本重合器への供給速度は、平均流速で0.3m/秒以上、好ましくは0.5m/秒以上にする必要がある。平均流速が0.3m/秒未満では、本重合器入口部や触媒成分の合流部等で導管の閉塞を引き起こしやすい。なお、予備重合器とは実質的に予備重合が起こる導管まで含めたものを意味する。
【0023】
具体的な予備重合器の代表例として、外管に冷却水を通せる二重管型のものが挙げられる。その内径や長さは重合器の容量にも依存するので一概には規定できないから、上記を満足するように適宜設計する必要がある。なお、予備重合器の内面は、付着や閉塞を防止するために、平滑に仕上げたものが好ましく、テフロン等のライニングを施してもよい。
本発明においる予備重合器における平均滞留時間は25秒以下が好ましく、20秒以下がより好ましい。平均滞留時間が25秒を超えると、予備重合量が増加し、成形したフィルムの透明性の低下やフィッシュアイの増加等の不良現象が発生し、また、本重合時の触媒活性及び立体規則性の低下が起こることがある。
以上のようにして形成されたプロピレン予備重合触媒は、本重合器内で本重合される。この重合方法としては、特に制限させないが、気相重合法及びバルク重合法を好ましく用いることができる。
【0024】
この重合では、プロピレンの単独重合のみならず、ランダム共重合、ブロック共重合を行うことができる。共重合に際しては、プロピレンと炭素数2〜10のα−オレフィン、例えば、エチレン、1−ブテン、1−ヘキセン、1−オクテン等を1種以上用いることができる。
また、重合条件は、特に制限されず、公知の方法と同様の条件を用いることができる。例えば、大気圧よりも高いプロピレンの分圧下で、−80〜150℃の温度下で、製造することができる。好ましくは、20〜120℃の温度下で、プロピレンの分圧は大気圧〜50kg/cmGの範囲である。
【0025】
また、有機アルミニウム化合物(B)の供給量は、通常、予備重合触媒成分中のチタン原子1モルに対して0.1〜400モル、好ましくは1〜200モルとなるようにし、電子供与性化合物(C)の供給量は、予備重合触媒成分中のチタン原子1モルに対して0.1〜100モル、好ましくは1〜50モルとなるようにするとよい。これらは、上記の液状プロピレンに溶解させて、本重合器に供給するとよい。
【0026】
重合体の分子量の調節には、常法である水素ガスの供給によって行うことができる。さらに、異なる重合条件で2段階以上に分けて行うこともできる。
【0027】
【実施例】
次に、本発明を実施例により詳しく説明する。
実施例−1
(1) マグネシウム化合物の調整
攪拌機付き反応槽(内容積80リットル)を窒素ガスで充分に置換・乾燥し、エタノール24.3kg、ヨウ素160g、及び金属マグネシウム1.6kgを投入し、攪拌しながら還流条件下で系内から水素ガスの発生がなくなるまで反応させ、固体状反応生成物を得た。この固体状反応生成物を含む反応液を減圧乾燥させることにより、目的のマグネシウム化合物(固体生成物)を得た。得られたマグネシウム化合物は平均粒径が51μmで、ほぼ球形状で粒径分布も狭いものであった。
(2) 固体触媒成分の調整
窒素ガスで充分に置換した攪拌機付き反応槽(内容積80リットル)に、前記マグネシウム化合物4kg、精製ヘプタン20リットル、四塩化ケイ素880g、及びフタル酸ジエチル710gを加えた。系内を70℃に保ち、攪拌しながら四塩化チタン9.8リットルを投入して110℃で2時間反応させた後、固体成分を分離して90℃の精製ヘプタンで洗浄した。さらに、四塩化チタン15.2リットルを加え、110℃で2時間反応させた後、90℃の精製ヘプタンで充分に洗浄し、固体触媒成分(A)のヘプタンスラリーを得た。この固体触媒成分(A)の一部をサンプリングして窒素気流雰囲気下乾燥させた後、組成分析すると、含まれるTi量は2.9重量%であり、Mg量は18.6重量%であった。
【0028】
(3) 連続予備重合
内容積1リットルのジャケット付き攪拌槽、内管の内径が3mmで長さが8mで外管を冷却水が通る二重管型の予備重合器および内容積200リットルの攪拌機付き気相重合器を直列につなぎ、連続的に予備重合と気相重合を行なった。
内容積1リットルの攪拌槽に30kg/hrの液状プロピレンとともに上記固体触媒成分(A)のヘプタンスラリーを150ml/hr(固体触媒成分(A)として 1.5g/hr)で往復動スラリーポンプを使用して連続的に供給した。この内容積1リットルの攪拌槽は満液状態で攪拌されており、ここでの平均滞留時間は63秒である。またこの攪拌槽はジャケットを冷却液で冷却しており、攪拌槽内温度が10℃に保たれるれるよう制御されている。
【0029】
この内容積1リットルの攪拌槽を出た固体触媒成分(A)の液状プロピレンスラリーは管型の予備重合器に導入される。この予備重合器は二重管になっていて、外管を10℃の冷却液が流れている。内管は予備重合の反応場で、入口部分のところで、5kg/hrの液状プロピレンとともに有機アルミニウム化合物(B)としてのトリエチルアルミニウム5.5g/hrと電子供与性化合物(C)としてのシクロヘキシルジメトキシシラン2.3g/hrが合流してくる。この管型予備重合器での平均流速は2.6m/秒となり、平均滞留時間は3.1秒となる。この予備重合器出口で内容物をサンプリングして大量のメタノール中に注入して触媒を直ちに失活させて予備重合物を回収して測定したところ、予備重合量は固体触媒成分(A)1g当たり2.1gであった。またこの予備重合量は、予備重合器に供給したプロピレン量の0.01重量%以下であった。
【0030】
(4) 気相重合
プロピレンの気相重合は、事前に50kgのポリプロピレンパウダーを入れて80℃で攪拌、プロピレンガスの循環運転を行なっている内容積200リットルの攪拌機付き気相重合器に上記の予備重合触媒を含んだ液状プロピレンスラリーを導入することによって行なわれる。この気相重合器はプロピレンガスの循環冷却によって重合熱の除熱が行なわれ、温度80℃、圧力30kg/cmGで運転される。
この気相重合器には予備重合器に入ったものと等量のトリエチルアルミニウム5.5g/hrとシクロヘキシルジメトキシシラン2.3g/hrが供給されており、他に液状プロピレン10kg/hr、分子量調節用の水素ガスが0.7Nm/hrで供給されている。重合器での重合パウダーは、レベルが一定になるよう間欠的に脱気槽の方へプロピレンガスとともに抜き出される。固体触媒成分(A)の供給量も、気相重合器での重合量が30kg/hrで一定になるよう調節される。この気相重合器での平均滞留時間は1.7時間であった。
上記の脱気槽から得られた重合パウダーを調べたところ、触媒活性は固体触媒成分(A)1g当たり21.5kg−PP/g−触媒であり、MFRは6.5g/10min、NMRによる立体規則性の指標mmmm分率は97.8%、嵩密度は0.43g/cm、平均粒径は1840μm、250μm以下の微細粒子の割合は1.1重量%であった。
また造粒、製膜して25μm厚、50cm幅のキャストフィルムの透明性とフィッシュアイをみると、曇り度(ヘイズ)は1.2%で、0.1mm以上のフィッシュアイは1000cm中3個であった。
【0031】
実施例−2
実施例1と同様の方法で、重合方法のみ下記のようにバルク重合で行なった。
(4) バルク重合
200リットルの攪拌付満液型バルク重合器を用いて、温度70℃、圧力36kg/cmGでバルク重合を行なった。予備重合までは実施例1と同様で、液状プロピレン35kg/hrとともに予備重合触媒を重合器に導入した。重合器にはこのほかに、液状プロピレン45kg/hr、分子量調節用の水素ガスが0.08Nm/hrで供給され、予備重合器に入ったものと等量のトリエチルアルミニウム5.5g/hrとシクロヘキシルジメトキシシラン2.3g/hrが供給された。重合パウダーは液状プロピレンスラリーとして系内の圧力を36kg/cmGに保ちながら間欠的にスラリー濃度を濃縮する形で脱気槽に抜き出された。
上記の脱気槽から得られた重合パウダーを調べたところ、触媒活性は固体触媒成分(A)1g当たり20.3kg−PP/g−触媒であり、MFRは7.6g/10min、NMRによる立体規則性の指標mmmm分率は97.9%、嵩密度0.41g/cm、平均粒径は1700μm、250μm以下の微細粒子は0.8重量%であった。その他の結果も含め、第1表に示す。
【0032】
比較例−1
実施例1と同様の方法で、予備重合方法のみ下記のようにバッチ予備重合で行なった。
(3) バッチ予備重合処理
内容積80リットルの攪拌機付き反応槽に、内温を10℃に保ちながら、精製ヘプタン23リットルを投入し、前記の固体触媒成分(A)を2.5kg、トリエチルアルミニウムを固体触媒成分中のTiに対し1.0モル/モル、シクロヘキシルメチルジメトキシシランを0.6モル/モルの割合で供給した。その後、プロピレンをプロピレン分圧で0.3kg/cmGになるまで導入し、10℃で1時間反応させた。反応終了後、予備重合触媒成分を精製ヘプタンで数回洗浄し、更に二酸化炭素を供給し48時間攪拌し、触媒を一時失活させた。得られた予備重合触媒成分は固体触媒成分(A)1g当り1.7gのプロピレン重合体を含んでいた。
(4) 気相重合
プロピレンの気相重合は、事前に50kgのポリプロピレンパウダーを入れて80℃で攪拌し、プロピレンガスの循環運転を行なっている内容積200リットルの攪拌機付き気相重合器にトリエチルアルミニウム11.0g/hrとシクロヘキシルジメトキシシラン4.6g/hrを液状プロピレン10kg/hrとともに供給し、さらに別ノズルから上記の予備重合触媒2.8g/hrを35kg/hrの液状プロピレンをキャリアーとして導入した。後は水素ガスの導入も重合量を30kg/hrに調節することも実施例1と同様で、平均滞留時間も同じく1.7時間とした。
脱気槽から得られた重合パウダーから、触媒活性は固体触媒成分(A)1g当たり8.9kg−PP/g−触媒であり、MFRは6.5g/10min、NMRによる立体規則性の指標mmmm分率は95.7%、嵩密度は0.41g/cm、平均粒径は1380μm、250μm以下の微細粒子は0.5重量%であった。その他の結果も含め、第1表に示す。
【0033】
比較例−2
実施例1と同様の方法で、予備重合方法のみ下記のように、ヘプタン溶媒中で固体触媒成分(A)と有機アルミニウム化合物(B)の接触を行なった後でプロピレンを導入して予備重合を行なわせるよう変更した。気相重合は実施例1と同様に行なった。
