JP3575931B2 - Method for producing recycled pellets - Google Patents

Method for producing recycled pellets Download PDF

Info

Publication number
JP3575931B2
JP3575931B2 JP32593496A JP32593496A JP3575931B2 JP 3575931 B2 JP3575931 B2 JP 3575931B2 JP 32593496 A JP32593496 A JP 32593496A JP 32593496 A JP32593496 A JP 32593496A JP 3575931 B2 JP3575931 B2 JP 3575931B2
Authority
JP
Japan
Prior art keywords
extruder
polyamide resin
resin
melt viscosity
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32593496A
Other languages
Japanese (ja)
Other versions
JPH10151623A (en
Inventor
順治 浅野
Original Assignee
日本ポリペンコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリペンコ株式会社 filed Critical 日本ポリペンコ株式会社
Priority to JP32593496A priority Critical patent/JP3575931B2/en
Publication of JPH10151623A publication Critical patent/JPH10151623A/en
Application granted granted Critical
Publication of JP3575931B2 publication Critical patent/JP3575931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processing Of Solid Wastes (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、注型ポリアミド樹脂のスクラップを再利用する、再生ペレットの製造方法に関する。特に、2軸スクリュー式押出機中で、溶融押し出し造粒する再生ペレットの製造方法の改良に関する。
【0002】
【従来の技術】
注型ポリアミド樹脂のスクラップの再利用の一つの一般的な方法として、スクラップをスクリュー式押出機でペレット化して再利用する手段がある。さらに、最近では、機能性付加の要望に応え、他の樹脂や添加剤の添加・混練を有効に行うために、2軸スクリュー式押出機などの多軸スクリュー式押出機を使用する場合が多くなってきた。
【0003】
すなわち、ポリアミド樹脂ペレットに限らず、樹脂成形時の成形性を決定する一つの重要な特性として、樹脂ペレットの溶融粘度がある。この溶融粘度を調節するために、ポリアミド樹脂ペレットの場合、造粒時にステアリン酸カルシウムやステアリン酸亜鉛などの滑剤や、エポキシ化合物や、ポリアミド樹脂よりも低い融点を有する熱可塑性樹脂などの、種々の添加剤などを添加する方法が提案されている。また、添加剤などの添加なしに、予め特定の末端基を有するポリアミド樹脂を選定して、溶融粘度を調節する方法も提案されている。また、添加剤などの添加なしに、ポリアミド樹脂ペレットを融点以下で加熱保持したり、あるいは、スクリュー式押出機内で減圧保持したりして溶融粘度を調節する方法も提案されている。
【0004】
【発明が解決しようとする課題】
注型ポリアミド樹脂は、注型以外の方法で得られたポリアミド樹脂に比べて、スクリュー式押出機で溶融押し出して再生ペレット化する場合に、再生ポリアミド樹脂の溶融粘度が再生前に比べて著しく低下してしまう。さらに、2軸スクリュー式押出機などの多軸スクリュー式押出機を使用する場合は、単軸スクリュー式押出機を使用する場合に比べて、溶融押出再生ペレット化する場合に、溶融粘度低下量が、より増加する。従って、再生前の注型ポリアミド樹脂と同等の溶融粘度を有する再生ポリアミド樹脂ペレットを得ることがさらに困難となる。
【0005】
注型ポリアミド樹脂のスクラップから製造される再生ポリアミド樹脂ペレットの溶融粘度を調節するために、造粒時に種々の添加剤などを添加する方法は、注型ポリアミド樹脂のスクラップを単体で利用できないので、注型ポリアミド樹脂のスクラップを有効に利用することにはならないし、また、添加剤などを均一に分散しなければ部分的に溶融粘度の異なる再生ポリアミド樹脂ペレットを得ることになるし、また、添加剤などを均一に分散するための分散方法や、さらなる添加剤などが必要になる。また、再生ポリアミド樹脂ペレットが着色するなどの不具合を生ずる場合もある。
【0006】
また、溶融粘度を調節することを目的とする添加剤などの添加なしに、注型ポリアミド樹脂スクラップから製造される再生ポリアミド樹脂ペレットを融点以下で加熱保持して溶融粘度を調節する方法では、元の注型ポリアミド樹脂並の高い溶融粘度を有する再生ポリアミド樹脂ペレットを得るには甚だ不十分であるし、一度ペレット化された後に処理しなければならない不合理性もあるし、熱劣化などの不具合も生じる。また、造粒時に減圧して再生ポリアミド樹脂ペレットの溶融粘度を調節させる方法も、元の注型ポリアミド樹脂並の高い溶融粘度を有するペレットを得るには甚だ不十分である。
【0007】
また、溶融粘度を調節することを目的とする添加剤などの添加なしに、予め注型ポリアミド樹脂を選定して再生ポリアミド樹脂製ペレットの溶融粘度を調節する方法も、元の注型ポリアミド樹脂並の高い溶融粘度を有するペレットを得るのは甚だ不十分であるし、特定のスクラップを選定することは再利用の面から甚だ不合理である。
【0008】
【課題を解決するための手段】
本発明は、注型ポリアミド樹脂のスクラップを、2軸スクリュー式押出機を用い溶融押出造粒する際の諸条件を操作することにより、溶融粘度の低下を防止することを目的とする。すなわち、添加物の添加あるいは注型ポリアミド樹脂の選別などの手段に依存することなく、注型ポリアミド樹脂の溶融押出造粒時の諸条件の操作のみにより、溶融粘度の低下を最小限に抑え、元の注型ポリアミド樹脂並の溶融粘度を有する再生ポリアミド樹脂ペレットを製造する方法に関する。
【0009】
すなわち、本発明の主旨とするところは、注型ポリアミド樹脂のスクラップを、2軸スクリュー式押出機中で溶融押出する再生ペレットの製造方法において、該押出機中の溶融状態を下記の諸式を満足する範囲内に保持することを特徴とする再生ペレットの製造方法にある。
200T+880L/D+165t+792N/Q+6600P≦80300
T≦300
L/D≦20
t≦260
N/Q≦100
P≦2
(式中、Tは、溶融樹脂が押出機内に留まる時間(秒)を、Lは、溶融樹脂が押出機内に留まる距離(mm)を、Dは、溶融樹脂が押出機内に留まる部分のスクリューの直径(mm)を、tは、溶融樹脂温度(℃)を、Nは、スクリュー回転数(rpm)を、Qは、押出量(kg/hr)を、Pは、溶融樹脂の揮発成分率(重量%)を示す。)。
【0010】
ここで、上記各々の条件の操作を注型ポリアミド樹脂の溶融押出造粒時にスクリュー押出機内で、樹脂が固体の状態で実施しても、溶融粘度の低下量の増減の傾向が、樹脂が溶融している状態と同様に現れるが、樹脂の溶融粘度の低下量の減少への影響は小さい。
【0011】
【発明の実施の形態】
本発明の実施の形態を、添付の図面に基いて説明する。
図1は、再生ペレットの製造に使用する2軸スクリュー式押出機の概念図である。該押出機の右端近傍上部にスクラップの供給口を設け、ほぼ中央上部には吸引可能なベントを開口し、また左端にはヘッド・ダイを設ける。さらに、該押出機の内部は、中間のニーディング・ディスク部とその前後の2つのスクリュー部に分割される。
本発明においては、このようなタイプの2軸スクリュー式押出機を用いて、通常、樹脂の溶融が、中間のニーディング・ディスク部およびこれより左のスクリュー部を含め、ニーディング・ディスク部以降において生ずるように操作する。
【0012】
また、本発明においては、下記の6つの式、すなわち、個別の条件を示す5つの式(「個別条件式」という。)と、それらの諸条件を総合した1つの式(「総合条件式」という。)が、すべて満足されるように、押出機中の溶融状態を保持することが必要である。
200T+880L/D+165t+792N/Q+6600P≦80300
T≦300
L/D≦20
t≦260
N/Q≦100
P≦2
(式中、Tは、溶融樹脂が押出機内に留まる時間(秒)を、Lは、溶融樹脂が押出機内に留まる距離(mm)を、Dは、溶融樹脂が押出機内に留まる部分のスクリューの直径(mm)を、tは、溶融樹脂温度(℃)を、Nは、スクリュー回転数(rpm)を、Qは、押出量(kg/hr)を、Pは、溶融樹脂の揮発成分率(重量%)を示す。)。
【0013】
好ましくは、さらに次の5つの式が満足されるよう、押出機中の溶融状態を保持することが好ましい。
T≦110
L/D≦10
t≦200
Q/N≧0.06
P≦0.5
【0014】
しかして、これら諸条件の内、溶融樹脂が押出機内に留まる時間(T)以外は、それぞれ、直接測定することができる。すなわち、Lは、溶融樹脂が押出機内に留まる距離(L)は、前記通常の操作では、図1のニーディング・ディスク部およびその左のスクリュー部を合わせた長さ(mm)を、Dは、溶融樹脂が押出機内に留まる部分のスクリューの直径(D)およびスクリュー回転数(N)は、それぞれ、上記ニーディング・ディスク部の左のスクリュー部のスクリューの直径(mm)および回転数(rpm)を、溶融樹脂温度(t)は、ヘッド・ダイに近いスクリュー部における樹脂温度(℃)を、押出量(Q)は、ヘッド・ダイを通過する樹脂量(kg/hr)を、また溶融樹脂の揮発成分率(P)は、押し出し造粒されたペレット中の揮発成分率(重量%)を測定することにより、それぞれ、容易に実測値を得ることができる。
【0015】
一方、溶融樹脂が押出機内に留まる時間(T)は、通常、上記の実測値の内QおよびNと、他の実測値ないし定数値から算出したものを使用する。すなわち、この溶融樹脂が押出機内に留まる時間(T)は、前記通常の操作では、溶融樹脂がニーディング・ディスク部に留まる時間(T1 )と、溶融樹脂が該ニーディング・ディスク部の左のスクリュー部に留まる時間(T2 )との和であり、T1 およびT2 は、それぞれ、下記の式によって算出される。
【0016】
T1 =0.36×(比重)×(充満率)×(流路断面積)×K/Q
ここで、比重とは、ニーディング・ディスク部における溶融樹脂の比重(g/cm)であり、充満率および流路断面積とは、それぞれ、該ニーディング・ディスク部のニーディング・ディスクと押出機のバレルとの間の空間の断面積に対する、溶融樹脂の実在する空間の断面積の比率および該溶融樹脂の実在する空間の断面積(cm)である。また、Kは、該ニーディング・ディスク部の長さ(mm)であり、Qは、既述の通りである。
【0017】
T2 =40M/N
ここで、Mは、図1のニーディング・ディスク部の左のスクリュー部のピッチ数であり、Nは、既述の通りである。
なお、上記の両式において、T1 は、ニーディング・ディスク部における溶融樹脂の滞留量を押出量で除して、T2 は、溶融樹脂が2本のスクリューに沿って8の字運動をするという前提で、通路全長を周速で除して、算出している。
【0018】
本発明において用いられる注型ポリアミド樹脂は、5員環以上の実質的無水のω−ラクタム、例えば、2−ピロリドン、ε−カプロラクタム、ω−ラウリルラクタムなどを、金型に注型してアニオン重合することによって得られた、溶融粘度が高いポリアミド樹脂である。この方法で得られた注型ポリアミド樹脂は、金型内で十分に重合されるために、他の重合方法によって得られたポリアミド樹脂に比べて分子量が高く、しかも各分子も絡み合っているため、溶融粘度が高い。溶融粘度は、通常、メルト・フロー・レイト(MFR)で表されるが、JIS
K7210に規定の測定法に従い、試験温度250℃、試験荷重2.16kgfの数値で、0.1〜5g/10min、好ましくは0.5〜2g/10minである。
【0019】
本発明において、上記注型ポリアミド樹脂の調製に用いられる、アニオン重合の際の重合触媒としては、この種の重合に通常用いられるものであれば、特に制限はない。例えば、アルカリ金属、アルカリ土類金属およびこれらの金属の水素化物、水酸化物、酸化物などである。また、重合開始剤として助触媒を使用する。かかる助触媒としては、各種イソシアネート化合物、尿素誘導体、アシルラクタム等が挙げられる。
【0020】
本発明のおいては、スクリュー式押出機を用い、注型ポリアミド樹脂スクラップから、目的とする溶融粘度を有する再生ポリアミド樹脂ペレットを製造する際に、溶融粘度を調節することを目的とする添加物を添加してもよい。また、スクリュー式押出機を用い、注型ポリアミド樹脂スクラップから、目的とする溶融粘度を有する再生ポリアミド樹脂を製造する際に、導電性、潤滑性、耐衝撃性などの機能性を付加させることを目的とする添加剤などを添加してもよい。なお、これらの添加剤を添加することによって生じるポリアミド樹脂ペレットの溶融粘度の増減は、本発明の主旨とは無関係である。
【0021】
本発明者は、注型ポリアミド樹脂をスクリュー式押出機で溶融押出造粒する際に、樹脂の溶融粘度が著しく低下する主な理由は、注型ポリアミド樹脂中に含まれる重合触媒により樹脂の解重合が促進されるためと考え、この解重合は樹脂が溶融している状態で顕著に生じると考える。解重合が生じると、樹脂の分子量が低下するために溶融粘度が低下すると考え、さらに、混練作用の活発な2軸スクリュー式押出機などの多軸スクリュー式押出機では、単軸スクリュー式押出機に比べより顕著に解重合を生じ、樹脂の溶融粘度をさらに著しく低下させると考える。
【0022】
なお、注型ポリアミド樹脂をスクリュー式押出機で溶融押出造粒する際の、樹脂の溶融粘度上昇の主な理由として、樹脂の解重合と並行および/または解重合に引き続き生じる樹脂の分子の3次元化が考えられるが、本発明の範囲においては、注型ポリアミド樹脂をスクリュー式押出機で溶融押出造粒する際に、樹脂の溶融粘度の上昇は確認されなかった。これは、本発明の範囲においては、樹脂の解重合による溶融粘度の低下が、樹脂の分子の3次元化による溶融粘度の上昇よりも、溶融粘度への影響が強いためと考える。
【0023】
【実施例】
以下、本発明を、実施例および比較例によって、さらに詳細に説明する。
実施例1および比較例1〜7
注型ポリアミド樹脂は、ε−カプロラクタムを金型に注型してアニオン重合することによって得た。重合触媒としては、水素化ナトリウム(油性63%)を、各々表1に示す量(単位:重量部)だけ加えた。
【0024】
注型ポリアミド樹脂のスクラップ(以下「注型品」という。)を、6mm角以下の粒状に粉砕した後、粉砕物を同方向2軸スクリュー式押出機(東芝機械(株)製:TEM35BS)(以下、「押出機」という。)を用いて、各々表1に示す押出造粒条件で溶融押し出し、ペレタイジングし、再生ポリアミド樹脂ペレット(以下「再生品」という。)を得た。
【0025】
押出機の共通な操作条件は、バレル温度を、ニーディング・ディスク部において250℃、それ以前の供給口に近いスクリュー部において100℃とした。従って、樹脂の溶融は、該ニーディング・ディスク部以降で生じた。また、押出機のスクリュー直径(D)は35mmであり、溶融樹脂が押出機内に留まる時間の算出には次の式を使用した。
T =T1 +T2
T1 =3K/Q
T2 =40M/N
【0026】
このようにして得られた注型品および再生品のMFR(単位:g/10min、JIS K7210、試験温度=250℃、試験荷重=2.16kgf)および注型品の揮発成分の含有量を示す揮発率(単位:重量%)を測定し、それらの結果も併せて表1に示した。
【0027】
【表1】

Figure 0003575931
【0028】
上記表1に示した結果から、以下の理解が得られる。
実施例1が示すように、特許請求の範囲に記載のすべての式を満足する場合は、再生品溶融粘度が元の注型品溶融粘度と同等になる。
しかし、比較例1〜5が示すように、特許請求の範囲に記載の1以上の個別条件式を満足しない場合にも、また比較例6が示すように、5つの個別条件式はすべて満足するが、1つの総合条件式を満足しない場合にも、再生品溶融粘度が元の注型品溶融粘度以下となることが理解できる。
また、比較例2および比較例7から、水素化ナトリウムの量が多いほど、再生品溶融粘度が低くなることが理解できる。さらに、実施例1および比較例1〜7から、注型品溶融粘度は、水素化ナトリウムの量によって影響を受けないことも理解できる。
【0029】
【発明の効果】
本発明によれば、無作為に採取した注型ポリアミドスクラップから、2軸スクリュー式押出機を使用して、その操作条件を適切に設定するだけで、何等添加物を添加することなく、元の溶融粘度を有する再生ポリアミド樹脂ペレットを製造することができる。
【図面の簡単な説明】
【図1】再生ペレットの製造に使用する2軸スクリュー式押出機の概念図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing recycled pellets, which reuses the scrap of cast polyamide resin. In particular, the present invention relates to an improvement in a method for producing regenerated pellets to be melt-extruded and granulated in a twin-screw extruder.
[0002]
[Prior art]
One common method of recycling the cast polyamide resin scrap is to recycle the scrap by pelletizing the scrap with a screw type extruder. Furthermore, recently, in order to effectively add and knead other resins and additives in response to a demand for additional functionality, a multi-screw extruder such as a twin-screw extruder is often used. It has become.
[0003]
That is, not only polyamide resin pellets but also one important characteristic that determines moldability during resin molding is the melt viscosity of the resin pellets. In order to adjust the melt viscosity, in the case of polyamide resin pellets, various additives such as a lubricant such as calcium stearate and zinc stearate during granulation, an epoxy compound, and a thermoplastic resin having a lower melting point than the polyamide resin are used. A method of adding an agent or the like has been proposed. A method has also been proposed in which a polyamide resin having a specific terminal group is selected in advance without adding an additive or the like, and the melt viscosity is adjusted. In addition, a method of adjusting the melt viscosity by heating and holding the polyamide resin pellets at a temperature equal to or lower than the melting point without adding additives or the like, or by holding the polyamide resin pellets in a screw type extruder under reduced pressure has also been proposed.
[0004]
[Problems to be solved by the invention]
Cast polyamide resin, compared to the polyamide resin obtained by a method other than casting, when melt extruded with a screw type extruder and regenerated pelletized, the melt viscosity of the recycled polyamide resin is significantly lower than before regeneration Resulting in. Furthermore, when a multi-screw extruder such as a twin-screw extruder is used, the amount of melt viscosity reduction when melt-extruded and regenerated into pellets is smaller than when a single-screw extruder is used. , More to increase. Therefore, it becomes more difficult to obtain a recycled polyamide resin pellet having a melt viscosity equivalent to that of the cast polyamide resin before the regeneration.
[0005]
In order to adjust the melt viscosity of the recycled polyamide resin pellets produced from the cast polyamide resin scrap, the method of adding various additives at the time of granulation, since the cast polyamide resin scrap can not be used alone, The scrap of the cast polyamide resin is not effectively used, and if the additives are not uniformly dispersed, regenerated polyamide resin pellets having partially different melt viscosities will be obtained. A dispersion method for uniformly dispersing the agent and the like and further additives are required. Further, in some cases, a problem such as coloring of the recycled polyamide resin pellets may occur.
[0006]
In addition, in the method of adjusting the melt viscosity by heating and holding a regenerated polyamide resin pellet produced from a cast polyamide resin scrap at a melting point or less without adding an additive or the like for the purpose of adjusting the melt viscosity, It is extremely inadequate to obtain recycled polyamide resin pellets having a high melt viscosity comparable to that of cast polyamide resin, and there is also the irrationality that must be treated after being pelletized once, and there are problems such as thermal deterioration. Also occurs. Further, the method of adjusting the melt viscosity of the regenerated polyamide resin pellets by reducing the pressure during granulation is also extremely insufficient to obtain pellets having a melt viscosity as high as that of the original cast polyamide resin.
[0007]
Further, a method of selecting a cast polyamide resin in advance and adjusting the melt viscosity of the recycled polyamide resin pellet without adding an additive or the like for the purpose of adjusting the melt viscosity is also similar to that of the original cast polyamide resin. Obtaining pellets having a high melt viscosity is extremely inadequate, and selecting a particular scrap is extremely unreasonable in terms of recycling.
[0008]
[Means for Solving the Problems]
An object of the present invention is to prevent a decrease in melt viscosity by controlling various conditions when melt-extruding and granulating a cast polyamide resin scrap using a twin screw extruder. That is, without depending on means such as addition of additives or sorting of the cast polyamide resin, only the operation of various conditions at the time of melt extrusion granulation of the cast polyamide resin, to minimize the decrease in melt viscosity, The present invention relates to a method for producing regenerated polyamide resin pellets having the same melt viscosity as the original cast polyamide resin.
[0009]
That is, the gist of the present invention is to provide a method for producing regenerated pellets in which a cast polyamide resin scrap is melt-extruded in a twin-screw extruder. A method for producing regenerated pellets, characterized in that the pellets are kept within a satisfactory range.
200T + 880L / D + 165t + 792N / Q + 6600P ≦ 80300
T ≦ 300
L / D ≦ 20
t ≦ 260
N / Q ≦ 100
P ≦ 2
(Where T is the time (second) that the molten resin stays in the extruder, L is the distance (mm) that the molten resin stays in the extruder, and D is the screw of the portion where the molten resin stays in the extruder. Diameter (mm), t: molten resin temperature (° C.), N: screw rotation speed (rpm), Q: extrusion rate (kg / hr), P: volatile component ratio of molten resin ( % By weight)).
[0010]
Here, even if the operation of each of the above conditions is carried out in a screw extruder at the time of melt extrusion granulation of the cast polyamide resin and the resin is in a solid state, the tendency of the decrease and increase in the decrease amount of the melt viscosity tends to increase. Although it appears in the same manner as in the case where the resin melts, the influence on the decrease in the decrease in the melt viscosity of the resin is small.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a conceptual diagram of a twin-screw extruder used for producing regenerated pellets. A scrap supply port is provided in the upper portion near the right end of the extruder, a suctionable vent is opened substantially in the upper center, and a head die is provided in the left end. Further, the inside of the extruder is divided into an intermediate kneading disk part and two screw parts before and after the kneading disk part.
In the present invention, using such a twin-screw extruder, usually, the melting of the resin is performed after the kneading disk portion, including the intermediate kneading disk portion and the screw portion to the left. Operate as occurs in.
[0012]
Further, in the present invention, the following six expressions, that is, five expressions indicating individual conditions (referred to as “individual conditional expressions”) and one expression (“combined conditional expression”) that combines those various conditions are provided. ), It is necessary to maintain the molten state in the extruder so that all are satisfied.
200T + 880L / D + 165t + 792N / Q + 6600P ≦ 80300
T ≦ 300
L / D ≦ 20
t ≦ 260
N / Q ≦ 100
P ≦ 2
(Where T is the time (second) that the molten resin stays in the extruder, L is the distance (mm) that the molten resin stays in the extruder, and D is the screw of the portion where the molten resin stays in the extruder. Diameter (mm), t: molten resin temperature (° C.), N: screw rotation speed (rpm), Q: extrusion rate (kg / hr), P: volatile component ratio of molten resin ( % By weight)).
[0013]
Preferably, the molten state in the extruder is maintained so that the following five equations are further satisfied.
T ≦ 110
L / D ≦ 10
t ≦ 200
Q / N ≧ 0.06
P ≦ 0.5
[0014]
In each of these conditions, except for the time (T) during which the molten resin stays in the extruder, each can be directly measured. That is, L is a distance (L) in which the molten resin stays in the extruder, and in the ordinary operation, the length (mm) of the kneading disk portion and the left screw portion of FIG. The screw diameter (D) and screw rotation speed (N) of the portion where the molten resin stays in the extruder are the screw diameter (mm) and rotation speed (rpm) of the screw on the left screw portion of the kneading disk portion, respectively. ), The molten resin temperature (t) is the resin temperature (° C.) in the screw portion close to the head die, the extrusion amount (Q) is the resin amount (kg / hr) passing through the head die, The volatile component ratio (P) of the resin can be easily measured by measuring the volatile component ratio (% by weight) in the extruded pellets.
[0015]
On the other hand, as the time (T) for which the molten resin stays in the extruder, a value calculated from Q and N of the above measured values and other measured values or constant values is usually used. That is, the time (T) during which the molten resin stays in the extruder is, in the ordinary operation, the time (T1) during which the molten resin stays at the kneading disk, and the time at which the molten resin stays at the left of the kneading disk. It is the sum of the time (T2) remaining in the screw portion, and T1 and T2 are calculated by the following equations, respectively.
[0016]
T1 = 0.36 × (specific gravity) × (filling rate) × (cross-sectional area of flow passage) × K / Q
Here, the specific gravity is the specific gravity (g / cm 3 ) of the molten resin in the kneading disk portion, and the filling rate and the flow path cross-sectional area are respectively the kneading disk and the kneading disk of the kneading disk portion. The ratio of the cross-sectional area of the existing space of the molten resin to the cross-sectional area of the space between the barrel of the extruder and the cross-sectional area of the existing space of the molten resin (cm 2 ). K is the length (mm) of the kneading disk portion, and Q is as described above.
[0017]
T2 = 40M / N
Here, M is the pitch number of the left screw portion of the kneading disk portion in FIG. 1, and N is as described above.
In both of the above equations, T1 is obtained by dividing the retained amount of the molten resin in the kneading disk by the extruded amount, and T2 is expressed as a figure 8 in which the molten resin moves along two screws. On the assumption, the total length of the passage is divided by the peripheral speed to calculate.
[0018]
The cast polyamide resin used in the present invention is obtained by casting a substantially anhydrous ω-lactam having five or more membered rings, for example, 2-pyrrolidone, ε-caprolactam, ω-lauryl lactam, into a mold and subjecting the resin to anionic polymerization. The resulting polyamide resin has a high melt viscosity. Since the cast polyamide resin obtained by this method is sufficiently polymerized in the mold, the molecular weight is higher than the polyamide resin obtained by another polymerization method, and since each molecule is also entangled, High melt viscosity. The melt viscosity is usually represented by a melt flow rate (MFR).
According to the measurement method specified in K7210, the value is 0.1 to 5 g / 10 min, preferably 0.5 to 2 g / 10 min at a test temperature of 250 ° C. and a test load of 2.16 kgf.
[0019]
In the present invention, the polymerization catalyst used in the preparation of the cast polyamide resin at the time of anionic polymerization is not particularly limited as long as it is generally used for this type of polymerization. For example, alkali metals, alkaline earth metals and hydrides, hydroxides, oxides and the like of these metals. Further, a co-catalyst is used as a polymerization initiator. Examples of such a co-catalyst include various isocyanate compounds, urea derivatives, acyllactams and the like.
[0020]
In the present invention, using a screw-type extruder, from a cast polyamide resin scrap, when producing a regenerated polyamide resin pellets having the desired melt viscosity, additives intended to adjust the melt viscosity May be added. In addition, when a recycled polyamide resin having the desired melt viscosity is produced from a cast polyamide resin scrap using a screw type extruder, it is necessary to add functionality such as conductivity, lubricity, and impact resistance. A desired additive or the like may be added. The increase or decrease in the melt viscosity of the polyamide resin pellets caused by the addition of these additives is irrelevant to the gist of the present invention.
[0021]
The present inventor has found that when melt casting and granulating cast polyamide resin with a screw type extruder, the main reason that the melt viscosity of the resin is significantly reduced is that the resin is decomposed by a polymerization catalyst contained in the cast polyamide resin. It is considered that polymerization is promoted, and this depolymerization is considered to occur remarkably in a state where the resin is molten. It is considered that when depolymerization occurs, the melt viscosity decreases due to a decrease in the molecular weight of the resin. Further, in a multi-screw extruder such as a twin-screw extruder that has an active kneading action, a single-screw extruder is used. It is considered that depolymerization occurs more remarkably than that of the above, and the melt viscosity of the resin is further remarkably reduced.
[0022]
The main reason for the increase in the melt viscosity of the resin when the cast polyamide resin is melt-extruded and granulated by a screw-type extruder is that three molecules of the resin that occur in parallel with and / or subsequent to the depolymerization of the resin. Although dimensionality is conceivable, in the scope of the present invention, when the cast polyamide resin was melt-extruded and granulated by a screw-type extruder, an increase in the melt viscosity of the resin was not confirmed. This is considered to be because, in the scope of the present invention, the decrease in the melt viscosity due to the depolymerization of the resin has a stronger effect on the melt viscosity than the increase in the melt viscosity due to the three-dimensional formation of the resin molecules.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
Example 1 and Comparative Examples 1 to 7
The cast polyamide resin was obtained by casting ε-caprolactam into a mold and performing anionic polymerization. As the polymerization catalyst, sodium hydride (63% in oil) was added in an amount (unit: parts by weight) shown in Table 1.
[0024]
After crushing a cast polyamide resin scrap (hereinafter referred to as a "cast product") into granules having a size of 6 mm square or less, the crushed product is coaxially twin-screw extruder (manufactured by Toshiba Machine Co., Ltd .: TEM35BS) ( Hereinafter, using an "extruder"), the mixture was melt-extruded under the extrusion granulation conditions shown in Table 1 and pelletized to obtain recycled polyamide resin pellets (hereinafter, referred to as "recycled products").
[0025]
Common operating conditions for the extruders were a barrel temperature of 250 ° C. in the kneading disk section and 100 ° C. in the previous screw section close to the feed port. Therefore, melting of the resin occurred after the kneading disk portion. The screw diameter (D) of the extruder was 35 mm, and the following equation was used to calculate the time during which the molten resin stayed in the extruder.
T = T1 + T2
T1 = 3K / Q
T2 = 40M / N
[0026]
The MFR (unit: g / 10 min, JIS K7210, test temperature = 250 ° C., test load = 2.16 kgf) of the cast product and the recycle product thus obtained, and the content of volatile components in the cast product are shown. Volatility (unit:% by weight) was measured, and the results are also shown in Table 1.
[0027]
[Table 1]
Figure 0003575931
[0028]
From the results shown in Table 1 above, the following understanding can be obtained.
As shown in Example 1, when all the expressions described in the claims are satisfied, the melt viscosity of the recycled product becomes equal to the melt viscosity of the original cast product.
However, even when one or more individual conditional expressions described in the claims are not satisfied, as shown in Comparative Examples 1 to 5, and all five individual conditional expressions are satisfied, as shown in Comparative Example 6. However, it can be understood that even when one general conditional expression is not satisfied, the melt viscosity of the recycled product is lower than the melt viscosity of the original cast product.
Also, from Comparative Examples 2 and 7, it can be understood that the greater the amount of sodium hydride, the lower the melt viscosity of the regenerated product. Further, from Example 1 and Comparative Examples 1 to 7, it can be understood that the melt viscosity of the cast product is not affected by the amount of sodium hydride.
[0029]
【The invention's effect】
According to the present invention, from a randomly collected cast polyamide scrap, using a twin-screw extruder, only by appropriately setting the operating conditions, without adding any additives, the original Recycled polyamide resin pellets having a melt viscosity can be produced.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a twin-screw extruder used for producing regenerated pellets.

Claims (2)

注型ポリアミド樹脂のスクラップを、2軸スクリュー式押出機中で溶融押出造粒する再生ペレットの製造方法において、該押出機中の溶融状態を下記の諸式を満足する範囲内に保持することを特徴とする再生ペレットの製造方法。
200T+880L/D+165t+792N/Q+6600P≦80300
T≦300
L/D≦20
t≦260
N/Q≦100
P≦2
(式中、Tは、溶融樹脂が押出機内に留まる時間(秒)を、Lは、溶融樹脂が押出機内に留まる距離(mm)を、Dは、溶融樹脂が押出機内に留まる部分のスクリューの直径(mm)を、tは、溶融樹脂温度(℃)を、Nは、スクリュー回転数(rpm)を、Qは、押出量(kg/hr)を、Pは、溶融樹脂の揮発成分率(重量%)を示す。)。
In a method for producing regenerated pellets in which a cast polyamide resin scrap is melt-extruded and granulated in a twin-screw extruder, the molten state in the extruder is kept within a range satisfying the following formulas. A method for producing reclaimed pellets.
200T + 880L / D + 165t + 792N / Q + 6600P ≦ 80300
T ≦ 300
L / D ≦ 20
t ≦ 260
N / Q ≦ 100
P ≦ 2
(Where T is the time (second) that the molten resin stays in the extruder, L is the distance (mm) that the molten resin stays in the extruder, and D is the screw of the portion where the molten resin stays in the extruder. Diameter (mm), t: molten resin temperature (° C.), N: screw rotation speed (rpm), Q: extrusion rate (kg / hr), P: volatile component ratio of molten resin ( % By weight)).
上記溶融状態が、さらに下記の諸式を満足することを特徴とする請求項1記載の再生ペレットの製造方法。
T≦110
L/D≦10
t≦200
Q/N≧0.06
P≦0.5
The method according to claim 1, wherein the molten state further satisfies the following formulas.
T ≦ 110
L / D ≦ 10
t ≦ 200
Q / N ≧ 0.06
P ≦ 0.5
JP32593496A 1996-11-22 1996-11-22 Method for producing recycled pellets Expired - Fee Related JP3575931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32593496A JP3575931B2 (en) 1996-11-22 1996-11-22 Method for producing recycled pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32593496A JP3575931B2 (en) 1996-11-22 1996-11-22 Method for producing recycled pellets

Publications (2)

Publication Number Publication Date
JPH10151623A JPH10151623A (en) 1998-06-09
JP3575931B2 true JP3575931B2 (en) 2004-10-13

Family

ID=18182238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32593496A Expired - Fee Related JP3575931B2 (en) 1996-11-22 1996-11-22 Method for producing recycled pellets

Country Status (1)

Country Link
JP (1) JP3575931B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101287121B1 (en) * 2013-05-31 2013-07-17 (주)남일엔프라 Processing method for cast nylon scrap

Also Published As

Publication number Publication date
JPH10151623A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
CN101121801B (en) Non-woven fabrics composite economical master batch and its producing method and device
JP5369614B2 (en) Extruder for powder raw material and method for producing thermoplastic resin composition
CN102869484A (en) Method for producing composite pellet for extrusion molding, and composite pellet for extrusion molding produced by the method
EP3037233B1 (en) Twin screw extruder for manufacturing a fiber-reinforced resin composition, and related process
JP5536705B2 (en) Method for producing glass fiber reinforced thermoplastic resin composition pellets
JPH09239726A (en) Tandem type kneading apparatus and kneading of thermoplastic resin and/or rubber using the same
JP3575931B2 (en) Method for producing recycled pellets
CN107501719A (en) One kind polymer-filled master batch and preparation method thereof made of polypropylene reclaimed material
JP2009242616A (en) Resin injection-molded article and its molding method
JP3895521B2 (en) Method for plasticizing crosslinked polyolefin
CN1306031A (en) Extruding-out and injection method for producing composite products of used plastics and powdered coal ash
CN114045043B (en) High-impact wood-plastic helmet composite material and preparation method thereof
EP3922427B1 (en) Molding machine, and method for manufacturing a molded article of thermoplastic resin composition
JP2014233865A (en) Apparatus and method for producing inorganic material-highly filled resin pellet
CN107973955A (en) A kind of high tenacity, inexpensive polyethylene filler parent granule and preparation method thereof
JPH0730211B2 (en) Method for producing thermoplastic resin composition
JPH11124439A (en) Production of polyolefin having few fish eye
JP2002166421A (en) Method for manufacturing regenerated pellets from waste olefin film
EP0457441A2 (en) Process for compounding a polymer with an antioxidant
WO2022259476A1 (en) Kneading apparatus
JP3311793B2 (en) Method for producing resin pellets by kneading and extrusion
JPH0938964A (en) Resin kneading and granulating method
JP3140545B2 (en) In-line two-stage extruder
JPH03253322A (en) Extrusion molding method of nylon 6 resin
JPH03126519A (en) Series two-stage extruding machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees