JP3576337B2 - Test equipment for harmonic suppression equipment - Google Patents

Test equipment for harmonic suppression equipment Download PDF

Info

Publication number
JP3576337B2
JP3576337B2 JP31277796A JP31277796A JP3576337B2 JP 3576337 B2 JP3576337 B2 JP 3576337B2 JP 31277796 A JP31277796 A JP 31277796A JP 31277796 A JP31277796 A JP 31277796A JP 3576337 B2 JP3576337 B2 JP 3576337B2
Authority
JP
Japan
Prior art keywords
test
active filter
current
load
filter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31277796A
Other languages
Japanese (ja)
Other versions
JPH10142279A (en
Inventor
吉明 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP31277796A priority Critical patent/JP3576337B2/en
Publication of JPH10142279A publication Critical patent/JPH10142279A/en
Application granted granted Critical
Publication of JP3576337B2 publication Critical patent/JP3576337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電源系統の高調波成分を抑制するためのアクティブフイルタ装置の試験装置に関するものである。
【0002】
【従来の技術】
アクティブフイルタ装置は、非線形負荷機器に流れる負荷電流から高調波電流を検出し、これと同じ大きさで逆位相の電流を出力することによって電源側へ流出する高調波電流を打消し、電源電流を基本波のみとする。
このアクティブフイルタ装置の補償性能を確認するためには、図4に示す回路で行なわれる。
図4において、1は工場設備用の交流電源であり、本試験装置以外の他の試験も同時に行っている。2は電源インピーダンス、3は補償性能を確認する供試アクティブフイルタ装置、31は供試アクティブフイルタ装置3の負荷電流を検出する検出器である。4は供試アクティブフイルタ装置3の補償性能を確認するための負荷機器、41は整流器、42は負荷抵抗器、43は負荷直流リアクトル、44は交流リアクトルであり、負荷機器4は試験対象となる供試アクティブフイルタ装置3の補償容量を確認できる程度のものを準備している。
【0003】
【発明が解決しようとする課題】
しかし、前述のような装置によれば、大容量の供試アクティブフイルタ装置の補償性能を確認するためには供試アクティブフイルタ装置の補償容量に見合った多量の高調波を発生する負荷機器が必要となり、整流器や他の負荷機器は大容量・大規模なものとなってしまう。
尚、簡便法として負荷電流検出器を負荷機器ラインに設け、検出器の一次巻線のターン数を多くして負荷電流検出器の二次側において、疑似的に高調波量を増加させ、供試アクティブフイルタ装置の補償動作を確認することもある。しかしながら、この手段では、実際の負荷電流に含まれる高調波電流が少ないにもかかわらず、供試アクティブフイルタ装置はその定格容量に見合った大きな補償電流を出力することになるため、供試アクティブフイルタ装置の過補償分の高調波電流が電源系統へ流出するという問題があった。
本発明は上述した点に鑑みて創案されたもので、その目的とするところは、これらの欠点を解決することにあり、小容量の整流器や負荷機器を常設とし、他方電流系統へ、アクティブフイルタ装置の補償電流が流出しないような試験装置を提供するものである。
【0004】
【課題を解決するための手段】
つまり、その目的を達成するための手段は、
供試アクティブフイルタ装置の高調波電流の補償性を確認するための試験装置において、高調波電流を発生する負荷機器に並列に試験対象となる供試アクティブフイルタ装置を接続し、該負荷電流を検出する電流検出器の一次巻回数を多くして、等価的に供試アクティブフイルタ装置の補償性能を確認する手段を用い、交流電源と供試アクティブフイルタ装置間に供試アクティブフイルタ装置と並列にフィルタコンデンサを設け、試験用アクティブフイルタ装置は入力を母線に接続し、該接続点より電源側の電流を検出する前記電流検出器を有し、該電流検出器の両端には並列接続する抵抗とリアクトルを設け、この出力を補償電流指令値として動作し、前記試験用アクティブフィルタと供試アクティブフイルタ装置との間の母線に接続して供試アクティブフィルタの負荷電流検出用電流検出器の一次側ターン数を多く巻回したことによる供試アクティブフィルタの過補償分を吸収させるフィルタコンデンサと、交流電源のインピーダンスとの間で発生する反共振を抑制するよう構成したものである。
【0005】
かくのごとき解決手段により、供試アクティブフイルタ装置の補償性能を確認するための試験装置として、比較的小容量の負荷機器を常設とすることができる。もしも該負荷機器よりも補償容量が大きい供試アクティブフイルタ装置の補償性能を確認するに当っては、負荷電流検出器の一次巻回数を多くして実施することができ、この場合においても、電源系統へ高調波電流の流出或いは電源系統のインピーダンスとの反共振による高調波電流の拡大も抑制でき、系統の他の電気機器への影響も心配する必要はない。
【0006】
【発明の実施の形態】
以下、本発明の一実施例を図面に基づいて詳述する。
図1は本発明が適用された試験装置の構成図、図2は図1の試験装置の主要部説明図であり、図中、図4と同一の符号は、同じ構成、機能を有するので説明を省略する。
図1及び図2において、51は試験用アクティブフイルタ装置、52はフィルタコンデンサ、53は交流リアクトル、511 はアクティブフイルタ用電流検出器、512 は抵抗器、513 は交流リアクトルである。 試験装置5は以上のようなものから構成され、この試験装置5の高調波発生容量より大きな補償能力を持った供試アクティブフイルタ装置3の補償性能を確認する時には、供試アクティブフイルタ装置3の電流検出器31の一次巻回数を多くして負荷電流検出器31の二次例で高調波量を供試アクティブフイルタ装置3の補償容量と一致させ、補償動作を確認できる。
【0007】
この時に、供試アクティブフイルタ装置3の補償電流IAF3 と、実際の試験装置負荷高調波電流ILHとには差があり、ILH <IAF3 であることから、供試アクティブフイルタ装置3の過補償分が電源側へ流出しようとするが、フイルタコンデンサ52で吸収することができる。尚フイルタコンデンサ52は供試アクティブフイルタ装置3の容量によって増減調整できる。
一方このフイルタコンデンサ52は交流電源系統インピーダンス2との間で共振が発生し、低次の高調波電流を拡大することがあるが、試験装置5内に設けた試験用アクティブフイルタ51で共振現象を抑制することができる。その機能は次のごとくである。
【0008】
試験用アクティブフイルタ51は、前記コンデンサ52との接続点より電源側の電流を検出し、該電流検出器 511は図2に示すように、その負荷として抵抗器 512とリアクトル 513とが並列に接続されており、この両端出力を補償電流指令としている。尚このリアクトル513 は電流検出器 511で検出した電流の微分を行うもので、特に制御対象となる電源インピーダンス2(或は2+リアクトル54)とフイルタコンデンサ52との共振周波数近傍以下の周波数の微分を行うものである。この手段を図3を用いて説明する。
【0009】
図3は図1を簡略化した説明図で、Vs は交流電源の電圧、Zs は電源インピーダンス、Is は電源インピーダンスを流れる電流、Iccは試験用アクティブフイルタ51で補償電流IAF4 を発生する電流源、Zc はフイルタコンデンサ52のインピーダンス、Ilcはフイルタコンデンサ52以後の機器を総評し、負荷電流IL を発生する電流源である。
電流Is は次に示す(1)式のように表せる。
【0010】
Is =Ic +Il −IAF4 ・・・・・・・・・・・・・・・(1)
一方、フイルタコンデンサ52に流れる電流Ic は(2)式のように表せる。
Ic =(Vs −Zs Is )/Zc ・・・・・・・・・・・・(2)
(1)式と(2)式より
Is =〔Vs /(Zs +Zc )〕+〔Zc Il /(Zs +Zc )〕
−〔Zc IAF4 /(Zs +Zc )〕・・・・・・・・(3)
【0011】
試験用アクティブフイルタ51の補償電流IAF4 は、電流検出器511 で検出電流から基本波電流を除去して補償すべき高調波電流を求めて制御する。
これを式で表すと、(4)式となる。
IAF4 =−GN (S)・G(S)・Is ・・・・・・・・(4)
ここで、GN (S)は基本波に対するノッチフィルタで、G(S)は伝達関数である。このG(S)は図2で示したように、検出回路で微分特性を持たせてあるので、(5)式で表せる。
【0012】
G(S)=KS ・・・・・・・・(5)
(5)式において、Kは制御ゲインである。
以上の制御手段に基づいて、(3)式において高調波についてのみ着目すると、電源の高調波電流Ishは(6)式で表せる。
Ish={Vsh/〔(Zs +Zc )−Zc KS〕}+{Zc Ilh/〔(Zs +Zc )−Zc KS〕}・・(6)
(6)式において、Vshは電源電圧の高調波電圧、Ilhは負荷電流Il に含まれる高調波電流である。
(6)式から、分母の(Zs +Zc )が最小、例えばゼロとなっても
Zc KS=K/C(Cはコンデンサの容量)となり、純抵抗の効果となるため、高調波電流の拡大を抑制できる。
【0013】
【発明の効果】
以上詳細に説明したように本発明によれば、アクティブフイルタ装置の補償性能を確認するための試験装置として比較的小少量の負荷機器を常設とすることができ、装置が安価となる。更に電源系統への外乱を与えることもない。
【図面の簡単な説明】
【図1】図1は本発明が適用された試験装置の一実施例を示す構成図である。
【図2】図2は本発明が適用された試験用アクティブフイルタ装置の補償電流指令用入力回路の構成図である。
【図3】図3は本発明に係るアクティブフイルタ装置が設けられた説明図である。
【図4】図4は従来のアクティブフイルタ装置の一例を示す構成図である。
【符号の説明】
1 交流電源
2 電源インピーダンス
3 供試アクティブフイルタ装置
31 電流検出器
4 負荷機器
41 整流器
42 抵抗器
43 直流リアクトル
44 交流リアクトル
5 試験装置
51 試験用アクティブフイルタ装置
52 フイルタコンデンサ
53 交流リアクトル
511 電流検出器
512 抵抗器
513 交流リアクトル
Vs 交流電源電圧
Zs 電源インピーダンス
Zc フイルタコンデンサのインピーダンス
C フイルタコンデンサ容量
Is 電源インピーダンスを流れる電流
IAF4 補償電流
Icc 補償電流IAF4 を発生する補償電流源
IL 負荷電流
ILC 負荷電流IL を発生する負荷電流源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a test device for an active filter device for suppressing harmonic components of a power supply system.
[0002]
[Prior art]
The active filter device detects the harmonic current from the load current flowing through the non-linear load device, and outputs a current having the same magnitude and an opposite phase to cancel the harmonic current flowing to the power supply side, thereby reducing the power supply current. Only the fundamental wave.
In order to confirm the compensation performance of the active filter device, a circuit shown in FIG. 4 is used.
In FIG. 4, reference numeral 1 denotes an AC power supply for factory equipment, and other tests other than the present test apparatus are simultaneously performed. Reference numeral 2 denotes a power source impedance, reference numeral 3 denotes a test active filter device for confirming compensation performance, and reference numeral 31 denotes a detector for detecting a load current of the test active filter device 3. 4 is a load device for confirming the compensating performance of the test active filter device 3, 41 is a rectifier, 42 is a load resistor, 43 is a load DC reactor, 44 is an AC reactor, and the load device 4 is a test object. A device capable of confirming the compensation capacity of the test active filter device 3 is prepared.
[0003]
[Problems to be solved by the invention]
However, according to the apparatus described above, in order to confirm the compensation performance of a large-capacity test active filter device, a load device that generates a large amount of harmonics corresponding to the compensation capacity of the test active filter device is required. Therefore, the rectifier and other load devices have a large capacity and a large scale.
As a simple method, a load current detector is provided in the load equipment line, and the number of turns of the primary winding of the detector is increased to increase the amount of harmonics on the secondary side of the load current detector in a pseudo manner. In some cases, the compensation operation of the trial active filter device is confirmed. However, with this means, the active filter device under test outputs a large compensation current commensurate with the rated capacity of the active filter device despite the fact that the harmonic current contained in the actual load current is small. There has been a problem that the harmonic current corresponding to the overcompensation of the device flows out to the power supply system.
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to solve these drawbacks. An object of the present invention is to provide a test apparatus in which the compensation current of the apparatus does not flow.
[0004]
[Means for Solving the Problems]
In other words, the means to achieve that goal are:
In a test device for confirming the compensability of the harmonic current of the test active filter device, the test active filter device to be tested is connected in parallel to the load device that generates the harmonic current, and the load current is detected. Using a means for increasing the number of primary windings of the current detector to check the compensation performance of the active filter device under test, in parallel with the active filter device between the AC power supply and the active filter device under test. A capacitor is provided, the test active filter device has the current detector for connecting an input to a bus, and detecting a current on the power supply side from the connection point, and a resistor and a reactor connected in parallel at both ends of the current detector. The output is operated as a compensation current command value, and connected to a bus between the test active filter and the test active filter device. Anti-resonance generated between the filter capacitor that absorbs the over-compensated part of the test active filter due to many turns on the primary side of the current detector for load current detection of the test active filter and the impedance of the AC power supply Is suppressed.
[0005]
With such a solution, a relatively small-capacity load device can be permanently installed as a test device for confirming the compensation performance of the test active filter device. In order to confirm the compensation performance of the active filter device under test having a larger compensation capacity than the load device, it is possible to increase the number of primary windings of the load current detector. The outflow of the harmonic current into the system or the expansion of the harmonic current due to the anti-resonance with the impedance of the power supply system can be suppressed, and there is no need to worry about the influence on other electric devices in the system.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram of a test apparatus to which the present invention is applied, and FIG. 2 is an explanatory diagram of a main part of the test apparatus of FIG. 1. In the figure, the same reference numerals as those in FIG. Is omitted.
1 and 2, reference numeral 51 denotes an active filter device for testing, 52 denotes a filter capacitor, 53 denotes an AC reactor, 511 denotes a current detector for an active filter, 512 denotes a resistor, and 513 denotes an AC reactor. The test apparatus 5 is configured as described above. When confirming the compensation performance of the test active filter apparatus 3 having a compensation capacity larger than the harmonic generation capacity of the test apparatus 5, the test By increasing the number of primary windings of the current detector 31 and making the amount of harmonics equal to the compensation capacitance of the test active filter device 3 in the secondary example of the load current detector 31, the compensation operation can be confirmed.
[0007]
At this time, there is a difference between the compensation current IAF3 of the test active filter device 3 and the actual test device load harmonic current ILH, and ILH <IAF3. Although it tends to flow out to the power supply side, it can be absorbed by the filter capacitor 52. The filter capacitor 52 can be increased or decreased by the capacity of the test active filter device 3.
On the other hand, the filter capacitor 52 may generate resonance with the AC power supply system impedance 2 and expand a low-order harmonic current. However, the resonance phenomenon is generated by the test active filter 51 provided in the test apparatus 5. Can be suppressed. Its function is as follows.
[0008]
The test active filter 51 detects a current on the power supply side from a connection point with the capacitor 52, and the current detector 511 includes a resistor 512 and a reactor 513 connected in parallel as a load as shown in FIG. The output at both ends is used as a compensation current command. The reactor 513 differentiates the current detected by the current detector 511. In particular, the reactor 513 calculates the derivative of the frequency below the resonance frequency between the power supply impedance 2 (or 2 + reactor 54) to be controlled and the filter capacitor 52. Is what you do. This means will be described with reference to FIG.
[0009]
FIG. 3 is a simplified explanatory view of FIG. 1, where Vs is the voltage of the AC power supply, Zs is the power supply impedance, Is is the current flowing through the power supply impedance, Icc is the current source for generating the compensation current IAF4 in the test active filter 51, Zc is the impedance of the filter capacitor 52, and Ilc is a current source that generates a load current IL by generally evaluating devices after the filter capacitor 52.
The current Is can be expressed by the following equation (1).
[0010]
Is = Ic + Il-IAF4 (1)
On the other hand, the current Ic flowing through the filter capacitor 52 can be expressed as in equation (2).
Ic = (Vs−ZsIs) / Zc (2)
From the expressions (1) and (2), Is = [Vs / (Zs + Zc)] + [ZcIl / (Zs + Zc)]
-[Zc IAF4 / (Zs + Zc)] ... (3)
[0011]
The compensation current IAF4 of the test active filter 51 is controlled by removing the fundamental current from the detected current by the current detector 511 to obtain a harmonic current to be compensated.
This can be expressed by equation (4).
IAF4 = −GN (S) · G (S) · Is (4)
Here, GN (S) is a notch filter for the fundamental wave, and G (S) is a transfer function. Since G (S) has a differential characteristic in the detection circuit as shown in FIG. 2, it can be expressed by equation (5).
[0012]
G (S) = KS (5)
In the equation (5), K is a control gain.
Based on the above control means, if attention is paid only to the harmonics in the equation (3), the harmonic current Ish of the power supply can be expressed by the equation (6).
Ish = {Vsh / [(Zs + Zc) -Zc KS]} + {Zc Ilh / [(Zs + Zc) -Zc KS]} (6)
In the equation (6), Vsh is a harmonic voltage of the power supply voltage, and Ilh is a harmonic current included in the load current Il.
From equation (6), even when the denominator (Zs + Zc) becomes minimum, for example, zero, Zc KS = K / C (C is the capacitance of the capacitor), and the effect of the pure resistance is obtained. Can be suppressed.
[0013]
【The invention's effect】
As described above in detail, according to the present invention, a relatively small and small load device can be permanently installed as a test device for checking the compensation performance of the active filter device, and the device is inexpensive. Furthermore, there is no disturbance to the power supply system.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one embodiment of a test apparatus to which the present invention is applied.
FIG. 2 is a configuration diagram of a compensation current command input circuit of a test active filter device to which the present invention is applied.
FIG. 3 is an explanatory view provided with an active filter device according to the present invention.
FIG. 4 is a configuration diagram showing an example of a conventional active filter device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 AC power supply 2 Power supply impedance 3 Test active filter device 31 Current detector 4 Load device 41 Rectifier 42 Resistor 43 DC reactor 44 AC reactor 5 Test device 51 Test active filter device 52 Filter capacitor 53 AC reactor 511 Current detector 512 Resistor 513 AC reactor Vs AC power supply voltage Zs Power supply impedance Zc Filter capacitor impedance C Filter capacitor capacitance Is Current IAF4 flowing through power supply impedance Compensation current Icc Compensation current source IL that generates compensation current IAF4 Load current ILC Generates load current IL Load current source

Claims (1)

小容量の高調波電流を発生する負荷機器を備え、該負荷機器の負荷電流を検出する電流検出器を母線に設け、該電流検出器の一次側ターン数を多く巻回して等価的に供試アクティブフイルタ装置の補償機能を確認するアクティブフイルタ装置の試験装置において、交流電源と前記負荷機器間に、交流電源側から電流検出器を有する試験用アクティブフイルタ装置、フィルタコンデンサ、電流検出器を有する供試アクティブフイルタ装置の順序で設け、試験用アクティブフイルタ装置は入力を母線に接続し、該接続点より電源側の電流を検出する前記電流検出器を有し、該電流検出器の両端には並列接続する抵抗とリアクトルを設け、この出力を補償電流指令値として動作し、前記試験用アクティブフィルタと供試アクティブフイルタ装置との間の母線に接続して供試アクティブフィルタの負荷電流検出用電流検出器の一次側ターン数を多く巻回したことによる供試アクティブフィルタの過補償分を吸収させるフィルタコンデンサと、交流電源のインピーダンスとの間で発生する反共振を抑制することを特徴とする高調波抑制装置の試験装置。Equipped with a load device that generates a small-capacity harmonic current, a current detector that detects the load current of the load device is provided on the bus, and the number of turns on the primary side of the current detector is increased and the test is performed equivalently. A test apparatus for an active filter device for checking a compensation function of an active filter device, comprising a test active filter device having a current detector from an AC power supply side, a filter capacitor, and a current detector between an AC power supply and the load device. The test active filter device is provided in the order of the test active filter device, and the test active filter device has the current detector for connecting an input to a bus and detecting a current on the power supply side from the connection point, and is provided in parallel at both ends of the current detector. A resistor and a reactor to be connected are provided, and this output is operated as a compensation current command value. And a filter capacitor that absorbs the over-compensation of the active filter under test due to many turns on the primary side of the current detector for load current detection of the active filter under test connected to the bus of the active filter. A test device for a harmonic suppression device, characterized in that anti-resonance generated between the components is suppressed.
JP31277796A 1996-11-08 1996-11-08 Test equipment for harmonic suppression equipment Expired - Fee Related JP3576337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31277796A JP3576337B2 (en) 1996-11-08 1996-11-08 Test equipment for harmonic suppression equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31277796A JP3576337B2 (en) 1996-11-08 1996-11-08 Test equipment for harmonic suppression equipment

Publications (2)

Publication Number Publication Date
JPH10142279A JPH10142279A (en) 1998-05-29
JP3576337B2 true JP3576337B2 (en) 2004-10-13

Family

ID=18033290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31277796A Expired - Fee Related JP3576337B2 (en) 1996-11-08 1996-11-08 Test equipment for harmonic suppression equipment

Country Status (1)

Country Link
JP (1) JP3576337B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182009B2 (en) * 2008-10-27 2013-04-10 株式会社明電舎 Voltage disturbance generator
CN106199327B (en) * 2015-04-30 2018-12-21 西门子电力自动化有限公司 The harmonic wave antidote and device of electric system
CN106885972B (en) * 2015-12-16 2019-12-03 中国二十冶集团有限公司 Hv filtering compensation device entirety voltage-withstand test method

Also Published As

Publication number Publication date
JPH10142279A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
US9537388B2 (en) Hybrid distribution transformer with an integrated voltage source converter
Moran et al. A series active power filter which compensates current harmonics and voltage unbalance simultaneously
JPH0532977B2 (en)
US10901026B2 (en) Passive harmonic filter power quality monitor and communications device
JP3576337B2 (en) Test equipment for harmonic suppression equipment
JP4849310B2 (en) AC / AC power converter controller
Hosseini The operation and model of UPQC in voltage sag mitigation using EMTP by direct method
JPH10174292A (en) Transforming device fitted with the capacitor for improvement of power factor contributing to countermeasure against higher harmonic waves
Huang et al. Digital-controlled single-phase transformer-based inverter for non-linear load applications
CN105048464B (en) Magnetic balance harmonic elimination reactive power compensation device and method
JP2010044621A (en) Earth fault detection device of reactive power compensator
JP2004317164A (en) Ground fault detector and ground fault remote monitoring system
Chandar et al. Detection and isolation of interturn faults in inductors of LCL filter for marine electric propulsion system
JP6921631B2 (en) Power system
JP4425648B2 (en) Ground fault detection device
JP2745621B2 (en) Switch control device
RU2798771C1 (en) High current source for test system for testing electric power device and test system
Jayasinghe et al. Effect of GIC on overcurrent protection for filter banks
JP3055096B2 (en) Leakage current detector
Tory et al. Eliminating harmonics from the facility power system
JP4149635B2 (en) Protection relay monitoring device
JP3640474B2 (en) Uninterruptible insulation resistance measuring device
JPH0532978B2 (en)
Bezzub et al. The Effect of Voltage and Current Harmonic Distortion on Power Indicators in Power Circuits a Dynamic Voltage Restorer
SU658482A1 (en) Arrangement for measuring voltage in high-voltage networks

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees