JP3576254B2 - Carrier for developer and production method thereof - Google Patents

Carrier for developer and production method thereof Download PDF

Info

Publication number
JP3576254B2
JP3576254B2 JP07841095A JP7841095A JP3576254B2 JP 3576254 B2 JP3576254 B2 JP 3576254B2 JP 07841095 A JP07841095 A JP 07841095A JP 7841095 A JP7841095 A JP 7841095A JP 3576254 B2 JP3576254 B2 JP 3576254B2
Authority
JP
Japan
Prior art keywords
particles
magnetite
hematite
carrier
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07841095A
Other languages
Japanese (ja)
Other versions
JPH08248685A (en
Inventor
泰明 三沢
正幸 小野
彰一 竹内
桂吾 青井
Original Assignee
同和鉄粉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同和鉄粉工業株式会社 filed Critical 同和鉄粉工業株式会社
Priority to JP07841095A priority Critical patent/JP3576254B2/en
Publication of JPH08248685A publication Critical patent/JPH08248685A/en
Application granted granted Critical
Publication of JP3576254B2 publication Critical patent/JP3576254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は電子写真現像剤用のキャリヤに関する。
【0002】
【従来の技術】
光導電性材料の表面上に静電気的手段により像を形成して現像する電子写真像形成法のうち,いわゆる磁気ブラシ現像法が広く普及している。この現像法は,トナーと磁性キャリヤ粒子からなる現像剤をブラシ様に配列させ,この磁気ブラシを静電像支持体表面と接触させてトナー粒子をブラシから潜像に静電気力により引き付けることにより可視像を形成し,この可視像を紙あるいはその他の支持体に転写せしめた後,熱等により定着することによって完了する。
【0003】
この磁気ブラシ法に用いられる微粉状のキャリヤ物質としては,強磁性を示す物質たとえば鉄粉,各種のフェライト粒子,マグネタイト粉等の各種のものが提案されているが,現在はフェライト系が主流を占めるようになっている。
【0004】
しかし最近,地球環境を守る動きが活発となり,廃棄物の規制に関しても従来の規制枠の大幅強化や規制元素の新規追加が行なわれるようになってきた。フェライトキャリヤは一般に二価金属のNi,Cu,Zn,Ba,Cd等を構成元素とするものであるから,該規制も強化される動きがある。かようなフエライト系キャリヤに代わる,有害元素を含有しない磁性材料としては鉄粉とマグネタイト等がある。
【0005】
マグネタイトすなわち Feの粒子を電子写真現像剤用キャリヤとして使用することに関しては,これまでにも数々の技術的な改良がなされてきた。
【0006】
例えばマグネタイトを該キャリヤ材料の構成の全部または一部とするものとして,特開昭59−228664 号公報,特開昭60−458号公報(特公平2−51505 号公報に対応),特開昭60−144758 号公報,特開昭61−20054号公報,特開昭61−284774 号公報,特開昭62−145256 号公報,特開昭62−238580 号公報,特公平2−60186 号公報および特開平6−329418〜9号公報等に記載された公知例がある。
【0007】
これら公知例のものは,いずれもそれなりの特徴を有するが,実際にキャリヤ材料として使用するとなると,それなりの問題を有しており,成功裏に使用されているものは殆んど見当たらない。
【0008】
例えば特公平2−51505 号公報には,純度が95%以上の微細なマグネタイトを原料としてこれを造粒し,1000℃以上で焼成して見掛け比重が2.0〜2.5の球形マグネタイト(Fe)とすることが記載されている。また特公平2−60186 号公報には,前述の特公平2−51505 号公報と同じ製法によって,ウスタイト含有率を10重量%以下,表面空孔率を20容量%以下とした球状マグネタイト粒子をキャリヤ材料とすることが記載されている。このウスタイトの生成は,原料マグネタイトを造粒する際のバインダーが焼成時に還元剤として作用するからであるとされており,ウスタイトが多いとキャリヤとしての磁気特性を劣化させ,磁気ブラシからキャリヤの飛散が発生すると指摘されている。
【0009】
また,特開昭62−238580 号公報には,前記2件の公報のようにマグネタイトを焼成して製造したキャリヤでは,中間調の再現性が悪く,コントラストの高い,高画質とは言えない画像しか得られないことが比較例で示され,このために,ヘマタイト粉末とマグネタイト粉末を均一に混合した水スラリーをスプレードライヤーにて噴霧造粒した後,焼結,解砕,分級する方法,或いは球形マグネタイト粒子を酸化する方法によって,ヘマタイトを含有するマグネタイト粒子とすることが提案され,これらの方法で得られたキャリヤの飽和磁化は40〜80emu/gの範囲のものが記載されている。しかし,かような方法では,各粒子の均一性を確保することが難しい。
【0010】
さらに,特開昭62−145256 号公報には,弱酸性の不活性ガス雰囲気下でマグネタイトを部分的にガス還元することによって,マグネタイト母相中にヘマタイト相を固溶させたキャリヤ粒子を得ることが記載されている。しかし,このガス還元では,ヘマタイトがマグネタイト相中に均一に固溶した状態の粒子となるので粒子表面部にもヘマタイトが存在することになる。このため,マグネタイト本来の磁気特性が十分に発揮できない。事実,その実施例ではその飽和磁化は63または78emu/gであると記載されている。
【0011】
さらに,特開平6−329418号公報および特開平6−329419号公報には,ヘマタイト粉に,炭素原子同士の単結合又は二重結合を有する液状又は粉末状物質を不活性ガス中で1200〜1450℃に加熱処理することによって,マグネタイト単相のキャリヤ粒子を得ることが記載されている。例えば, ポリビニールアルコール, ポリアクリルアミド, ポリカルボン酸塩,アセチレンブラック, グラフアイト等を還元剤として不活性ガス中で加熱処理すると,ヘマタイトはマグネタイトに完全に還元でき,単相マグネタイト粉が得られると記載されている。しかし,雰囲気や温度コントロールを誤るとヘマタイト相が残留するようになり,この場合には電気抵抗率の高い好ましくない粒子になると記載されている。このことは表面にヘマタイト相が残存することを表している。そして,かような化合物を還元剤とする場合には,化合物の分解を伴うのでその還元に寄与する量を厳密に調整することが難しい。すなわち,ヘマタイトをマグネタイトに還元するに必要十分な化学量論量に相当する当該還元剤量を求めることが難しいので,過少の還元剤量であれば前記のような形態でヘマタイトが残留し,過剰であればマグネタイト中に二価のFeすなわちFeO成分の量が多くなり,前記の特公平2−60186 号公報や特公平2−51505 号公報と同様にウスタイトの存在が問題となる。
【0012】
【発明が解決しようとする課題】
前述のようにマグネタイト粒子を電子写真現像剤キャリヤとする各種の提案が種々なされてきたが,それぞれ得失があり,マグネタイトが本来有する磁気特性が完全に発揮でき且つ強度的にも電気抵抗の面でも良好なマグネタイト系キャリヤを安定して得る技術はこれまでのところ完成されていない。
【0013】
本発明は,このような背景のもとに,新規なマグネタイト系キャリヤの提供を目的としたものである。
【0014】
【課題を解決するための手段】
本発明によれば,マグネタイト系のキャリヤ粒子を用いた現像剤用キャリヤにおいて,前記のキャリヤ粒子が,中心部にヘマタイトからなる核を有し,このヘマタイト核の外側にマグネタイトからなる外側層が被着した複層構造の粒子であることを特徴とする現像剤用キャリヤを提供する。ここで,当該複層構造の粒子は,外側層のマグネタイト量が粒子全体の20〜95重量%の範囲にあり, 粒径が20〜500μmの実質上球形の粒子である。この複層構造の粒子はその個々がキャリヤ粒子の個々となるものであり,実際にはその個々の粒子に樹脂被覆されたうえ現像剤に供される。
【0015】
また,本発明によれば,ヘマタイトの造粒粉に対し,固体炭素質からなる粉状還元剤を,該造粒粉中のヘマタイトを全量マグネタイトに還元に要する量に満たない粉状還元剤の量比で均一に混合し,この混合物を非酸化性雰囲気または不活性ガス雰囲気下で950〜1300℃の温度に加熱保持することからなる,ヘマタイト核の外側にマグネタイト層をもつ複層構造粒子の製造法を提供する。そのさい,ヘマタイトの造粒粉はバインダーを用いて造粒することもできるが,造粒時のバインダーとして還元剤として作用するものを使用する場合には,当該粉状還元剤とバインダー中の還元剤との合計量が,ヘマタイトを全量マグネタイトに還元に要する量に満たない量とする。本発明で使用する固体炭素質の粉状還元剤は,コークス粉,木炭,チャー粉,カーボンブラック等の微粉である。
【0016】
【作用】
図1に,本発明のキャリヤ粒子の複層構造例をその断面写真で示した。図示の粒子は,外側のマグネタイト層が全体の約70重量%で,中心のヘマタイト核が約30重量%である。粒子の全体の粒径は約100μmであり,マグネタイト層の厚みは約17μmである。
【0017】
図1に見られるように,本発明のキャリヤ粒子は,ヘマタイト核の外側にマグネタイト層が被着した複層構造を有するものであり,外側は完全にマグネタイト層である。したがって,マグネタイトが本来有する理想的な磁気特性をそのまま具備する。そして,本発明粒子の飽和磁化はヘマタイト核の大きさによって自由に調節ができるという特質がある。すなわち飽和磁化を小さくしたければ,ヘマタイト核の大きさを大きくすればよい。その場合にも,外側はマグネタイトであるから電気特性や磁気特性にはバラツキが少ない。
【0018】
したがって,飽和磁化を小さくしても,その低い値が個々の粒子全体に均一に保持される結果,キャリヤ材として使用した場合に,得られる複写像は階調性に優れるという,これまでのものにはない特性を示す。すなわち,低磁力の場でもその磁力に応じたトナーを運ぶことができる結果,階調性のよい複写像が得られる。
【0019】
また,外側のマグネタイト層は比較的多孔質であるから,樹脂被覆が良好に行えるという特徴がある。そして,マグネタイト層が比較的多孔質であっても,中心部の緻密なヘマタイト核に接合しているので,粒子全体としては強度的に安定しており,使用中でも形状の崩れが少ないという特徴がある。
【0020】
そして電気的特性例えば電気抵抗について見ても,表面が均一なマグネタイト組成であるために粒子の接触点の変動による変化がなく,また帯電特性も均一であるといった特徴がある。したがって,本発明のキャリヤは,その表面にトナーを均一に担持できるのでむらのない高画質が得られる。
【0021】
本発明に従う複層構造のキャリヤ粒子は,ヘマタイトを微粉状の固体還元剤で直接部分還元することによって製造できる。すなわち,ヘマタイトと固体還元剤とを接触させた状態で,固体・固体同士の直接還元反応が起きるに十分な高温に不活性ガス中で加熱保持すると,固体還元剤と接触しているヘマタイトの表層部から還元が進行する。そのさい,ヘマタイトを全量マグネタイトに還元に要する量に満たない粉状還元剤の量比でヘマタイトと固体還元剤を均一に混合しておくと,この直接還元の進行がヘマタイトの中心に達するまでの途中の段階で停止する。つまり,固体還元剤による部分還元を行わせるのである。同じ部分還元でもガス還元では複層構造とはならない。還元性ガスが内部まで侵入してしまうからである。
【0022】
この固体還元剤によるヘマタイトの部分還元においては,還元剤がヘマタイトを全量マグネタイトに還元するに要する量より少ないのであるから,マグネタイトに全量還元されないことはもとより,FeOまで還元されることはないので遊離のウスタイトが生成することはない。
【0023】
本発明法で使用する原料ヘマタイトは,鉄鉱石を粉砕したもの,鋼板の酸洗い廃液より回収されたもの等が使用できるが,好ましくは一般フェライト用酸化鉄粉を使用するのが良い。
【0024】
本発明法によるヘマタイトの部分還元処理において,使用する粉状固体還元剤の量と種類並びに混合状態,還元雰囲気および還元温度は,当該複層構造の粒子とするうえで適切に選定されることが必要である。以下にこれらについて個別に説明する。
【0025】
粉状還元剤の量は前述のとおり,ヘマタイトを全量マグネタイトに還元に要する量に満たない量とし,この量比の選定により,複層構造のヘマタイトとマグネタイトの量比が実質上決定される。本発明のキャリヤ粒子は,外側のマグネタイト層が20〜95重量%,好ましくは50〜95重量%,さらに好ましくは70〜90重量%の割合で含有し,残部は実質的にヘマタイト核である。配合する還元剤の量は,目的とするこのマグネタイト層の含有量に応じて決定する。
【0026】
ヘマタイトの粉状炭素質還元剤による直接還元は次式で表される。
【0027】
3Fe + 1/2C→2Fe + 1/2CO
【0028】
したがって, Feを全量 Feに還元するに要するC量は Feの1/6 モルであり,これを重量%で表せば, ヘマタイト量に対し1.25%のC量が当量となるから,C量を1.25%より少ない割合で配合すればよい。
【0029】
粉状還元剤としては,コークス粉,木炭,チャー粉またはカーボンブラック等の微粉を使用する。いわゆる無定形炭素の微粉であるのがよい。これらは微粉であればあるほど好ましく,粒状や顆粒状のものであれば,これをすりつぶして微粉体として使用する。そして,この微粉状還元剤がヘマタイト粒子 (造粒粉) の表面を均一に覆うように,原料ヘマタイト (造粒粉) と均一に混合する。したがって,粉状還元剤は原料ヘマタイトの粒子に比べて一層小さな粒子であることが必要であり,数μm以下の微粉状で使用する。
【0030】
ヘマタイトの造粒粉はヘマタイト粉に適量の水と少量のバインダーを混合し,造粒・乾燥することによってえられるが,このバインダーが高温に加熱されたときに分解して還元作用を供するものでは,その還元作用を有する還元剤量も予め決定しておく必要がある。これは実験的に予め求めておくことができるので,バンイダー使用量から還元剤量を換算し,この還元剤量と粉状還元剤量の総量が,ヘマタイトを全量マグネタイトに還元に要する量に満たない量となるように調整する。いずれにしても,このバインダー中の還元剤量は粉状還元剤に比べて極僅かとなるようにすることが肝要である。さもないと,良好な複層構造の粒体とならない。
【0031】
この混合物を還元反応が進行するに十分な温度,具体的には950〜1300℃の温度範囲で不活性ガス中で加熱保持する。処理温度が950℃未満では焼結が不十分で強度不足となり,また1300℃を越える温度では粒子間の焼結が進みすぎて歩留りの低下をきたすので950〜1300℃の範囲,好ましくは1050〜1200℃の或る温度に一定に保持するのがよい。なお,本発明法によればウスタイト(FeO)が発生することはないので,焼成後の冷却過程での温度や雰囲気を特別にコントロールする必要性は全くない。加熱温度に保持する時間は,加熱温度によって異なるが,配合した還元剤の全てが還元に供されるに十分な時間であればよく,通常は3〜6時間の範囲にある。
【0032】
この還元処理は,密閉容器内に該混合物を装填した状態で前記の加熱温度に保持するのがもっとも便宜である。そのさい,密閉容器中には窒素やアルゴンなどの不活性ガスを封入し,加熱処理中は外部から還元性ガスも酸化性ガスも容器内に侵入するようなことはできるだけ避ける。もっとも,容器内容積の殆んどを占めるように混合物を装填する場合には,容器内に存在する酸素量は僅かであるので,この容器を密閉した状態で加熱処理した場合には,容器内は実質的に非酸化性雰囲気とすることができ,必ずしも不活性ガスを封入しなくてもよい場合がある。
【0033】
この還元処理によって,図1に示すような積層構造のキャリヤ粒子を得ることができるが,前記のようにグリーンペレットとして還元処理した場合には,これを解粒し,これを分級することによって,目標とする粒度をもつ複層構造の粒子が得られる。そして,従来のものと同様に樹脂被覆を施すことによって,キャリヤ粒子が得られる。
【0034】
本発明法によって得られる粒子は,従来提案されたマグネタイト系キャリヤ粒子と比べると次のような特徴的な性質がある。
【0035】
先ず本発明の粒子は,特開昭62−238580 号公報に記載されているような飽和磁化が40emu/g未満での粒子の磁気的な不均一性がない。この理由としては次のように考えられる。従来のヘマタイトを含むマグネタイト粒子は,ミクロ的に観察すると磁気を有するマグネタイトと磁気を有さないヘマタイトが一体的に混在した集合体に他ならない。従って,工業規模で製造されたキャリヤではヘマタイトの偏析等により磁気的な不均一さは避けられないと考えられる。これに対し,本発明の粒子ではヘマタイトとマグネタイトは相分離しており,表面の外側はマグネタイトであって,ヘマタイトは実質的に表出していない。このために,ヘマタイトの存在によって飽和磁化が例えば40emu/g未満のように低くなっていても,この低い値は各粒子の全体について示すのであり,粒子間のバラツキが発生しない。すなわち,飽和磁化が低くてもそのバラツキがない点で新規な特性を示し,これによって,本発明粒子をキャリヤとした場合には,階調性のよい画像を得ることができる。
【0036】
他方,ヘマタイト核を相対的に小さくすれば,飽和磁化の高いマグネタイト本来の特性を有するキャリヤ粒子となり,この場合には,外側部のマグネタイトは完全なマグネタイト単相となり,二価と三価のFeの配分比は化学量論量の当量となるから,ヘマタイト成分やウスタイト成分の変動がない。したがって,ヘマタイト成分やウスタイト成分による,マグネタイトの磁気特性のバラツキが発生せず,理想状態のマグネタイトが本来有する磁気特性と電気特性をそのまま具備し,高い飽和磁化を均一に有した粒子が得られる。
【0037】
また,中心部のヘマタイト核の大きさは粉状還元剤の配合量によって決定できるので,意図する磁気特性および電気特性の粒子を精度よく製造できる。この場合,磁気特性および電気特性をどのように調整しても,外側のマグネタイト層は比較的多孔質であるので,樹脂被覆性がよいという特徴がある。
【0038】
また,本発明法によれば,従来のマグネタイトキャリヤに比較して残留磁化を著しく低減することが出来る。従来提案された既述の公報記載のマグネタイトキャリヤは,残留磁化について明文の記載はないが,本発明のようにヘマタイトとマグネタイトが完全に相分離せず,一体的に混在しているもの,或いはウスタイト成分が多いものでは,本発明者らの実験では,残留磁化は150G以上を示した。これは市販のフェライトキャリヤの0〜80Gに比較して非常に大きな値である。これをトナーと混合し現像剤を作ってコピー機で実写すると,現像槽内での流動性が悪くなり,トナーに充分で均一な帯電付与が行なえず画質が劣化する結果となった。これに対し,本発明法によるマグネタイトキャリヤは残留磁化が100G以下となり現像剤として流動性が良好で,画質の劣化も認められなかった。なお,この実験での磁気特性は直流磁化測定器(横河北辰電機製 TYPE3257)を用いて測定した。
【0039】
【実施例】
〔実施例1〕
20Kgのヘマタイト粉末(同和鉱業株式会社製の商品名 DP−80)に,10Kgの水およびバインダーとしてポリビニールアルコール(信越化学株式会社製)50gを加えて混練してスラリーとした。このスラリーを200℃の温度でスプレードライヤーを用いて造粒乾燥した。得られた造粒粉に198gのカーボンブラック(三菱化学株式会社製の商品名MA−7)を均一に混合した。
【0040】
混合粉の全炭素量を分析すると1.12%であり,これはヘマタイトを全量マグネタイトに還元するに要する還元剤量の0.9倍に等しい。この混合粉を窒素を封入した容器内で1100℃の温度で3時間焼成した。得られた焼成品をハンマーミルで解粒,振動篩で分級し,65〜150μmの球状マグネタイト粒子を得た。
【0041】
得られた粒子を,表面磁場の強さが600Gの磁気選別機で磁選したところ,非磁性粉(弱磁性粉を含む)の量は1ppm以下であった。
【0042】
そして,該粒子を樹脂に埋め込み,粒子断面が現れるように研磨して粒子断面を顕微鏡観察したところ,いずれも中心の核のまわりに色調の異なる外部層の存在する複層構造を有することが観察され,これを分析すると,核はヘマタイトからなり,外部層はマグネタイト層であって,そのマグネタイトは粒子中平均90重量%であった。また,遊離のFeOは検出されなかった。
【0043】
この複層構造の粒子の磁気特性(飽和磁化σ, 残留磁化Br)を測定した。その結果を表1に示した。
【0044】
次いで,この複層構造の粒子5000gを,トルエンで固形分5%に希釈したアクリル樹脂(東亜合成化学株式会社製の商品名S−3103)の液100gに投入し,加熱しながら溶剤を蒸発させるディッピング法により該粒子に樹脂被覆を施し,樹脂被覆キャリヤを得た。
【0045】
このキャリヤを市販のトナー(三田工業株式会社製のDC1205用)とを混合して現像剤とし,乾式複写機で8万枚のコピーをしたところ中間調の再現が良好でキャリヤ上がりも発生しない良質の画像が最後まで継続して得られた。
【0046】
〔実施例2〕
カーボンブラックを66g,ポリビニールアルコールを50gとした以外は,実施例1と同様の処理を行って実施例1と同様の複層構造の粒子(粒径:65〜150μm)を得た。実施例1と同様に磁選処理したところ,非磁性粉(弱磁性粉を含む)の量は1ppm以下であった。得られた粒子は,ヘマタイト核が62重量%,外側層のマグネタイトが38重量%の複層構造を有していた。また遊離のFeOは検出されなかった。
【0047】
この粒子の磁気特性(飽和磁化σ, 残留磁化Br)を測定し,その結果を表1に示した。また,実施例1と同様に樹脂被覆して得たキャリヤを用いて,実写テトスを行ったところ,該粒子は飽和磁化が35emu/gと低いにも拘わらず,階調性のよい画質が得られ,8万枚のコピーをしてもその再現性が良好に保持された。
【0048】
〔比較例1〕
原料としてマグネタイト粉末20Kg(チタン工業株式会社製)を使用し,これをポリビニールアルコール(信越化学株式会社製)100gと共に水10Kgに加えて造粒原料とし,得られた造粒粉を実施例1と同様の方法で焼成,解粒,篩分けした。得られた粒子の諸物性値を表1に示した。この粒子は,X線回折の結果FeOのピークが観測された。この粒子を実施例1同様に樹脂被覆し,このキャリヤを用いて実施例1と同様の方法で実写テストを行なったが中間調の再現が悪く,初期からキャリヤ上がりも発生した。
【0049】
〔比較例2〕
原料としてマグネタイト粉末8Kg(チタン工業製)とヘマタイト粉末12Kg(同和鉱業製 DP−80)を使用し,これをポリビニールアルコール(信越化学製)100gと共に水10Kgに加えて造粒原料とし,得られ造粒粉を窒素雰囲気下で1200℃の温度で2時間焼成し,解粒,篩分けした。得られた粒子を,表面磁化600Gの磁気選別機で磁気選別したところキャリヤあがりの原因となる非磁性粉,弱磁性粉は100PPM発生した。また,得られた粒子の諸物性値を表1に示した。
【0050】
【表1】

Figure 0003576254
【0051】
【図面の簡単な説明】
【図1】本発明の複層構造のキャリヤ粒子の断面を示す金属顕微鏡写真である。[0001]
[Industrial applications]
The present invention relates to a carrier for an electrophotographic developer.
[0002]
[Prior art]
Among electrophotographic image forming methods for forming and developing an image on the surface of a photoconductive material by electrostatic means, a so-called magnetic brush developing method is widely used. This development method is performed by arranging a developer consisting of toner and magnetic carrier particles in a brush-like manner, bringing the magnetic brush into contact with the surface of the electrostatic image support, and attracting the toner particles from the brush to the latent image by electrostatic force. A visual image is formed, and this visible image is transferred to paper or another support, and then fixed by heat or the like to complete the process.
[0003]
As the finely divided carrier material used in the magnetic brush method, various materials having ferromagnetic properties, such as iron powder, various ferrite particles, and magnetite powder, have been proposed. Is occupying.
[0004]
However, recently, there has been an increasing movement to protect the global environment, and with regard to waste regulations, the existing regulatory framework has been greatly strengthened and regulatory elements have been newly added. Since ferrite carriers generally contain divalent metals such as Ni, Cu, Zn, Ba, and Cd as constituent elements, the regulations have been reinforced. Examples of magnetic materials that do not contain harmful elements and replace the ferrite-based carrier include iron powder and magnetite.
[0005]
Numerous technical improvements have been made to the use of magnetite, or Fe 3 O 4 , particles as a carrier for electrophotographic developers.
[0006]
For example, Japanese Patent Application Laid-Open Nos. 59-228664 and 60-458 (corresponding to Japanese Patent Publication No. 2-51505), and JP-A-60-144758, JP-A-61-20054, JP-A-61-284774, JP-A-62-145256, JP-A-62-238580, JP-B-2-60186 and There are known examples described in JP-A-6-329418-9.
[0007]
Each of these known examples has its own characteristics, but when it is actually used as a carrier material, it has a certain problem, and few of them have been used successfully.
[0008]
For example, Japanese Patent Publication No. 51505/1990 discloses that a fine magnetite having a purity of 95% or more is granulated, granulated at a temperature of 1000 ° C. or more, and spheroidal magnetite having an apparent specific gravity of 2.0 to 2.5. Fe 3 O 4 ). In Japanese Patent Publication No. 2-60186, spherical magnetite particles having a wustite content of 10% by weight or less and a surface porosity of 20% by volume or less are prepared by the same production method as in the above-mentioned Japanese Patent Publication No. 2-51505. It is described as a material. It is said that the wustite is formed because the binder used in granulating the raw material magnetite acts as a reducing agent during firing. If the wustite is too much, the magnetic properties of the carrier deteriorate, and the carrier is scattered from the magnetic brush. Has been pointed out.
[0009]
Japanese Unexamined Patent Publication (Kokai) No. 62-238580 discloses that a carrier manufactured by firing magnetite as described in the above two publications has poor halftone reproducibility, high contrast and high image quality. Comparative Example shows that a water slurry obtained by uniformly mixing a hematite powder and a magnetite powder is spray-granulated by a spray dryer, and then sintered, disintegrated, and classified. It has been proposed to produce hematite-containing magnetite particles by a method of oxidizing spherical magnetite particles, and the carrier obtained by these methods has a saturation magnetization in the range of 40 to 80 emu / g. However, with such a method, it is difficult to ensure uniformity of each particle.
[0010]
Further, Japanese Patent Application Laid-Open No. 62-145256 discloses that carrier particles in which a hematite phase is dissolved in a magnetite matrix are obtained by partially reducing magnetite in a weakly acidic inert gas atmosphere. Is described. However, in this gas reduction, hematite becomes particles in a state of being uniformly dissolved in the magnetite phase, so that hematite also exists on the particle surface. Therefore, the original magnetic properties of magnetite cannot be sufficiently exhibited. In fact, the examples state that the saturation magnetization is 63 or 78 emu / g.
[0011]
Further, JP-A-6-329418 and JP-A-6-329419 disclose that a liquid or powdery substance having a single bond or a double bond between carbon atoms is added to hematite powder in an inert gas at 1200 to 1450. It is described that a single phase of magnetite carrier particles can be obtained by heat treatment at ℃. For example, if heat treatment is performed in an inert gas using polyvinyl alcohol, polyacrylamide, polycarboxylate, acetylene black, graphite, etc. in a reducing gas, hematite can be completely reduced to magnetite and a single-phase magnetite powder can be obtained. Has been described. However, it is described that if the atmosphere or temperature control is incorrect, a hematite phase will remain, and in this case, undesired particles having a high electric resistivity will result. This indicates that a hematite phase remains on the surface. When such a compound is used as a reducing agent, it is difficult to strictly adjust the amount contributing to the reduction because the compound is decomposed. That is, it is difficult to determine the amount of the reducing agent corresponding to the stoichiometric amount necessary and sufficient to reduce hematite to magnetite. If this is the case, the amount of divalent Fe, that is, the FeO component in the magnetite increases, and the presence of wustite becomes a problem as in the above-mentioned JP-B-2-60186 and JP-B-2-51505.
[0012]
[Problems to be solved by the invention]
As described above, various proposals have been made to use magnetite particles as an electrophotographic developer carrier, but each has its own advantages and disadvantages, and the magnetism inherent in magnetite can be fully exhibited, and strength and electrical resistance are also reduced. The technology for stably obtaining good magnetite-based carriers has not been completed so far.
[0013]
The present invention has been made in view of the above circumstances, and aims to provide a novel magnetite carrier.
[0014]
[Means for Solving the Problems]
According to the present invention, in a carrier for developer using magnetite-based carrier particles, the carrier particles have a hematite nucleus in the center, and an outer layer of magnetite is coated outside the hematite nucleus. Provided is a carrier for a developer, wherein the carrier is a particle having a multilayer structure. Here, the particles having the multilayer structure are substantially spherical particles having a magnetite content of the outer layer in the range of 20 to 95% by weight of the whole particles and a particle size of 20 to 500 μm. Each of the particles having the multilayer structure is an individual carrier particle . In practice, each individual particle is coated with a resin and then supplied to a developer.
[0015]
Further, according to the present invention, a powdery reducing agent made of solid carbonaceous material is used for the granulated powder of hematite, and a powdery reducing agent less than the amount required for reducing the total amount of hematite in the granulated powder to magnetite. A mixture of particles having a magnetite layer outside the hematite nucleus, comprising mixing the mixture uniformly in a quantitative ratio and heating and maintaining the mixture at a temperature of 950 to 1300 ° C. in a non-oxidizing atmosphere or an inert gas atmosphere. Provide a manufacturing method. At this time, the hematite granulated powder can be granulated using a binder, but when a binder that acts as a reducing agent during granulation is used, the powdered reducing agent and the reduction in the binder are used. The total amount of the agent and the hematite should be less than the amount required to reduce the total amount of hematite to magnetite. The solid carbonaceous powdery reducing agent used in the present invention is fine powder such as coke powder, charcoal, char powder, and carbon black.
[0016]
[Action]
FIG. 1 shows a cross-sectional photograph of an example of the multilayer structure of the carrier particles of the present invention. The particles shown have an outer magnetite layer of about 70% by weight and a central hematite nucleus of about 30% by weight. The total particle size of the particles is about 100 μm, and the thickness of the magnetite layer is about 17 μm.
[0017]
As shown in FIG. 1, the carrier particles of the present invention have a multilayer structure in which a magnetite layer is adhered to the outside of a hematite nucleus, and the outside is a completely magnetite layer. Therefore, the magnetite has the ideal magnetic properties which it originally has. Further, there is a characteristic that the saturation magnetization of the particles of the present invention can be freely adjusted by the size of the hematite nucleus. That is, to reduce the saturation magnetization, the size of the hematite nucleus may be increased. Even in such a case, since the outside is made of magnetite, there is little variation in electrical and magnetic characteristics.
[0018]
Therefore, even if the saturation magnetization is reduced, the low value is maintained uniformly throughout the individual grains, and when used as a carrier material, the resulting copied image is excellent in gradation. Shows characteristics not found in That is, the toner corresponding to the magnetic force can be carried even in a low magnetic force field, so that a copied image with good gradation can be obtained.
[0019]
Also, since the outer magnetite layer is relatively porous, it is characterized in that the resin coating can be performed well. And, even though the magnetite layer is relatively porous, it is bonded to the dense hematite nucleus in the center, so that the particles as a whole are stable in terms of strength and have little deformation during use. is there.
[0020]
In terms of electrical characteristics, for example, electrical resistance, the surface has a uniform magnetite composition, so that there is no change due to variation in the contact point of the particles, and the charging characteristics are also uniform. Therefore, the carrier of the present invention can uniformly carry the toner on its surface, so that a high quality image with no unevenness can be obtained.
[0021]
The carrier particles having a multilayer structure according to the present invention can be produced by directly partially reducing hematite with a finely divided solid reducing agent. In other words, when hematite is brought into contact with the solid reducing agent and heated and maintained in an inert gas at a temperature high enough to cause a direct reduction reaction between solids and solids, the surface layer of hematite in contact with the solid reducing agent Reduction proceeds from the part. At this time, if hematite and the solid reducing agent are uniformly mixed at a ratio of the amount of the powdery reducing agent that is less than the amount required for reducing the total amount of hematite to magnetite, the progress of the direct reduction may reach the center of the hematite. Stop at an intermediate stage. In other words, partial reduction is performed with a solid reducing agent. Even with the same partial reduction, gas reduction does not result in a multilayer structure. This is because the reducing gas enters the inside.
[0022]
In the partial reduction of hematite with this solid reducing agent, the amount of the reducing agent is less than that required to reduce the total amount of hematite to magnetite. No wustite is produced.
[0023]
The raw material hematite used in the method of the present invention may be a material obtained by pulverizing iron ore, a material recovered from a pickling waste solution of a steel sheet, or the like. Preferably, iron oxide powder for general ferrite is used.
[0024]
In the partial reduction treatment of hematite according to the method of the present invention, the amount and type of the powdery solid reducing agent to be used, the mixing state, the reducing atmosphere, and the reducing temperature are appropriately selected in order to obtain the particles having the multilayer structure. is necessary. These will be individually described below.
[0025]
As described above, the amount of the powdery reducing agent is less than the amount required for reducing the total amount of hematite to magnetite, and the selection of this amount ratio substantially determines the amount ratio of hematite and magnetite having a multilayer structure. In the carrier particles of the present invention, the outer magnetite layer contains 20 to 95% by weight, preferably 50 to 95% by weight, more preferably 70 to 90% by weight, and the remainder is substantially hematite nuclei. The amount of the reducing agent to be mixed is determined according to the desired content of the magnetite layer.
[0026]
The direct reduction of hematite with a powdery carbonaceous reducing agent is represented by the following equation.
[0027]
3Fe 2 O 3 + 1 / 2C → 2Fe 3 O 4 + 1 / 2CO 2
[0028]
Therefore, the amount of C required to reduce the total amount of Fe 2 O 3 to Fe 3 O 4 is 6 mole of Fe 2 O 3 , which is expressed in terms of% by weight. Since the amount becomes equivalent, the C amount may be blended at a ratio of less than 1.25%.
[0029]
As the powdery reducing agent, fine powder such as coke powder, charcoal, char powder or carbon black is used. It is preferable that the powder is so-called amorphous carbon fine powder. The finer the powder, the better. If it is granular or granular, they are ground and used as a fine powder. The fine powdery reducing agent is uniformly mixed with the raw material hematite (granulated powder) so that the surface of the hematite particles (granulated powder) is uniformly covered. Therefore, the powdery reducing agent needs to be smaller particles than the raw material hematite particles, and is used in the form of fine powder of several μm or less.
[0030]
Hematite granulated powder is obtained by mixing hematite powder with an appropriate amount of water and a small amount of binder, and granulating and drying. However, when this binder is heated to a high temperature, it decomposes to provide a reducing effect. The amount of the reducing agent having the reducing action must also be determined in advance. Since this can be obtained experimentally in advance, the amount of the reducing agent is converted from the amount of the vanider used, and the total amount of the reducing agent and the amount of the powdery reducing agent satisfies the amount required for reducing all the hematite to magnetite. Adjust so that there is no amount. In any case, it is important that the amount of the reducing agent in the binder is extremely small as compared with the powdery reducing agent. Otherwise, the particles do not have good multilayer structure.
[0031]
This mixture is heated and maintained in an inert gas at a temperature sufficient for the reduction reaction to proceed, specifically, at a temperature in the range of 950 to 1300 ° C. If the treatment temperature is lower than 950 ° C., the sintering is insufficient and the strength becomes insufficient, and if the temperature exceeds 1300 ° C., the sintering between particles progresses excessively and lowers the yield. It is preferable to keep the temperature constant at 1200 ° C. According to the method of the present invention, no wustite (FeO) is generated, so that there is no need to control the temperature or atmosphere during the cooling process after firing. The time for maintaining the heating temperature varies depending on the heating temperature, but may be a time sufficient for all of the compounded reducing agents to be subjected to reduction, and is usually in the range of 3 to 6 hours.
[0032]
In the reduction treatment, it is most convenient to maintain the above-mentioned heating temperature in a state where the mixture is loaded in a closed vessel. At that time, an inert gas such as nitrogen or argon is sealed in the closed container, and during the heat treatment, the intrusion of the reducing gas and the oxidizing gas from the outside into the container is avoided as much as possible. However, when the mixture is charged so as to occupy most of the volume in the container, the amount of oxygen present in the container is very small. Can be a substantially non-oxidizing atmosphere, and there is a case where an inert gas need not necessarily be filled.
[0033]
By this reduction treatment, carrier particles having a laminated structure as shown in FIG. 1 can be obtained. However, when the reduction treatment is performed as green pellets as described above, the particles are crushed and classified to obtain Particles having a multilayer structure with a target particle size are obtained. Then, the carrier particles are obtained by applying a resin coating in the same manner as the conventional one.
[0034]
The particles obtained by the method of the present invention have the following characteristic properties as compared with conventionally proposed magnetite carrier particles.
[0035]
First, the particles of the present invention have no magnetic nonuniformity of the particles having a saturation magnetization of less than 40 emu / g as described in JP-A-62-238580. The reason is considered as follows. Conventionally, magnetite particles containing hematite are nothing but aggregates in which magnetite having magnetism and hematite having no magnetism are integrally mixed when observed microscopically. Therefore, it is considered that magnetic inhomogeneity due to segregation of hematite and the like is inevitable in carriers manufactured on an industrial scale. On the other hand, in the particles of the present invention, hematite and magnetite are phase-separated, and the outside of the surface is magnetite, and hematite is not substantially exposed. For this reason, even if the saturation magnetization is lowered by the presence of hematite, for example, less than 40 emu / g, this low value is shown for each particle as a whole, and there is no variation between particles. That is, a novel characteristic is exhibited in that there is no variation even when the saturation magnetization is low. Thus, when the particles of the present invention are used as a carrier, an image with good gradation can be obtained.
[0036]
On the other hand, if the hematite nucleus is made relatively small, carrier particles having the properties inherent to magnetite with high saturation magnetization are obtained. In this case, the magnetite on the outer side becomes a complete magnetite single phase, and divalent and trivalent Fe The distribution ratio is equivalent to the stoichiometric amount, so that there is no change in the hematite component or the wustite component. Accordingly, there is no variation in the magnetic properties of magnetite due to the hematite component and the wustite component, and particles having the magnetic properties and electrical properties inherent to magnetite in an ideal state as they are, and having a uniform high saturation magnetization can be obtained.
[0037]
Further, since the size of the hematite nucleus at the center can be determined by the amount of the powdery reducing agent, particles having intended magnetic characteristics and electric characteristics can be produced with high accuracy. In this case, no matter how the magnetic properties and the electrical properties are adjusted, the outer magnetite layer is relatively porous, and thus has a characteristic that the resin covering property is good.
[0038]
Further, according to the method of the present invention, the remanent magnetization can be significantly reduced as compared with the conventional magnetite carrier. The magnetite carriers disclosed in the above-mentioned publications that have been proposed so far have no clear description of the remanent magnetization, however, as in the present invention, hematite and magnetite are not completely phase-separated and are integrally mixed, or When the wustite component was large, the remanent magnetization showed 150 G or more in our experiments. This is a very large value as compared with 0 to 80 G of a commercially available ferrite carrier. When this was mixed with a toner to produce a developer and the actual photograph was taken by a copying machine, the fluidity in the developing tank deteriorated, and sufficient and uniform charging of the toner could not be performed, resulting in deterioration of the image quality. In contrast, the magnetite carrier according to the method of the present invention had a residual magnetization of 100 G or less, had good fluidity as a developer, and did not show any deterioration in image quality. The magnetic properties in this experiment were measured using a direct current magnetometer (TYPE3257 manufactured by Yokogawa Hokushin Electric).
[0039]
【Example】
[Example 1]
To 20 kg of hematite powder (trade name: DP-80, manufactured by Dowa Mining Co., Ltd.), 10 kg of water and 50 g of polyvinyl alcohol (manufactured by Shin-Etsu Chemical Co., Ltd.) as a binder were added and kneaded to form a slurry. This slurry was granulated and dried at 200 ° C. using a spray drier. 198 g of carbon black (trade name: MA-7, manufactured by Mitsubishi Chemical Corporation) was uniformly mixed with the obtained granulated powder.
[0040]
Analysis of the total carbon content of the mixed powder is 1.12%, which is equal to 0.9 times the amount of reducing agent required to reduce hematite to total magnetite. This mixed powder was baked at a temperature of 1100 ° C. for 3 hours in a container containing nitrogen. The obtained fired product was pulverized with a hammer mill and classified with a vibration sieve to obtain spherical magnetite particles of 65 to 150 μm.
[0041]
When the obtained particles were subjected to magnetic separation using a magnetic separator having a surface magnetic field strength of 600 G, the amount of nonmagnetic powder (including weak magnetic powder) was 1 ppm or less.
[0042]
The particles were embedded in a resin, polished so that the particle cross section appeared, and observed under a microscope. All of the particles were observed to have a multilayer structure in which an outer layer with a different color tone was present around the center core. The analysis showed that the nuclei consisted of hematite, the outer layer was a magnetite layer, and the average of magnetite was 90% by weight in the particles. Also, free FeO was not detected.
[0043]
The magnetic characteristics (saturation magnetization s , residual magnetization Br) of the particles having the multilayer structure were measured. The results are shown in Table 1.
[0044]
Next, 5000 g of the particles having a multilayer structure are put into 100 g of an acrylic resin (trade name: S-3103, manufactured by Toa Gosei Chemical Co., Ltd.) diluted to 5% solids with toluene, and the solvent is evaporated while heating. The particles were coated with a resin by a dipping method to obtain a resin-coated carrier.
[0045]
This carrier was mixed with a commercially available toner (DC1205 manufactured by Mita Kogyo Co., Ltd.) to make a developer, and when a 80,000 copy was made with a dry copying machine, the reproduction of the halftone was good and the carrier did not rise. Was obtained continuously until the end.
[0046]
[Example 2]
Except that 66 g of carbon black and 50 g of polyvinyl alcohol were used, the same treatment as in Example 1 was performed to obtain particles having the same multilayer structure as in Example 1 (particle diameter: 65 to 150 μm). When the magnetic separation treatment was performed in the same manner as in Example 1, the amount of nonmagnetic powder (including weak magnetic powder) was 1 ppm or less. The obtained particles had a multilayer structure in which the hematite nucleus was 62% by weight and the magnetite in the outer layer was 38% by weight. Free FeO was not detected.
[0047]
The magnetic properties (saturation magnetization s , residual magnetization Br) of the particles were measured, and the results are shown in Table 1. In addition, when a real-image test was performed using a carrier obtained by coating with a resin in the same manner as in Example 1, an image with good gradation was obtained despite the fact that the particles had a low saturation magnetization of 35 emu / g. As a result, even when 80,000 copies were made, the reproducibility was well maintained.
[0048]
[Comparative Example 1]
20 kg of magnetite powder (manufactured by Titanium Industry Co., Ltd.) was used as a raw material, and this was added to 10 kg of water together with 100 g of polyvinyl alcohol (manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a granulated raw material. The sintering, pulverization and sieving were carried out in the same manner as described above. Table 1 shows the physical properties of the obtained particles. For these particles, a peak of FeO was observed as a result of X-ray diffraction. These particles were coated with a resin in the same manner as in Example 1, and a real-image test was performed using this carrier in the same manner as in Example 1. However, the reproduction of the halftone was poor, and the carrier rose from the beginning.
[0049]
[Comparative Example 2]
As raw materials, 8 kg of magnetite powder (manufactured by Titanium Industry) and 12 kg of hematite powder (DP-80 manufactured by Dowa Mining) were used, and 100 g of polyvinyl alcohol (manufactured by Shin-Etsu Chemical) was added to 10 kg of water to obtain a granulation material. The granulated powder was fired under a nitrogen atmosphere at a temperature of 1200 ° C. for 2 hours, pulverized and sieved. The obtained particles were subjected to magnetic separation by a magnetic separator having a surface magnetization of 600 G. As a result, 100 PPM of non-magnetic powder and weak magnetic powder causing carrier rise was generated. Table 1 shows the physical properties of the obtained particles.
[0050]
[Table 1]
Figure 0003576254
[0051]
[Brief description of the drawings]
FIG. 1 is a metal micrograph showing a cross section of a carrier particle having a multilayer structure of the present invention.

Claims (8)

マグネタイト系のキャリヤ粒子を用いた現像剤用キャリヤにおいて,前記のキャリヤ粒子が,中心部にヘマタイトからなる核を有し,このヘマタイト核の外側にマグネタイトからなる外側層が被着した複層構造の粒子であることを特徴とする現像剤用キャリヤ。 In a developer carrier using magnetite-based carrier particles, the carrier particles have a multilayer structure in which the carrier particles have a hematite nucleus at the center and an outer layer of magnetite is adhered outside the hematite nucleus. A carrier for a developer, which is a particle. 複層構造の粒子は,マグネタイト量が20〜95重量%である請求項1に記載の現像剤用キャリヤ。The carrier according to claim 1, wherein the particles having a multilayer structure have a magnetite content of 20 to 95% by weight. 複層構造の粒子は,粒径が20〜500μmの実質上球形の粒子である請求項1または2に記載の現像剤用キャリヤ。3. The carrier according to claim 1, wherein the particles having a multilayer structure are substantially spherical particles having a particle diameter of 20 to 500 [mu] m. 複層構造の粒子は,樹脂被覆されたうえ現像剤に供される請求項1,2または3に記載の現像剤用キャリヤ。4. The carrier for a developer according to claim 1, wherein the particles having a multilayer structure are coated with a resin and supplied to the developer. ヘマタイトの造粒粉に対し,固体炭素質からなる粉状還元剤を,該造粒粉中のヘマタイトを全量マグネタイトに還元に要する量に満たない粉状還元剤の量比で均一に混合し,この混合物を非酸化性雰囲気または不活性ガス雰囲気下で950〜1300℃の温度に加熱保持することからなる,ヘマタイト核の外側にマグネタイト層をもつ複層構造粒子の製造法。A powdered reducing agent made of solid carbonaceous material is uniformly mixed with the granulated powder of hematite at a ratio by volume of the powdered reducing agent less than the amount required for reducing the total amount of hematite in the granulated powder to magnetite. A method for producing particles having a multilayer structure having a magnetite layer outside a hematite nucleus, comprising heating the mixture at a temperature of 950 to 1300 ° C. in a non-oxidizing atmosphere or an inert gas atmosphere. 該混合物は,不活性ガス雰囲気下で950〜1300℃の温度に加熱保持され,その焼成品が解粒される請求項5に記載の製造法。The method according to claim 5, wherein the mixture is heated and maintained at a temperature of 950 to 1300 ° C in an inert gas atmosphere, and the fired product is pulverized. 造粒時に使用されるバインダーが還元剤として作用するさいには,該粉状還元剤とバインダー中の還元剤との合計量が,ヘマタイトを全量マグネタイトに還元に要する量に満たない量とする請求項6に記載の製造法。When the binder used at the time of granulation acts as a reducing agent, the total amount of the powdery reducing agent and the reducing agent in the binder should be less than the amount required for reducing the total amount of hematite to magnetite. Item 7. The production method according to Item 6. 複層構造の粒子は,ウスタイトを含有しない請求項5,6または7に記載の製造法。8. The production method according to claim 5, wherein the particles having a multilayer structure do not contain wustite.
JP07841095A 1995-03-10 1995-03-10 Carrier for developer and production method thereof Expired - Lifetime JP3576254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07841095A JP3576254B2 (en) 1995-03-10 1995-03-10 Carrier for developer and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07841095A JP3576254B2 (en) 1995-03-10 1995-03-10 Carrier for developer and production method thereof

Publications (2)

Publication Number Publication Date
JPH08248685A JPH08248685A (en) 1996-09-27
JP3576254B2 true JP3576254B2 (en) 2004-10-13

Family

ID=13661274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07841095A Expired - Lifetime JP3576254B2 (en) 1995-03-10 1995-03-10 Carrier for developer and production method thereof

Country Status (1)

Country Link
JP (1) JP3576254B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69836910T2 (en) 1997-04-22 2007-06-21 Hitachi, Ltd. DEVICE FOR A GAS TURBINE
JP2007041549A (en) * 2005-06-30 2007-02-15 Kyocera Mita Corp Two-component developer and its manufacturing method
JP5307391B2 (en) * 2007-12-26 2013-10-02 Dowaエレクトロニクス株式会社 Magnetic carrier core material for electrophotographic developer and method for producing the same, magnetic carrier and electrophotographic developer
JP5307414B2 (en) * 2008-02-07 2013-10-02 Dowaエレクトロニクス株式会社 Magnetic carrier core material for electrophotographic developer, magnetic carrier for electrophotographic developer, and method for producing electrophotographic developer
JP5188918B2 (en) * 2008-09-30 2013-04-24 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer

Also Published As

Publication number Publication date
JPH08248685A (en) 1996-09-27

Similar Documents

Publication Publication Date Title
CN101641651B (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP4779141B2 (en) Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier
KR101519318B1 (en) Method for producing carrier core for electrophotographic developer, carrier core for electrophotographic developer, carrier for electrophotographic carrier, and electrophotographic developer
KR101411110B1 (en) Carrier core material for electrophotographic developer, production method for same, carrier for electrophotographic developer, and electrophotographic developer
KR101291909B1 (en) Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
JP3576254B2 (en) Carrier for developer and production method thereof
JPS63184764A (en) Carrier for electrophotographic developer and production thereof
JP4963618B2 (en) Carrier core material for electrophotographic developer, method for producing the same, and electrophotographic developer
EP1840660A2 (en) Ferromagnetic material powder, carrier for electrophotographic developer, process for producing them and electrophotographic developer
JP5921801B2 (en) Carrier core material for electrophotographic developer and method for producing the same
JPH0260186B2 (en)
JPS62267766A (en) Carrier for developing electrostatic charge image
JPS62297857A (en) Ferrite carrier for electrophotographic development
EP2891925B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
US20040038144A1 (en) Electrophotographic carrier core magnetite powder
JPS62242961A (en) Carrier for developing electrostatic charge image
JP2000172017A (en) Production of ferrite carrier core for electrophotographic development
US20030073022A1 (en) Electrophotographic carrier core magnetite powder
JPS6237780B2 (en)
JP5627072B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP2010108006A (en) Carrier for electrophotographic development, preparation method of the same, and electrophotographic developer
JP2009237049A (en) Carrier core material for electrophotographic developer, and method of manufacturing the same
JPS62145256A (en) Carrier for electrophotographic development and its production
JP2023145902A (en) Carrier core material, electrophotographic development career using the same and electrophotographic developer
JPS6327858A (en) Carrier particle for developing electrostatic charge image

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term