(3) 連続予備重合
内容積1リットルのジャケット付き攪拌槽、内管の内径が3mmで長さが8mで外管を冷却水が通る二重管型の予備重合器および内容積200リットルの攪拌機付き気相重合器を直列につなぎ、連続的に予備重合と気相重合を行なった。
内容積1リットルの攪拌槽に上記固体触媒成分(A)のヘプタンスラリーを200ml/hr(固体触媒成分(A)として2.0g/hr)で、トリエチルアルミニウム5.5g/hrを550ml/hrのヘプタン溶液で、シクロヘキシルジメトキシシラン2.3g/hrを460ml/hrのヘプタン溶液でそれぞれ別の注入ノズルから往復動スラリーポンプを使用して連続的に供給した。この内容積1リットルの攪拌槽は満液状態で攪拌されており、ここでの平均滞留時間は約50分である。攪拌槽のジャケットは冷却水で冷却されており、攪拌槽内温度が10℃に保たれるれるよう制御されている。この内容積1リットルの攪拌槽を出た触媒成分混合物のヘプタンスラリーは管型の予備重合器に導入される。予備重合器二重管の外管は10℃の冷却液が流れている。内管は予備重合の反応場で、入口部分のところで10℃、35kg/hr液状プロピレンと合流する。予備重合器での平均流速は2.6m/秒で、平均滞留時間は3.1秒となる。予備重合量は固体触媒成分(A)1g当たり2.0gであった。その他の結果も含め、第1表に示す。
【0034】
比較例−3
連続予備重合時の温度を10℃から65℃に変更し、固体触媒成分(A)の供給量を1.5g/hrから2.5g/hrに変更した以外は実施例1と同様に行なった。結果を第1表に示す。
比較例−4
連続予備重合時の予備重合器を内容積650mlで押出流れの横置き管型攪拌槽とし、ここで予備重合した触媒を内径3mm、長さ1mのステンレス製チューブで気相重合器に導入するように変更した以外は実施例1と同様に行なった。この予備重合槽での平均滞留時間は40秒であった。結果を第1表に示す。
比較例−5
連続予備重合時の予備重合管の長さを50cmとした以外は実施例1と同様に行なった。このときの予備重合量は固体触媒成分(A)1g当り0.1gであった。結果を第1表に示す。
比較例−6
連続予備重合時の予備重合管を内径10mm、長さ4mのものに変更した以外は実施例1と同様に行なった。この時の気相重合器への触媒成分の平均流速は0.25m/秒であった。結果は触媒供給開始直後2分で予備重合管の閉塞を生じ、運転できなくなった。結果を第1表に示す。
【0035】
実施例−3
連続予備重合時の予備重合管を内径4mm、長さ24mのものに変更し、1リットル攪拌槽のジャケット冷却液、予備重合器二重管外管の冷却液の温度を0℃にした以外は、実施例1と同様に行なった。この時の気相重合器への触媒成分の平均流速は1.5m/秒であり、予備重合管での平均滞留時間は17秒であった。また予備重合量は固体触媒成分(A)1g当り5.8gであった。結果を第1表に示す。
【0036】
実施例−4
連続予備重合時の、固体触媒成分(A)のヘプタンスラリーとともに1リットル攪拌槽に入る液状プロピレン量を8kg/hrとし、予備重合器にトリエチルアルミニウムとともに入る液状プロピレン量を3kg/hrに変更し、1リットル攪拌槽のジャケット冷却液、予備重合器二重管外管の冷却液の温度を20℃にした以外は、実施例2と同様に行なった。この時、バルク重合器に流入する触媒成分の平均流速は0.8m/秒であり、予備重合管での平均滞留時間は5.0秒であった。また予備重合量は固体触媒成分(A)1g当り4.2gであった。結果を第1表に示す。
【0037】
実施例−5
連続予備重合時の予備重合管を内径3mm、長さ2mのものに変更し、1リットル攪拌1 のジャケット冷却液、予備重合器二重管外管の冷却液の温度を40℃にした以外は、実施例1と同様に行なった。この時の気相重合器への触媒成分の平均流速は2.6m/秒 であり、予備重合管での平均滞留時間は1.6秒であった。また予備重合量は固体触媒成分(A)1g当り1.1gであった。結果を第1表に示す。
【0038】
実施例−6
連続予備重合時の予備重合管に入れる電子供与性化合物(C)としてのシクロヘキシルジメトキシシラン2.3g/hrをカットし、気相重合時のシクロヘキシルジメトキシシラン量を2.3g/hrから4.6g/hrに変更した以外は実施例1と同様に行なった。このときの予備重合量は固体触媒成分(A)1g当り3.6gであった。結果を第1表に示す。
【0039】
【表1】

Figure 0003577394
【0040】
なお、フィルムは、直径40mmのスクリューを有するTダイキャスト成形機を用いて、樹脂温度220℃、引取速度20m/分の条件で、25μm厚、40cm幅のフィルムに成形したものを使用した。
また、測定・評価方法として、MFR(メルトフローレート)はJIS−K−7210(230℃、2.16kgf)、フィルム曇り度(ヘイズ)はJIS−K−7105に準拠して測定し、フィッシュアイ(F/E)は1000cm当たりの、0.1mm径以上のフィッシュアイの個数を数えて評価した。
【0041】
【発明の効果】
第一の効果は、触媒活性が高く、触媒残渣除去のための脱灰工程が不要であり、かつ触媒使用量も少なくてすみ経済的である。また、触媒残渣が少ないので、製品性状(色調、匂い)も良好となる。
第二の効果は、立体規則性が高く、そのため製品の剛性等の物性が極めて良好となる。
【0042】
第三の効果は、重合パウダーのパウダーモルフォロジーが良好で、微粉が少なく、塊状物の生成もないため、重合器および下流系の運転が極めて安定的にできて、経済的である。
第四の効果は、フィッシュアイやブツが少なく、製品品質が良好となる。
さらに、上記の効果がすべてバランス良く得られ、かつ予備重合器を新たに設けるとしても大きな設備変更を必要としないので経済的に有利である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing polypropylene, and more particularly, to a method for continuously polymerizing propylene by continuously supplying a prepolymerization catalyst to a main polymerization reactor.
[0002]
[Prior art]
As an industrial method for producing polypropylene, a continuous polymerization method using bulk polymerization or gas-phase polymerization using propylene itself as a solvent has been frequently used in recent years because the post-treatment step is simple. In these continuous polymerization methods, of course, the product quality is kept good, but the morphology of the produced powder is kept good to prevent troubles in the polymerization vessel and post-treatment process, and lumps and fine powders are generated. It has become an important issue to prevent this from happening, and improvements have been made to catalysts and their supply methods.
[0003]
Propylene polymerization catalysts are mainly composed of magnesium, titanium, halogens and electron-donating compounds, which have higher activity and do not require decalcification in the post-treatment process, from the various titanium trichloride catalysts conventionally used. , Ie, a supported high-activity catalyst.
However, when this highly active catalyst is applied to bulk polymerization or continuous polymerization such as gas phase polymerization as it is, the polymer particles are destroyed, and a polymer having poor powder morphology and a lot of fine powder is produced. Poor powder morphology leads to instability in polymerization and downstream operations.
[0004]
Therefore, for the purpose of improving the powder morphology and improving the amount of fine powder, various studies on so-called prepolymerization in which a small amount of olefin is polymerized before the catalyst is used for main polymerization have been conducted.
For example, Japanese Patent Application Laid-Open No. 53-30681 discloses a method in which a prepolymerization operation is performed in a batch operation, and the prepolymerization catalyst is temporarily stored and then used in the main polymerization. Since the catalyst is used after a long time, both the catalytic activity and the stereoregularity are insufficient. Japanese Patent Application Laid-Open No. 1-135804 also proposes that continuous prepolymerization be performed. However, although improvement such as shortening of operation time is seen, the catalyst component is diluted and mixed with hexane or the like, and mixed with propylene. Operations such as contact are performed, and the catalytic activity, stereoregularity, and the like are still insufficient.
[0005]
On the other hand, when the pre-polymerization operation is continuously performed, there are technically difficult aspects such as easy clogging of the catalyst supply line, and the method of performing the pre-polymerization operation is subject to various restrictions. Only technical studies have been conducted.
As described above, technologies that maximize the basic performance of catalysts such as catalytic activity and stereoregularity, maintain product quality and powder morphology in good condition, and satisfy all operational stability and economic efficiency It has not been proposed yet.
[0006]
[Problems to be solved by the invention]
The present invention relates to a continuous polymerization method for propylene using a continuous prepolymerization that has higher productivity than that performed in a batch operation. In the continuous polymerization method, the catalyst activity and stereoregularity are improved to improve the product quality and reduce the fine powder of the polymerization powder. It is an object of the present invention to provide a propylene continuous polymerization method that improves morphology and improves operation stability.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, as a result of intensive studies, the solid catalyst component (A) and the organoaluminum compound (B) were brought into contact in the presence of liquid propylene and continuously prepolymerized under the following specific conditions. The inventors have found that the object can be achieved, and have completed the present invention.
(1) In continuously polymerizing propylene in the presence of a catalyst comprising a solid catalyst component (A) containing magnesium, titanium and halogen as essential components, an organoaluminum compound (B) and an electron donating compound (C), liquid propylene is used. The solid catalyst component (A) and the organoaluminum compound (B) are brought into contact with each other in the presence of, and the prepolymerization is performed under the condition of a temperature of 60 ° C or less, and 0.3 g per 1 g of the supplied solid catalyst component (A). Propylene prepolymerization catalyst in an amount of up to 8 g and 5% by weight or less of the supplied liquid propylene, and this was continuously fed to the main polymerization reactor together with unreacted liquid propylene at an average flow rate of 0.3 m / sec or more. Continuous polymerization of propylene, characterized in that the propylene is continuously supplied.
(2) The continuous propylene polymerization method according to the above (1), wherein the average residence time in the prepolymerizer is 25 seconds or less.
(3) The continuous propylene polymerization method according to the above (1) or (2), wherein the electron-donating compound (C) is added during the preliminary polymerization.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a process for continuously polymerizing propylene in the presence of a catalyst comprising a solid catalyst component (A) containing magnesium, titanium and halogen as essential components, an organoaluminum compound (B) and an electron donating compound (C). The solid catalyst component (A) and the organoaluminum compound (B) are brought into contact with each other in the presence of, and preliminarily polymerized under the condition of a temperature of 60 ° C or less, and 0.3 g per 1 g of the supplied solid catalyst component (A). ~ 8 g and a propylene prepolymerization catalyst in an amount of 5% by weight or less of the supplied liquid propylene is formed and continuously fed to the main polymerization vessel together with unreacted liquid propylene at an average flow rate of 0.3 m / sec or more. A continuous polymerization method for propylene, characterized in that the propylene is continuously supplied.
[0009]
Here, continuous supply to the polymerization vessel means continuous as compared to batch operation, and the intermittent operation interval is continuously set within 20 minutes by a reciprocating pump or an intermittently operating catalyst supply device. It is said to be continuously supplied, including those supplied.
The solid catalyst component (A) containing magnesium, titanium and halogen as essential components is not particularly limited as long as it is a solid catalyst for propylene polymerization containing these as essential components. Representative examples will be described below.
[0010]
As a carrier for the solid catalyst component, substantially anhydrous magnesium halide such as magnesium chloride, magnesium dialkoxide obtained from metal magnesium and alcohol, solid product obtained from metal magnesium and alcohol and halogen and / or a halogen-containing compound Can be mentioned.
Among these, a solid product obtained from metal magnesium, an alcohol, a halogen and / or a halogen-containing compound can be preferably used. In this case, as the metallic magnesium, a granular, ribbon-like, powder-like magnesium or the like can be used. Further, it is preferable that the metal magnesium does not have a coating such as magnesium oxide on its surface.
[0011]
As the alcohol, it is preferable to use a lower alcohol having 1 to 6 carbon atoms. In particular, when ethanol is used, the above-mentioned carrier which significantly improves the expression of catalytic performance can be obtained.
As the halogen, chlorine, bromine, or iodine is preferable, and particularly, iodine can be suitably used. Further, as the halogen-containing compound, MgCl 2 and MgI 2 can be suitably used.
[0012]
The amount of alcohol is preferably from 2 to 100 mol, particularly preferably from 5 to 50 mol, per mol of metallic magnesium.
The amount of the halogen or the halogen-containing compound to be used is such that the halogen atom or the halogen atom in the halogen-containing compound is 0.0001 g atom or more, preferably 0.0005 g atom or more, more preferably 1 g atom of metal magnesium. , 0.001 gram atom or more. The halogen and the halogen-containing compound may be used each alone or two or more of them may be used in combination.
[0013]
The method of reacting magnesium metal, alcohol, and halogen and / or a halogen-containing compound is, for example, a method in which hydrogen gas is generated under reflux (about 79 ° C.) between magnesium metal, an alcohol, and a halogen and / or a halogen-containing compound. This is a method in which the carrier is obtained by reacting until it disappears (usually 20 to 30 hours). This is preferably performed in an inert gas (eg, nitrogen gas, argon gas) atmosphere.
When the obtained carrier is used for the synthesis of the next solid catalyst component, a dried one may be used, or a carrier washed with an inert solvent such as heptane after filtration may be used.
[0014]
For the preparation of the solid catalyst component, at least a titanium compound is brought into contact with the above-mentioned carrier.
As the titanium compound, the general formula (1)
TiX 1 n (OR 1 ) 4-n (1)
(Wherein, X 1 is preferably a halogen atom, particularly a chlorine atom, R 1 is a hydrocarbon group having 1 to 10 carbon atoms, particularly a linear or branched alkyl group, and when there are a plurality of R 1 s , They may be the same or different, and n is an integer of 0 to 4.). Specifically, Ti (O-i-C 3 H 7) 4, Ti (O-C 4 H 9) 4, TiCl (O-C 2 H 5) 3, TiCl (O-i-C 3 H 7 ) 3 , TiCl (O—C 4 H 9 ) 3 , TiCl 2 (O—C 4 H 9 ) 2 , TiCl 2 (OiC 3 H 7 ) 2 , and TiCl 4 . Particularly, TiCl 4 is preferable.
The solid catalyst component is preferably obtained by further contacting the carrier with an electron-donating compound. As the electron donating compound, aromatic dicarboxylic acid diesters are preferable, and diethyl phthalate, di-n-butyl phthalate, diisobutyl phthalate, diheptyl phthalate, dihexyl phthalate, dioctyl phthalate, diallyl phthalate, and phthalic acid Diphenyl can be particularly preferably used. These electron donating compounds may be used alone or in combination of two or more.
[0015]
Further, when the titanium compound and the electron donating compound are brought into contact with the above-mentioned carrier, a halogen-containing silicon compound such as silicon tetrachloride may be brought into contact.
The above solid catalyst component can be prepared by a known method. For example, there is a method in which the above carrier, the electron donating compound and the halogen-containing silicon compound are charged into an inert hydrocarbon such as pentane, hexane, heptane or octane as a solvent, and the titanium compound is charged with stirring. Usually, the electron-donating compound is added in an amount of 0.01 to 10 mol, preferably 0.05 to 5 mol, per mol of the carrier in terms of magnesium atom. The compound is added in an amount of 1 to 50 mol, preferably 2 to 20 mol, and subjected to a catalytic reaction at 0 to 200 ° C. for 5 minutes to 10 hours, preferably at 30 to 150 ° C. for 30 minutes to 5 hours. Should be performed.
After completion of the reaction, it is preferable to wash the generated solid catalyst component with an inert hydrocarbon (for example, n-hexane or n-heptane).
The solid catalyst component described above is usually supplied to the main polymerization reactor via a prepolymerizer, but in some cases, a part of the solid catalyst component may be directly supplied to the main polymerization reactor.
[0016]
Further, as the above-mentioned organoaluminum compound (B), general formula (2)
AlR 2 m X 2 3-m ··· (2)
(Wherein, R 2 is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group or an aryl group, X 2 is a halogen atom, preferably a chlorine atom or a bromine atom, and m is an integer of 1 to 3) Can be used, and specific examples include trimethylaluminum, triethylaluminum, triisobutylaluminum, diethylaluminum monochloride, diisobutylaluminum monochloride, and ethylaluminum sesquichloride. Preferred are trialkylaluminum compounds, and particularly preferred are triethylaluminum and triisobutylaluminum. These may be used alone or in combination of two or more.
The organoaluminum compound (B) is used in continuous prepolymerization and main polymerization, and the same or different ones can be used.
[0017]
Further, apart from the electron-donating compound which may be used when preparing the solid catalyst component, the electron-donating compound (C) used in the prepolymerization and / or the main polymerization may be an oxygen-containing organic compound (esters, ethers). And the like, a nitrogen-containing organic compound and an organic silicon compound having a Si-OC bond.
As the organosilicon compound having a Si—O—C bond, a compound represented by the general formula (3)
R 3 p Si (OR 4 ) 4-p (3)
(Wherein, R 3 and R 4 are a hydrocarbon group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group, a pentyl group or an aryl group. And p is an integer of 1 to 3.), and those having p = 2 are more preferable.
[0018]
Specific examples include tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, tetra-i-butoxysilane, tetraphenoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, i-propyltrimethoxysilane, n-butyltrimethoxysilane, i-butyltrimethoxysilane, s-butyltrimethoxysilane, t-butyltrimethoxysilane, phenyltrimethoxysilane, cyclohexyltrimethoxy Silane, triethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, n-propyltriethoxysilane, i-propyltriethoxysilane, n-butyltriethoxysilane, i-butyltriethoxysila S-butyltriethoxysilane, t-butyltriethoxysilane, phenyltriethoxysilane, cyclohexyltriethoxysilane, ethyltri-i-propoxysilane, i-pentyltri-n-butoxysilane, methyltri-n-hexoxysilane, methyldimethoxysilane Dimethyldimethoxysilane, n-propylmethyldimethoxysilane, n-propylethyldimethoxysilane, di-n-propyldimethoxysilane, i-propylmethyldimethoxysilane, di-i-propyldimethoxysilane, n-propyl-i-propyldimethoxy Silane, n-butylmethyldimethoxysilane, n-butylethyldimethoxysilane, n-butyl-n-propyldimethoxysilane, n-butyl-i-propyldimethoxysilane, di-n-butyl Dimethoxysilane, i-butylmethyldimethoxysilane, di-i-butyldimethoxysilane, s-butylethyldimethoxysilane, di-s-butyldimethoxysilane, t-butylmethyldimethoxysilane, t-butylethyldimethoxysilane, t-butyl -N-propyldimethoxysilane, di-t-butyldimethoxysilane, t-butyl-n-hexyldimethoxysilane, di-i-amyldimethoxysilane, n-hexyl-n-propyldimethoxysilane, n-decylmethyldimethoxysilane, Norbornylmethyldimethoxysilane, cyclohexylmethyldimethoxysilane, methylphenyldimethoxysilane, diphenyldimethoxysilane, dicyclopentyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, di- i-propyldiethoxysilane, s-butylmethyldiethoxysilane, t-butylmethyldiethoxysilane, dimethyldi-n-butoxysilane, trimethylmethoxysilane, trimethylethoxysilane, trimethyl-i-propoxysilane, trimethyl-n-butoxy Although silane, trimethyl-n-pentoxysilane and the like can be mentioned, in particular, cyclohexylmethyldimethoxysilane, methylphenyldimethoxysilane, diphenyldimethoxysilane, dicyclopentyldimethoxysilane and the like can be preferably used.
[0019]
The present invention is characterized in that the solid catalyst component (A) is brought into contact with the organoaluminum compound (B) in the presence of liquid propylene. The contact in the presence of the liquid propylene means that the liquid propylene itself is used as a solvent, and the catalyst component is brought into contact with the catalyst component in the presence of the liquid propylene except for the solvent contained in the slurry of the solid catalyst component (A). It is to do.
[0020]
Specifically, a method in which the solid catalyst component (A) and the organoaluminum compound (B) are dispersed and dissolved in liquid propylene and supplied to a prepolymerizer, and the solid catalyst component (A) is dispersed in liquid propylene. And a method of adding the solid catalyst component (A) to a solution in which the organic aluminum compound (B) is dissolved in liquid propylene.
[0021]
In addition, the electron donating compound (C) may be added similarly to the organic aluminum compound (B).
When the solid catalyst component (A) is brought into contact with the organoaluminum compound (B) without the presence of liquid propylene, for example, the solid catalyst component (A) is brought into contact with the organoaluminum compound (B) and then with the liquid propylene. In this case, the activity and stereoregularity at the time of the main polymerization decrease.
The temperature at the time of continuous prepolymerization in the present invention is not particularly limited as long as it is 60 ° C or lower, but is usually selected in the range of -10 to 60 ° C, preferably 0 to 50 ° C. If the temperature exceeds 60 ° C., the powder morphology is reduced, and condensed powder and fine powder are generated, which tends to cause blockage of the polymerization vessel and its conduit.
[0022]
Pressure during the continuous prepolymerization Oil to the present invention, under the above-mentioned temperature, but propylene is not particularly limited as long maintain liquid, usually 5~100 kg / cm 2 G, preferably in the range from 10~80kg / cm 2 G Is selected. In order to smoothly supply the prepolymerization catalyst together with the liquid propylene from the prepolymerizer to the main polymerizer, the pressure of the continuous prepolymerization is preferably set higher than the pressure of the main polymerization. In this way, smooth supply can be achieved only by connecting simple devices such as a conduit and a control valve.
The amount of propylene to be polymerized during the continuous prepolymerization in the present invention is 0.3 to 8 g, preferably 1 to 7 g, per 1 g of the supplied solid catalyst component (A), and It must be in an amount of up to 5% by weight, preferably up to 3% by weight. If the amount of propylene to be polymerized is less than 0.3 g per 1 g of the solid catalyst component (A) supplied, the pre-polymerization effect is insufficient, the powder morphology decreases, and the fine powder increases, which is not preferable. On the other hand, if it exceeds 8 g, the amount of pre-polymerization increases, and poor phenomena such as a decrease in the transparency of the formed film and an increase in fish eyes tend to occur. On the other hand, if the amount of the supplied liquid propylene exceeds 5% by weight, the conduit to the polymerization reactor tends to be blocked.
The feed rate of the prepolymerized catalyst in the present invention to the main polymerization vessel needs to be 0.3 m / sec or more, preferably 0.5 m / sec or more at an average flow rate. When the average flow velocity is less than 0.3 m / sec, the conduit is likely to be blocked at the entrance of the polymerization reactor or at the junction of the catalyst components. Here, the prepolymerizer means a vessel substantially including a conduit in which the prepolymerization occurs.
[0023]
A typical example of a specific prepolymerizer is a double tube type in which cooling water can be passed through an outer tube. The inner diameter and length cannot be specified unconditionally because they also depend on the capacity of the polymerization vessel. Therefore, it is necessary to appropriately design to satisfy the above. The inner surface of the prepolymerizer is preferably smoothed to prevent adhesion and blockage, and may be lined with Teflon or the like.
The average residence time in the prepolymerizer in the present invention is preferably 25 seconds or less, more preferably 20 seconds or less. If the average residence time exceeds 25 seconds, the amount of prepolymerization increases, resulting in poor phenomena such as a decrease in the transparency of the formed film and an increase in fish eyes, and the catalytic activity and stereoregularity during the main polymerization. May decrease.
The propylene prepolymerization catalyst formed as described above is subjected to main polymerization in the main polymerization vessel. The polymerization method is not particularly limited, but a gas phase polymerization method and a bulk polymerization method can be preferably used.
[0024]
In this polymerization, not only homopolymerization of propylene but also random copolymerization and block copolymerization can be performed. At the time of copolymerization, propylene and one or more α-olefins having 2 to 10 carbon atoms, for example, ethylene, 1-butene, 1-hexene, 1-octene and the like can be used.
The polymerization conditions are not particularly limited, and the same conditions as in a known method can be used. For example, it can be produced under a partial pressure of propylene higher than the atmospheric pressure and at a temperature of -80 to 150 ° C. Preferably, at temperatures between 20 and 120 ° C., the partial pressure of propylene ranges from atmospheric pressure to 50 kg / cm 2 G.
[0025]
The supply amount of the organoaluminum compound (B) is usually from 0.1 to 400 mol, preferably from 1 to 200 mol, per 1 mol of titanium atoms in the prepolymerization catalyst component. The supply amount of (C) may be 0.1 to 100 mol, preferably 1 to 50 mol, per 1 mol of titanium atoms in the prepolymerization catalyst component. These may be dissolved in the above liquid propylene and supplied to the present polymerization vessel.
[0026]
The molecular weight of the polymer can be adjusted by supplying hydrogen gas, which is a conventional method. Further, the polymerization may be performed in two or more stages under different polymerization conditions.
[0027]
【Example】
Next, the present invention will be described in more detail with reference to examples.
Example-1
(1) Adjustment of magnesium compound A reaction tank equipped with a stirrer (80 liters in internal volume) was sufficiently replaced with nitrogen gas and dried, and 24.3 kg of ethanol, 160 g of iodine, and 1.6 kg of metallic magnesium were charged and refluxed with stirring. The reaction was carried out under the conditions until hydrogen gas was no longer generated from the inside of the system to obtain a solid reaction product. The target magnesium compound (solid product) was obtained by drying the reaction solution containing the solid reaction product under reduced pressure. The obtained magnesium compound had an average particle size of 51 μm, was substantially spherical, and had a narrow particle size distribution.
(2) Adjustment of solid catalyst component Into a reactor equipped with a stirrer (internal volume: 80 liters) sufficiently purged with nitrogen gas, 4 kg of the magnesium compound, 20 liters of purified heptane, 880 g of silicon tetrachloride and 710 g of diethyl phthalate were added. . While maintaining the inside of the system at 70 ° C., 9.8 liters of titanium tetrachloride were added thereto with stirring, and reacted at 110 ° C. for 2 hours. Then, solid components were separated and washed with purified heptane at 90 ° C. Further, 15.2 liters of titanium tetrachloride was added and reacted at 110 ° C. for 2 hours, and then sufficiently washed with purified heptane at 90 ° C. to obtain a heptane slurry of the solid catalyst component (A). After a part of the solid catalyst component (A) was sampled and dried in a nitrogen stream atmosphere, the composition analysis revealed that the content of Ti was 2.9% by weight and the content of Mg was 18.6% by weight. Was.
[0028]
(3) Continuous prepolymerization A stirring tank with a jacket having an inner volume of 1 liter, a double tube type prepolymerizer having an inner tube with an inner diameter of 3 mm, a length of 8 m, and an outer tube through which cooling water passes, and a stirrer with an inner volume of 200 liters The gas phase polymerization reactors were connected in series, and prepolymerization and gas phase polymerization were continuously performed.
Using a reciprocating slurry pump of 150 ml / hr (1.5 g / hr as the solid catalyst component (A)) of a heptane slurry of the solid catalyst component (A) together with 30 kg / hr of liquid propylene in a stirring tank having an internal volume of 1 liter. And fed continuously. The stirring tank having an inner volume of 1 liter is stirred in a full state, and the average residence time here is 63 seconds. The jacket of the stirring tank is cooled with a cooling liquid, and the temperature of the stirring tank is controlled to be maintained at 10 ° C.
[0029]
The liquid propylene slurry of the solid catalyst component (A) that has exited the 1-liter internal stirring tank is introduced into a tubular prepolymerizer. This prepolymerizer is a double tube, and a cooling liquid at 10 ° C. flows through the outer tube. The inner tube is a reaction field for prepolymerization. At the inlet, 5.5 g / hr of triethylaluminum as an organoaluminum compound (B) and cyclohexyldimethoxysilane as an electron donating compound (C) together with 5 kg / hr of liquid propylene. 2.3 g / hr come together. The average flow velocity in this tubular prepolymerizer is 2.6 m / sec, and the average residence time is 3.1 seconds. The content of the prepolymer was sampled at the outlet of the prepolymerizer, injected into a large amount of methanol to immediately deactivate the catalyst, and the prepolymer was recovered and measured. The prepolymerization amount was 1 g of the solid catalyst component (A). 2.1 g. The amount of this prepolymerization was 0.01% by weight or less of the amount of propylene supplied to the prepolymerizer.
[0030]
(4) Gas-phase polymerization The gas-phase polymerization of propylene was carried out in a 200-liter gas-phase polymerization apparatus equipped with a stirrer having an internal volume of 200 liters, in which 50 kg of polypropylene powder was put in advance and stirred at 80 ° C. and propylene gas was circulated. It is carried out by introducing a liquid propylene slurry containing a prepolymerized catalyst. The gas phase polymerization reactor is operated at a temperature of 80 ° C. and a pressure of 30 kg / cm 2 G by removing heat of polymerization by circulating cooling of propylene gas.
5.5 g / hr of triethylaluminum and 2.3 g / hr of cyclohexyldimethoxysilane are supplied to the gas-phase polymerization reactor in the same amount as that in the pre-polymerization reactor, and in addition, 10 kg / hr of liquid propylene and molecular weight control Hydrogen gas is supplied at 0.7 Nm 3 / hr. The polymerization powder in the polymerization vessel is intermittently discharged together with propylene gas toward the degassing tank so that the level is constant. The supply amount of the solid catalyst component (A) is also adjusted so that the polymerization amount in the gas phase polymerization reactor is constant at 30 kg / hr. The average residence time in this gas phase polymerization vessel was 1.7 hours.
When the polymerization powder obtained from the above degassing tank was examined, the catalyst activity was 21.5 kg-PP / g-catalyst per 1 g of the solid catalyst component (A), the MFR was 6.5 g / 10 min, and the solidity by NMR was 3D. The index mmmm fraction of regularity was 97.8%, the bulk density was 0.43 g / cm 3 , the average particle size was 1840 μm, and the ratio of fine particles having a size of 250 μm or less was 1.1% by weight.
The transparency and fisheye of a cast film having a thickness of 25 μm and a width of 50 cm after granulation and film formation were found to have a haze of 1.2% and a fisheye having a diameter of 0.1 mm or more to be 3/1000 cm 2. Was individual.
[0031]
Example-2
In the same manner as in Example 1, only the polymerization method was carried out by bulk polymerization as described below.
(4) Bulk polymerization Bulk polymerization was performed at a temperature of 70 ° C. and a pressure of 36 kg / cm 2 G using a 200-liter full liquid bulk polymerization apparatus with stirring. The procedure up to the prepolymerization was the same as in Example 1, and a prepolymerization catalyst was introduced into the polymerization reactor together with 35 kg / hr of liquid propylene. In addition to this, 45 kg / hr of liquid propylene and 0.08 Nm 3 / hr of hydrogen gas for adjusting the molecular weight are supplied to the polymerization reactor, and 5.5 g / hr of triethylaluminum, which is the same amount as that in the prepolymerization reactor, is supplied. 2.3 g / hr of cyclohexyldimethoxysilane were fed. The polymerization powder was taken out as a liquid propylene slurry into the degassing tank while the pressure inside the system was kept at 36 kg / cm 2 G while the slurry concentration was intermittently concentrated.
When the polymerization powder obtained from the above degassing tank was examined, the catalyst activity was 20.3 kg-PP / g-catalyst per 1 g of the solid catalyst component (A), the MFR was 7.6 g / 10 min, and the solidity by NMR was 3D. The index mmmm fraction of the regularity was 97.9%, the bulk density was 0.41 g / cm 3 , the average particle size was 1700 μm, and the fine particles having a size of 250 μm or less were 0.8% by weight. Table 1 includes other results.
[0032]
Comparative Example-1
In the same manner as in Example 1, only the prepolymerization method was carried out by batch prepolymerization as described below.
(3) 23 liters of purified heptane was charged into a reaction vessel equipped with a stirrer having an internal volume of 80 liters while maintaining the internal temperature at 10 ° C., and 2.5 kg of the solid catalyst component (A) and triethylaluminum. Was supplied at a ratio of 1.0 mol / mol to Ti in the solid catalyst component and 0.6 mol / mol of cyclohexylmethyldimethoxysilane with respect to Ti in the solid catalyst component. Thereafter, propylene was introduced at a partial pressure of propylene until the pressure reached 0.3 kg / cm 2 G, and the mixture was reacted at 10 ° C. for 1 hour. After completion of the reaction, the prepolymerized catalyst component was washed several times with purified heptane, further supplied with carbon dioxide, and stirred for 48 hours to temporarily deactivate the catalyst. The resulting prepolymerized catalyst component contained 1.7 g of the propylene polymer per 1 g of the solid catalyst component (A).
(4) Gas phase polymerization In the gas phase polymerization of propylene, triethyl was added to a 200-liter gas-phase polymerization apparatus equipped with a stirrer having a capacity of 200 liters, in which 50 kg of polypropylene powder was put in advance and stirred at 80 ° C. and circulating propylene gas was performed. 11.0 g / hr of aluminum and 4.6 g / hr of cyclohexyldimethoxysilane were supplied together with 10 kg / hr of liquid propylene, and 2.8 g / hr of the above prepolymerized catalyst was introduced from another nozzle as a carrier with 35 kg / hr of liquid propylene. did. Thereafter, the introduction of hydrogen gas and the adjustment of the polymerization amount to 30 kg / hr were the same as in Example 1, and the average residence time was also 1.7 hours.
From the polymerization powder obtained from the degassing tank, the catalyst activity was 8.9 kg-PP / g-catalyst per 1 g of the solid catalyst component (A), the MFR was 6.5 g / 10 min, and the index of stereoregularity by NMR was mmmm. The fraction was 95.7%, the bulk density was 0.41 g / cm 3 , the average particle size was 1380 μm, and the fine particles having a size of 250 μm or less were 0.5% by weight. Table 1 includes other results.
[0033]
Comparative Example-2
In the same manner as in Example 1, only the prepolymerization method was carried out as follows, and the solid catalyst component (A) and the organoaluminum compound (B) were brought into contact in a heptane solvent, and then propylene was introduced to carry out the prepolymerization. Changed to do so. The gas phase polymerization was carried out in the same manner as in Example 1.
(3) Continuous prepolymerization A stirring tank with a jacket having an inner volume of 1 liter, a double tube type prepolymerizer having an inner tube with an inner diameter of 3 mm, a length of 8 m, and an outer tube through which cooling water passes, and a stirrer with an inner volume of 200 liters The gas phase polymerization reactors were connected in series, and prepolymerization and gas phase polymerization were continuously performed.
The above-mentioned heptane slurry of the solid catalyst component (A) was placed in a stirring tank having an internal volume of 1 liter at 200 ml / hr (2.0 g / hr as the solid catalyst component (A)), and 5.5 g / hr of triethylaluminum was added at 550 ml / hr. As a heptane solution, 2.3 g / hr of cyclohexyldimethoxysilane was continuously supplied as a 460 ml / hr heptane solution from separate injection nozzles using a reciprocating slurry pump. The stirring tank having an inner volume of 1 liter is stirred in a full state, and the average residence time here is about 50 minutes. The jacket of the stirring tank is cooled by cooling water, and is controlled so that the temperature in the stirring tank is maintained at 10 ° C. The heptane slurry of the catalyst component mixture that has exited the 1-liter internal stirring tank is introduced into a tubular prepolymerizer. A cooling liquid at 10 ° C. is flowing through the outer tube of the prepolymerization double tube. The inner tube is a reaction site for prepolymerization, and joins 35 kg / hr liquid propylene at 10 ° C. at the inlet. The average flow rate in the prepolymerizer is 2.6 m / sec and the average residence time is 3.1 seconds. The prepolymerization amount was 2.0 g per 1 g of the solid catalyst component (A). Table 1 includes other results.
[0034]
Comparative Example-3
Example 1 was repeated except that the temperature during the continuous prepolymerization was changed from 10 ° C to 65 ° C, and the supply amount of the solid catalyst component (A) was changed from 1.5 g / hr to 2.5 g / hr. . The results are shown in Table 1.
Comparative Example-4
The prepolymerizer during the continuous prepolymerization was a horizontal tube-type stirring tank with an internal volume of 650 ml and an extrusion flow, and the prepolymerized catalyst was introduced into a gas phase polymerization reactor through a stainless steel tube having an inner diameter of 3 mm and a length of 1 m. The procedure was performed in the same manner as in Example 1 except for changing to. The average residence time in this prepolymerization tank was 40 seconds. The results are shown in Table 1.
Comparative Example-5
Example 1 was repeated except that the length of the prepolymerization tube during continuous prepolymerization was changed to 50 cm. At this time, the amount of prepolymerization was 0.1 g per 1 g of the solid catalyst component (A). The results are shown in Table 1.
Comparative Example-6
The same procedure as in Example 1 was carried out except that the prepolymerization tube at the time of continuous prepolymerization was changed to one having an inner diameter of 10 mm and a length of 4 m. At this time, the average flow rate of the catalyst component to the gas phase polymerization vessel was 0.25 m / sec. As a result, the pre-polymerization tube was clogged 2 minutes after the start of the catalyst supply, and the operation became impossible. The results are shown in Table 1.
[0035]
Example-3
Except that the pre-polymerization tube at the time of continuous pre-polymerization was changed to one having an inner diameter of 4 mm and a length of 24 m, and the temperature of the jacket cooling liquid in the 1-liter stirring tank and the temperature of the cooling liquid in the outer pipe of the pre-polymerization double tube were set to 0 ° C. The procedure was the same as in Example 1. At this time, the average flow rate of the catalyst component to the gas phase polymerization vessel was 1.5 m / sec, and the average residence time in the prepolymerization tube was 17 seconds. The amount of prepolymerization was 5.8 g per 1 g of the solid catalyst component (A). The results are shown in Table 1.
[0036]
Example-4
At the time of continuous prepolymerization, the amount of liquid propylene entering the 1-liter stirring tank together with the heptane slurry of the solid catalyst component (A) was changed to 8 kg / hr, and the amount of liquid propylene entering triethylaluminum in the prepolymerizer was changed to 3 kg / hr. The procedure was performed in the same manner as in Example 2 except that the temperature of the jacket cooling liquid in the 1-liter stirring tank and the cooling liquid in the outer tube of the prepolymerization double tube were set to 20 ° C. At this time, the average flow rate of the catalyst component flowing into the bulk polymerization vessel was 0.8 m / sec, and the average residence time in the prepolymerization tube was 5.0 seconds. The prepolymerization amount was 4.2 g per 1 g of the solid catalyst component (A). The results are shown in Table 1.
[0037]
Example-5
Except that the pre-polymerization tube during continuous pre-polymerization was changed to one with an inner diameter of 3 mm and a length of 2 m, and the temperature of the jacket cooling liquid of 1 liter stirring 1 and the cooling liquid of the outer pipe of the pre-polymerization reactor double pipe were set to 40 ° C. The procedure was the same as in Example 1. At this time, the average flow rate of the catalyst component to the gas phase polymerization vessel was 2.6 m / sec, and the average residence time in the prepolymerization tube was 1.6 seconds. The prepolymerization amount was 1.1 g per 1 g of the solid catalyst component (A). The results are shown in Table 1.
[0038]
Example-6
2.3 g / hr of cyclohexyldimethoxysilane as an electron-donating compound (C) put into a prepolymerization tube during continuous prepolymerization is cut, and the amount of cyclohexyldimethoxysilane during gas phase polymerization is increased from 2.3 g / hr to 4.6 g. The operation was carried out in the same manner as in Example 1 except that / hr was changed. At this time, the amount of prepolymerization was 3.6 g per 1 g of the solid catalyst component (A). The results are shown in Table 1.
[0039]
[Table 1]
Figure 0003577394
[0040]
The film was formed into a film having a thickness of 25 μm and a width of 40 cm using a T-die casting machine having a screw having a diameter of 40 mm at a resin temperature of 220 ° C. and a take-up speed of 20 m / min.
The MFR (melt flow rate) was measured in accordance with JIS-K-7210 (230 ° C., 2.16 kgf), the haze of the film was measured in accordance with JIS-K-7105, and fish eye was measured. (F / E) was evaluated by counting the number of fish eyes having a diameter of 0.1 mm or more per 1000 cm 2 .
[0041]
【The invention's effect】
The first effect is that the catalyst activity is high, a deashing step for removing the catalyst residue is not required, and the amount of the catalyst used is small, so that it is economical. In addition, since there are few catalyst residues, the product properties (color tone, smell) are also good.
The second effect is that the stereoregularity is high, and the physical properties such as the rigidity of the product are extremely good.
[0042]
The third effect is that the polymer morphology and the downstream system can be operated extremely stably and economically because the polymer powder has a good powder morphology, a small amount of fine powder, and no formation of lumps.
The fourth effect is that there are few fish eyes and bumps, and the product quality is good.
Further, all of the above effects can be obtained in a well-balanced manner, and even if a new prepolymerizer is provided, it is economically advantageous since no major equipment change is required.

Claims (3)

マグネシウム、チタン及びハロゲンを必須成分とする固体触媒成分(A)と有機アルミニウム化合物(B)と電子供与性化合物(C)からなる触媒の存在下でプロピレンを連続重合するにあたり、液状プロピレンの存在下、固体触媒成分(A)と有機アルミニウム化合物(B)を接触させ、60℃以下の温度となる条件下で予備重合を行い、予備重合量が供給される固体触媒成分(A)1g当たり0.3〜8g、かつ、供給される液状プロピレンの5重量%以下であるプロピレン予備重合触媒を形成し、これを未反応の液状プロピレンと共に0.3m/秒以上の平均流速で本重合器に連続的に供給することを特徴とするプロピレンの連続重合方法。When propylene is continuously polymerized in the presence of a catalyst comprising a solid catalyst component (A) containing magnesium, titanium and halogen as essential components, an organoaluminum compound (B) and an electron-donating compound (C), in the presence of liquid propylene The solid catalyst component (A) and the organoaluminum compound (B) are brought into contact with each other and prepolymerized under the condition of a temperature of 60 ° C. or less, and the prepolymerization amount is 0.1 g / g of the solid catalyst component (A) supplied. A propylene prepolymerization catalyst of 3 to 8 g and not more than 5% by weight of the supplied liquid propylene is formed, and this is continuously fed to the polymerization reactor together with unreacted liquid propylene at an average flow rate of 0.3 m / sec or more. Continuous polymerization method for propylene. 予備重合器における平均滞留時間が25秒以下である請求項1に記載のプロピレンの連続重合方法。The propylene continuous polymerization method according to claim 1, wherein the average residence time in the prepolymerizer is 25 seconds or less. 予備重合時に電子供与性化合物(C)を添加する請求項1又は2に記載のプロピレンの連続重合方法。The method for continuous polymerization of propylene according to claim 1 or 2, wherein the electron-donating compound (C) is added during the preliminary polymerization.
JP27213296A 1996-10-15 1996-10-15 Continuous polymerization of propylene Expired - Fee Related JP3577394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27213296A JP3577394B2 (en) 1996-10-15 1996-10-15 Continuous polymerization of propylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27213296A JP3577394B2 (en) 1996-10-15 1996-10-15 Continuous polymerization of propylene

Publications (2)

Publication Number Publication Date
JPH10120719A JPH10120719A (en) 1998-05-12
JP3577394B2 true JP3577394B2 (en) 2004-10-13

Family

ID=17509545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27213296A Expired - Fee Related JP3577394B2 (en) 1996-10-15 1996-10-15 Continuous polymerization of propylene

Country Status (1)

Country Link
JP (1) JP3577394B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249506A (en) * 2008-04-07 2009-10-29 Sumitomo Chemical Co Ltd Method for manufacturing prepolymerization catalyst component, and method for manufacturing propylene polymer
JP6670081B2 (en) * 2015-11-24 2020-03-18 東邦チタニウム株式会社 Method for producing catalyst for olefin polymerization

Also Published As

Publication number Publication date
JPH10120719A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
JP3832039B2 (en) α-Olefin Polymerization Catalyst and Method for Producing α-Olefin Polymer
JP2003510425A (en) Method for producing catalyst component for olefin polymerization
HU213183B (en) Continuous process for the gas phase polymerisation of alfa-olefins
JP3372549B2 (en) Stereospecific homo- or copolymerization of olefins
JPS6324001B2 (en)
JP3860702B2 (en) Polyolefin production method and gas phase polymerization apparatus
JP3553745B2 (en) Continuous polymerization of propylene
JP3355819B2 (en) Method for producing propylene / ethylene block copolymer
JP4547807B2 (en) Method for producing polypropylene or propylene random copolymer
JP3577394B2 (en) Continuous polymerization of propylene
US6001765A (en) Catalytic system which can be used for the stereospecific polymerization of α-olefins, process for this polymerization and polymers obtained
JP2002506468A (en) Continuous production of propylene polymer
JPH04136011A (en) Preparation of propylene block copolymer
JP5448702B2 (en) Propylene-based block copolymer production method
JP3580001B2 (en) Method for producing propylene-olefin block copolymer
JP5501384B2 (en) Enlarging the molecular weight distribution of polyolefin materials produced in a horizontal stirred gas phase reactor
JP2009292963A (en) Method for producing olefin polymer
JP4843188B2 (en) Polyolefin production method and gas phase polymerization apparatus
JP6519439B2 (en) Process for producing propylene-based block copolymer
JP2523109B2 (en) Catalyst component for olefin polymerization
JPH0354125B2 (en)
JP2009292964A (en) Method for producing olefin polymer
JP4460187B2 (en) Olefin polymerization method and polymerization apparatus
JPH0987329A (en) Manufacture of propylene block copolymer
JP3005944B2 (en) Method for producing propylene block copolymer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees