JP3575668B2 - Organic matter treatment method - Google Patents

Organic matter treatment method Download PDF

Info

Publication number
JP3575668B2
JP3575668B2 JP31406298A JP31406298A JP3575668B2 JP 3575668 B2 JP3575668 B2 JP 3575668B2 JP 31406298 A JP31406298 A JP 31406298A JP 31406298 A JP31406298 A JP 31406298A JP 3575668 B2 JP3575668 B2 JP 3575668B2
Authority
JP
Japan
Prior art keywords
organic
organic matter
microorganisms
concentration
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31406298A
Other languages
Japanese (ja)
Other versions
JP2000117235A (en
Inventor
愼治 廣江
喜郎 加茂川
Original Assignee
株式会社東洋環境技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東洋環境技術研究所 filed Critical 株式会社東洋環境技術研究所
Priority to JP31406298A priority Critical patent/JP3575668B2/en
Publication of JP2000117235A publication Critical patent/JP2000117235A/en
Application granted granted Critical
Publication of JP3575668B2 publication Critical patent/JP3575668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機物の処理方法に関し、更に詳述すれば、生ごみ、焼酎廃液、家畜糞尿等の有機性廃棄物の処理方法に関する。
【0002】
【従来の技術】
近年、産業が急速に発展し、都市へ人口が集中するとともに、生活様式や農業形態が変化してきた。それに伴って、廃棄物は多量に、且つ、集中的に発生するようになった。産業や生活から発生する廃水や廃棄物の発生量が自然の浄化力を超えたとき、人間の健康及び環境保全上の種々の問題が生じ、そのために廃水処理や廃棄物処理を行うようになった。このうち、廃棄物処理については、大都市を中心に最終処分量を減少するため、主として焼却によっている。
【0003】
一方、有機物を含む廃水処理は、微生物による分解処理、即ち生分解処理が一般的に行われている。この処理は焼却の際に放出する燃焼ガスによる大気汚染等の二次汚染の虞がないこと等の特長がある。しかし、処理すべき対象の廃棄物が液状物である必要があるので、固形物(例えば生ごみ)を処理する場合は、一般的にミキサーやディスポーザーで破砕して液状物にした後、微生物により生分解している。また、この破砕して液状にした廃水を処理するにしても、又は例えば焼酎廃液等の最初から既に液状の廃水を処理するにしても、従来の生分解処理は、一般に微生物の増殖の形をとり、炭酸ガス、水等に直接変換することはほとんどなく、あっても極く稀である。このため微生物の増殖で増加した活性汚泥を、処理の最終段階で「沈殿槽」を設けて、微生物等の固形物を沈降させ、残った分解処理物である上澄み液、即ち処理水を取り出し、公共下水道や河川に放流する。この場合、放流する処理水の品質が、放流基準を満たさなければならない事は当然の事である。
【0004】
また、特に高い有機炭素濃度の有機物廃水処理の場合、その初期段階においては、即ち高濃度で処理する場合においては、未処理の有機炭素が残留する傾向にある。そこで、残留有機炭素をある一定値以下に抑える為には、引き続き未処理の有機炭素の低濃度処理を実施しなければならない。この高濃度処理から低濃度処理までを実施する場合、特に設備運転関係の費用負担が大きくなり、高濃度処理までしか実施しない場合と比較して数倍に及ぶ費用負担が必要となる。しかも、処理設備の設置スペースも膨大になる。
【0005】
更には、被処理物条件や処理条件の変動に対し、放流する処理水の品質を安定的に確保する為に多大の労力を必要とする。
【0006】
以上のように、生分解処理により有機性廃棄物の処理を行う場合、従来技術においては、その前半の処理段階での高濃度処理から低濃度処理までの実施、更に、その後半の処理段階での微生物等の固形物の沈降分離及び処理水の放流というように、大量で長時間で且つ多段階の処理を必要とし、処理効率が極めて低いものである。
【0007】
なお、従来の方法には、前記処理水の放流を回避するために、電気ヒータや化石燃料を使って、処理水を物理的に蒸散させる方法もあるが、後半の処理段階での微生物等の固形物の沈降分離を省略することはできず、更に処理水の物理的な蒸散においては必要とする熱エネルギーが膨大なものであり、実用的な方法ではない。
【0008】
【発明が解決しようとする課題】
生分解処理により有機物の処理を行う場合においては、用いられる微生物の種類によって有機物の分解速度や処理方式が異なる。用いられる微生物が好気性微生物の場合には、嫌気性微生物の場合よりも有機物の分解速度が速いので、有機物処理用の微生物として適している。処理方式としては、好気性微生物が用いられる場合は、ブロアやコンプレッサにより圧縮された空気が散気管を通じて反応槽に送り込まれ、これにより有機物の分解反応が促進される。
【0009】
好気性微生物が順調に増殖して活性化して行くためには、好気性微生物の餌としての有機物が十分存在し、更に溶液中の溶存酸素量、溶液温度、pH等いくつかの条件を適正化する必要がある。
【0010】
しかし、従来の方法において、これらの条件、特に溶液中の溶存酸素量を適正化するのは難しく、好気性微生物の増殖、活性化には、限界があった。通常の曝気方法即ち散気管で空気を送り込む方法では、微生物濃度は全有機炭素濃度(以下、TOCと略す。)で、せいぜい5,000ppm程度しか確保できていない。このようなことから、実用上、従来の活性汚泥法は、微生物濃度が数百〜数千ppm(TOC)付近のところで行われており、上記問題は未解決のままである。
【0011】
本発明者らは上記問題を解決するために種々検討した結果、酸素導入あるいは微細空気の導入等、曝気方法の改良を行い、高い微生物濃度を安定して確保することを可能にした。そして、この高濃度の微生物で有機物混合液を生分解すると、高い有機炭素濃度の有機物混合液処理の場合でも分解速度が速く、しかも、仕込んだ有機物は全て炭酸ガス、水、窒素等に分解処理して蒸散され、その蒸散率は100%以上になることを発見した。
【0012】
ここで、蒸散率とは、微生物を含む混合液を微生物原液Aとし、この微生物原液Aに仕込む有機性廃棄物を有機混合物Bとし、微生物原液Aと有機混合物Bとを混合したものを混合液A+Bとして生分解反応処理を行った場合、次式で算出した値をいう。
【0013】
【数1】

Figure 0003575668
上式において、蒸散量は、次式で算出した値をいう。
【0014】
【数2】
(蒸散量)=(生分解反応前の混合液A+Bの重量)−(生分解反応後の混合液A+Bの重量)
従って、本発明の有機物の処理方法によれば、従来の活性汚泥法におけるような、前半の処理段階での低濃度処理、並びに、後半の処理段階での有機物混合液からの処理水の分離、及び処理水の放流等の処理は不要とすることができることを知得し、本発明を完成するに至ったもので、その目的とするところは、上記問題を解決した有機物の処理方法を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明は、
〔1〕 有機物と微生物とを有する混合液中の微生物濃度を全有機炭素濃度で6000ppm以上に保ちながら、有機物を生分解することを特徴とする有機物の処理方法を提案するものであって、
〔2〕 前記〔1〕において、有機物と微生物とを有する混合液中からの分解処理物の排出を蒸散により行うことを含み、
〔3〕 前記〔1〕又は〔2〕において、有機物と微生物とを有する混合液中に酸素を導入することを含み、
〔4〕 前記〔1〕又は〔2〕において、有機物と微生物とを有する混合液中に粒子径50μm以下の空気泡を導入することを含む。
【0016】
以下、本発明を詳細に説明する。
【0017】
【発明の実施の形態】
本発明の有機物の処理方法は、有機物と微生物とを有する混合液中の微生物濃度を6000ppm(TOC)以上に、好ましくは10000ppm(TOC)以上に、更に好ましくは15000ppm(TOC)以上に保ちながら、有機物の生分解処理をするものである。有機物と微生物とを有する混合液中の微生物濃度が6000ppm(TOC)未満の場合は、生分解が不完全で、放流を必要とする処理水が残留し蓄積されるので、好ましくない。
【0018】
微生物は、好気性微生物を用いる。本発明の方法によるときには、有機物の処理中において、微生物の濃度は、多少の変動はあるものの、6000ppm(TOC)以上に保たれているので、有機物と微生物とを有する混合液に含まれる微生物は、補充とか抜き出しとか殆どすることなく、繰り返し使用することができる。また、固形有機物は、必要により水を加えてミキサーやディスポーザー等の簡易な混合器によって破砕混合し、得られた破砕混合有機物を微生物合液中に仕込むことで、有機物の分解速度及び蒸散率をより高くすることができる。
【0019】
また、仕込んだ破砕混合有機物を分解処理している間に、有機物と微生物とを有する混合液から蒸散する物質の量が、破砕混合有機物の仕込量以上の量になる場合がある。即ち、仕込んだ破砕混合有機物の蒸散率が100%以上になる場合がある。この場合は、有機物と微生物とを有する混合液に余分な処理水等が蓄積されることがなく、処理水等を有機物と微生物とを有する混合液から抜き出す必要がないので好ましい。
【0020】
曝気については、空気泡の粒子径が小さい程、液中の溶存酸素量が増加し、更には空気泡の浮上速度が緩やかとなり、液中の溶存酸素量の増加が一層加速され、有機物の分解速度及び蒸散率が高くなる傾向にある。
【0021】
一方、前述のように、本発明においては、有機物と微生物とを有する混合液中の微生物濃度を6000ppm(TOC)以上に保ちながら、有機物を生分解して有機物の処理をするために、更に有機物の分解速度及び蒸散率を高くするには、空気泡の粒子径を50μm以下にすることが好ましい。空気泡の粒子径が50μmを超える場合には、液中の溶存酸素量が減少し有機物の分解速度蒸散率が低くなるので好ましくない。
【0022】
また、有機物混合液を空気と共に同時に破砕して有機物及び空気泡の粒子径をそれぞれ10〜50μmにすることも、有機物の分解速度及び蒸散率がより高くなるので好ましい方法である。この同時破砕による方法では、条件によっては空気泡の粒子径はサブミクロンまで小さくすることができる。しかし、空気泡の粒子径を10μm未満に破砕する場合は、微生物まで破砕し破壊してしまう虞があり好ましくない。但し、予め固形有機物を粒子径10μm未満に破砕して微細固形有機物を得、この微細固形有機物と微生物とを混合する場合は、有機物の分解速度及び蒸散率が一層高くなり、好ましいものである。
【0023】
なお、本発明の方法によれば液中の溶存酸素量を多くするためには、空気を導入することによって十分達成できるが、空気の代わりに純酸素を導入する場合には、より容易に液中の酸素量が増加し有機物の分解速度及び蒸散率がより高くなるので、より好ましい。
【0024】
有機物の分解速度及び蒸散率は、有機物の粒子径が小さい程、高くなる傾向にあるが、有機物の粒子径は50μm以下又は10〜50μmが好ましい。有機物の粒子径が50μmを超える場合には、有機物の分解速度及び蒸散率が低くなるので好ましくない。また、微生物と固形有機物を同時に破砕する場合には、粒子径10μm未満に破砕する場合、微生物まで破砕し破壊してしまう虞があり、好ましくない。
【0025】
以上のように、本発明においては、任意の方法で固形有機物及び/又は空気泡の粒子径を50μm以下又は10〜50μmにしても良いものである。その方法のうちでも、例えばスタティックミキサー等の特定の混合器を用いることによって、固形有機物及び/又は空気泡の粒子径をより容易に小さくすることができるので、このスタティックミキサー等の特定の混合器を用いることによる方法は、より望ましいものである。
【0026】
処理すべき対象の有機物は、処理すべきものなら有機性廃棄物に限られないが、近年、特に人間の健康及び環境保全が重要視されており、この面からも、生野菜、穀物、豆類及び芋類等の生ごみ、焼酎廃液、並びに、家畜糞尿等の有機性廃棄物を処理することは、より好ましいことである。
【0027】
また、本発明においては、処理すべき対象の有機物は、系内に導入する際の有機物濃度について低濃度から高濃度まで幅広い濃度範囲において処理できる。その有機物濃度のうちでも、特に、20,000ppm(TOC)以上の高濃度のものを処理する場合は、有機物の分解速度及び蒸散率がより高くなるので、より好ましい。
【0028】
以下、図面を参照して本発明を説明する。
【0029】
図1は、本発明の有機物の処理装置の一例を示す概略図である。この処理装置において、2は処理槽で、この内に微生物を含む原液と、固形有機物とが導入される。これらの導入物は、処理槽2内に搭載した破砕機4によって混合破砕され、有機物と微生物を有する混合液6となる。なお、固形有機物は、処理槽2内に導入される前に、混合破砕され、また、濃度調節のため、必要により水が加えられても良い。
【0030】
処理槽2に送られた有機物と微生物を有する混合液6は、反応中常時、若しくは断続的に、前記破砕機4によって混合破砕が続けられる。処理槽2の底部には、散気管8が設けられており、酸素ボンベ10からの酸素が散気管8を介して気泡となって処理槽2内に供給され、有機物の生分解が確実に行われるようになっている。
【0031】
なお、生分解反応により温度上昇が大きい場合に備えて、処理槽2には冷却器(図示せず)を附設している。更に、混合液中の固形有機物が充分細かい場合は、破砕機4の附設を省略することができる。
【0032】
【実施例】
以下、本発明を実施例により、具体的且つ詳細に説明するが、本発明は実施例により限定されるものではない。
【0033】
なお、全有機炭素濃度(TOC)は、:島津製作所株式会社製 TOC−5000を用いて測定した。
【0034】
実施例1〜4
微生物の培養を行い、微生物を含む原液4として表1に示す所定のTOCの微生物原液Aを得た。一方、固形有機物2として折詰弁当の廃棄物を用い、この弁当廃棄物に適量の水を加え破砕混合し、表1に示すTOC200,000ppmの有機混合物Bを得た。
【0035】
図1に示す有機物処理装置において、前記微生物原液A60.0kgと前記有機混合物B3.0kgとを表1に示す混合液A+Bとして処理槽2に導入した。前記混合液A+Bは、反応中常時、破砕機4のよって破砕混合させた。
【0036】
処理槽2の底部においては、酸素ボンベ10からの酸素を散気管8を介して又はコンプレッサー(図示せず)からの空気をスタチックミキサー(図示せず)を介して、表1に示すガスの種類及び導入量で気泡にして処理槽2内に供給し、有機物の生分解を表1の経過時間に示す所定時間行い、表1に示す結果を得た。
【0037】
【表1】
Figure 0003575668
比較例1
表1の比較例1に示す条件で、実施例1〜4の場合と同様に生分解処理を行い、表1に示す結果を得た。
【0038】
表1の結果から、実施例1〜4の場合は、6,000ppm(TOC)以上の高濃度の微生物を含むので、蒸散率は87%以上になることが解る。これに対し、比較例1の場合は、蒸散率は57%に止まった。
【0039】
なお、表1の結果から、仕込んだ有機混合物BのTOCに対する生分解処理による除去率を算出すると、比較例1、及び実施例1〜4について、それぞれ、97%、104%、92%、100%、及び104%となった。
【0040】
以上のことから、比較例1、及び実施例1〜4の何れの条件についても、仕込んだ有機性廃棄物はほぼ全量分解処理して蒸散され、しかも高濃度の微生物を安定して確保できることが解る。更に、本発明の方法によるときは、この高いTOC除去率及び高濃度の微生物の安定した確保は、酸素導入の場合だけでなく、微細な空気導入の場合にも得られることが解る。
【0041】
【発明の効果】
本発明の方法によれば、酸素導入あるいは微細空気の導入等、曝気方法の改良することで、高い微生物濃度を安定して確保することができる。そして、この高濃度の微生物を含む有機物混合液を生分解することにより、高い有機炭素濃度の有機物混合液処理の場合でも分解速度が速く、しかも、仕込んだ有機性廃棄物は全て炭酸ガス、水、窒素等に分解処理して蒸散され、その蒸散率は100%以上になる。そのため、本発明の有機物の処理方法によれば、従来の活性汚泥法におけるような、前半の処理段階での高濃度処理に続く低濃度処理は不要とすることができる。即ち、本発明の有機物の処理方法によれば、前述の従来の方法における低濃度処理が必要となる問題を解決したばかりでなく、後半の処理段階での有機物混合液からの処理水の分離、及び処理水の放流等の処理も不要とすることができる。
【0042】
即ち、本発明においては、有機物処理中において、微生物の濃度は、高い濃度に安定して保たれている。そのうえ、固形有機物は炭酸ガス、水、窒素等に完全に分解し、更に蒸散し、余剰スラッジ及び放流すべき処理水等の発生もないものである。
【図面の簡単な説明】
【図1】本発明の有機物の処理装置の一例を示す概略図である。
【符号の説明】
2 処理槽
4 破砕機
6 有機物と微生物を有する混合液
8 散気管
10 酸素ボンベ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating organic matter, and more particularly, to a method for treating organic waste such as garbage, shochu waste liquid, livestock manure, and the like.
[0002]
[Prior art]
In recent years, industries have rapidly developed, populations have concentrated in cities, and lifestyles and agricultural forms have changed. As a result, wastes have been generated in large amounts and intensively. When the amount of wastewater and waste generated from industry and daily life exceeds the purification power of nature, various problems on human health and environmental conservation occur, and as a result, wastewater treatment and waste treatment have been performed. Was. Of these, waste treatment is mainly incinerated in order to reduce the amount of final disposal mainly in large cities.
[0003]
On the other hand, in the treatment of wastewater containing organic substances, decomposition treatment by microorganisms, that is, biodegradation treatment is generally performed. This treatment is advantageous in that there is no risk of secondary pollution such as air pollution due to the combustion gas released during incineration. However, since the waste to be treated must be a liquid, when processing solids (for example, garbage), it is generally crushed into a liquid with a mixer or disposer, and then treated with microorganisms. It is biodegraded. In addition, even if this crushed and liquid wastewater is treated, or even if liquid wastewater that is already liquid is treated from the beginning, for example, shochu waste liquid, the conventional biodegradation treatment generally involves the growth of microorganisms. They are rarely converted directly to carbon dioxide, water, etc., and even very rarely. For this reason, activated sludge increased by the growth of microorganisms, a `` sedimentation tank '' is provided at the final stage of treatment, solids such as microorganisms are settled, and a supernatant liquid, ie, treated water, which is a remaining decomposition treatment, is taken out. Release into public sewers and rivers. In this case, it is natural that the quality of the treated water to be discharged must satisfy the discharge standard.
[0004]
Further, particularly in the case of treating organic matter wastewater with a high organic carbon concentration, untreated organic carbon tends to remain in the initial stage, that is, in the case of treating at a high concentration. Therefore, in order to suppress the residual organic carbon to a certain value or less, it is necessary to continuously perform low-concentration processing of untreated organic carbon. When the process from the high-concentration process to the low-concentration process is performed, the cost burden particularly related to the equipment operation increases, and the cost burden is several times greater than when only the high-density process is performed. In addition, the installation space for the processing equipment is enormous.
[0005]
In addition, a great deal of labor is required to stably maintain the quality of the treated water discharged in response to fluctuations in the conditions of the workpiece and the processing conditions.
[0006]
As described above, when organic waste is treated by biodegradation, in the prior art, from the high concentration treatment to the low concentration treatment in the first half of the treatment stage, and further in the latter half of the treatment stage, It requires a large amount of time, a long time, and multi-stage treatments, such as sedimentation and separation of solids such as microorganisms and discharge of treated water, resulting in extremely low treatment efficiency.
[0007]
In addition, in the conventional method, there is a method of physically evaporating the treated water using an electric heater or a fossil fuel in order to avoid the discharge of the treated water. The sedimentation and separation of solids cannot be omitted, and the physical evaporation of the treated water requires a huge amount of heat energy, which is not a practical method.
[0008]
[Problems to be solved by the invention]
In the case of treating organic substances by biodegradation, the rate of decomposition of organic substances and the treatment method vary depending on the type of microorganism used. When the microorganism used is an aerobic microorganism, the decomposition rate of organic substances is higher than that of an anaerobic microorganism, and thus the microorganism is suitable as a microorganism for treating organic substances. When an aerobic microorganism is used as a treatment method, air compressed by a blower or a compressor is sent to a reaction tank through a diffuser tube, thereby promoting a decomposition reaction of organic substances.
[0009]
In order for aerobic microorganisms to grow and activate smoothly, there is sufficient organic matter as feed for the aerobic microorganisms, and several conditions such as the amount of dissolved oxygen in the solution, solution temperature, and pH are optimized. There is a need to.
[0010]
However, in the conventional method, it is difficult to optimize these conditions, particularly the amount of dissolved oxygen in the solution, and there is a limit to the growth and activation of aerobic microorganisms. In a normal aeration method, that is, a method in which air is sent through a diffuser, the concentration of microorganisms can be at most about 5,000 ppm, which is the total organic carbon concentration (hereinafter abbreviated as TOC). For this reason, in practice, the conventional activated sludge method is practiced at a microorganism concentration near several hundred to several thousand ppm (TOC), and the above problem remains unsolved.
[0011]
The present inventors have conducted various studies to solve the above problems, and as a result, have improved the aeration method such as introduction of oxygen or fine air, and have been able to stably secure a high microorganism concentration. When the organic substance mixture is biodegraded with this high concentration of microorganisms, the decomposition rate is high even in the case of processing the organic substance mixture with a high organic carbon concentration. It was found that the transpiration rate was 100% or more.
[0012]
Here, the transpiration rate refers to a mixed solution containing microorganisms as a microorganism stock solution A, an organic waste to be charged into the microorganism stock solution A as an organic mixture B, and a mixture of the microorganism stock solution A and the organic mixture B mixed. When the biodegradation reaction treatment is performed as A + B, it refers to a value calculated by the following equation.
[0013]
(Equation 1)
Figure 0003575668
In the above equation, the amount of transpiration refers to a value calculated by the following equation.
[0014]
(Equation 2)
(Evaporation amount) = (weight of mixed solution A + B before biodegradation reaction)-(weight of mixed solution A + B after biodegradation reaction)
Therefore, according to the method for treating organic matter of the present invention, as in the conventional activated sludge method, low concentration treatment in the first treatment step, and separation of treated water from the organic substance mixture in the second treatment step, It has been found that the treatment such as the discharge of treated water can be made unnecessary, and the present invention has been completed, and an object of the present invention is to provide a method for treating an organic substance which has solved the above-mentioned problems. It is in.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[1] A method for treating an organic substance characterized by biodegrading an organic substance while maintaining the concentration of microorganisms in a mixed solution having an organic substance and microorganisms at 6,000 ppm or more in total organic carbon concentration,
[2] In the above [1], the method includes discharging the decomposition treatment product from a mixed solution having an organic substance and a microorganism by evaporation.
[3] The method according to [1] or [2], wherein oxygen is introduced into a mixed solution having an organic substance and a microorganism,
[4] The method as described in [1] or [2], further including introducing air bubbles having a particle diameter of 50 μm or less into the mixed solution containing the organic matter and the microorganism.
[0016]
Hereinafter, the present invention will be described in detail.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for treating an organic substance of the present invention, the concentration of microorganisms in a mixed solution containing an organic substance and microorganisms is maintained at 6000 ppm (TOC) or more, preferably 10000 ppm (TOC) or more, and more preferably 15000 ppm (TOC) or more. It is for biodegrading organic matter. If the concentration of the microorganisms in the mixed solution containing the organic matter and the microorganisms is less than 6000 ppm (TOC), the biodegradation is incomplete, and the treated water that needs to be discharged remains and accumulates, which is not preferable.
[0018]
As the microorganism, an aerobic microorganism is used. According to the method of the present invention, the concentration of the microorganisms is maintained at 6000 ppm (TOC) or more during the treatment of the organic matter, though there is some variation, so that the microorganisms contained in the mixture containing the organic matter and the microorganisms are It can be used repeatedly with little replenishment or removal. In addition, solid organic matter is crushed and mixed by a simple mixer such as a mixer or a disposer by adding water as necessary, and the obtained crushed mixed organic matter is charged into a microorganism mixture to reduce the decomposition rate and transpiration rate of the organic matter. Can be higher.
[0019]
Further, during the decomposition treatment of the charged crushed mixed organic matter, the amount of the substance evaporating from the mixed liquid containing the organic matter and the microorganism may be equal to or more than the charged amount of the crushed mixed organic matter. That is, the transpiration rate of the charged crushed mixed organic substance may be 100% or more. In this case, it is preferable because no excess treated water or the like is accumulated in the mixed solution containing the organic matter and the microorganism, and it is not necessary to extract the treated water or the like from the mixed solution containing the organic matter and the microorganism.
[0020]
Regarding aeration, as the particle size of air bubbles is smaller, the dissolved oxygen amount in the liquid increases, and the floating speed of the air bubbles becomes slower, the increase in the dissolved oxygen amount in the liquid is further accelerated, and the decomposition of organic substances The rate and transpiration rate tend to be higher.
[0021]
On the other hand, as described above, in the present invention, while maintaining the concentration of microorganisms in the mixed solution containing organic matter and microorganisms at 6000 ppm (TOC) or more, the organic matter is further biodegraded to treat the organic matter. In order to increase the decomposition rate and transpiration rate of the air bubbles, it is preferable that the particle size of the air bubbles is 50 μm or less. If the particle size of the air bubbles exceeds 50 μm, the amount of dissolved oxygen in the liquid is decreased, and the decomposition rate of organic substances is reduced.
[0022]
It is also a preferable method to simultaneously crush the organic substance mixture with air to make the particle diameters of the organic substance and the air bubbles to be 10 to 50 μm, respectively, because the decomposition rate and the transpiration rate of the organic substance become higher. In this simultaneous crushing method, the particle size of air bubbles can be reduced to submicron depending on conditions. However, when the particle size of the air bubbles is crushed to less than 10 μm, microorganisms may be crushed and destroyed, which is not preferable. However, when the solid organic matter is previously crushed to a particle diameter of less than 10 μm to obtain a fine solid organic matter, and the fine solid organic matter is mixed with a microorganism, the decomposition rate and transpiration rate of the organic matter are further increased, which is preferable.
[0023]
According to the method of the present invention, the amount of dissolved oxygen in the liquid can be increased sufficiently by introducing air. However, when pure oxygen is introduced instead of air, the amount of dissolved oxygen can be more easily increased. This is more preferable because the amount of oxygen therein increases and the decomposition rate and transpiration rate of organic substances become higher.
[0024]
The decomposition rate and transpiration rate of the organic substance tend to increase as the particle diameter of the organic substance decreases, but the particle diameter of the organic substance is preferably 50 μm or less or 10 to 50 μm. If the particle size of the organic substance exceeds 50 μm, the decomposition rate and the transpiration rate of the organic substance become undesirably low. In addition, when crushing microorganisms and solid organic matter simultaneously, crushing to a particle diameter of less than 10 μm is not preferable because the microorganisms may be crushed and destroyed.
[0025]
As described above, in the present invention, the particle diameter of the solid organic matter and / or the air bubbles may be reduced to 50 μm or less or 10 to 50 μm by an arbitrary method. Among these methods, for example, by using a specific mixer such as a static mixer, the particle diameter of solid organic matter and / or air bubbles can be reduced more easily. The method by using is more desirable.
[0026]
The organic matter to be treated is not limited to organic waste as long as it is to be treated, but in recent years human health and environmental conservation have been particularly emphasized, and in this respect, raw vegetables, cereals, beans and It is more preferable to treat garbage such as potatoes, shochu waste liquid, and organic waste such as livestock manure.
[0027]
Further, in the present invention, the organic matter to be treated can be treated in a wide concentration range from a low concentration to a high concentration when the organic matter is introduced into the system. Among the organic substances, it is more preferable to treat a substance having a high concentration of 20,000 ppm (TOC) or more, since the decomposition rate and the transpiration rate of the organic substance become higher.
[0028]
Hereinafter, the present invention will be described with reference to the drawings.
[0029]
FIG. 1 is a schematic view showing an example of the organic substance processing apparatus of the present invention. In this processing apparatus, reference numeral 2 denotes a processing tank into which a stock solution containing microorganisms and solid organic matter are introduced. These introduced materials are mixed and crushed by a crusher 4 mounted in the processing tank 2 to form a mixed solution 6 containing organic matter and microorganisms. The solid organic matter may be mixed and crushed before being introduced into the treatment tank 2, and water may be added as necessary for concentration adjustment.
[0030]
The mixed liquid 6 containing the organic matter and the microorganisms sent to the treatment tank 2 is continuously mixed and crushed by the crusher 4 during the reaction or intermittently. A diffuser 8 is provided at the bottom of the treatment tank 2, and oxygen from the oxygen cylinder 10 is supplied as bubbles through the diffuser 8 into the treatment tank 2, and the biodegradation of organic substances is reliably performed. It has become to be.
[0031]
Note that a cooler (not shown) is attached to the processing tank 2 in case the temperature rise is large due to the biodegradation reaction. Further, when the solid organic matter in the mixture is sufficiently fine, the provision of the crusher 4 can be omitted.
[0032]
【Example】
Hereinafter, the present invention will be described specifically and in detail with reference to examples, but the present invention is not limited to the examples.
[0033]
The total organic carbon concentration (TOC) was measured using: TOC-5000 manufactured by Shimadzu Corporation.
[0034]
Examples 1-4
The microorganism was cultured to obtain a microorganism stock solution A having a predetermined TOC as shown in Table 1 as a stock solution 4 containing the microorganism. On the other hand, the waste of a packed lunch was used as the solid organic matter 2, and an appropriate amount of water was added to the waste of the packed lunch and crushed and mixed to obtain an organic mixture B having a TOC of 200,000 ppm shown in Table 1.
[0035]
In the organic matter treatment apparatus shown in FIG. 1, 60.0 kg of the above-mentioned microorganism stock solution A and 3.0 kg of the above-mentioned organic mixture B were introduced into the treatment tank 2 as a mixture solution A + B shown in Table 1. The mixed solution A + B was crushed and mixed by the crusher 4 at all times during the reaction.
[0036]
At the bottom of the processing tank 2, oxygen from the oxygen cylinder 10 is supplied through a diffuser 8 or air from a compressor (not shown) through a static mixer (not shown). Bubbles were supplied into the treatment tank 2 according to the type and the amount introduced, and the organic matter was biodegraded for a predetermined time shown in the elapsed time in Table 1, and the results shown in Table 1 were obtained.
[0037]
[Table 1]
Figure 0003575668
Comparative Example 1
The biodegradation treatment was performed in the same manner as in Examples 1 to 4 under the conditions shown in Comparative Example 1 in Table 1, and the results shown in Table 1 were obtained.
[0038]
From the results in Table 1, it can be seen that Examples 1-4 have a high concentration of microorganisms of 6,000 ppm (TOC) or more, so that the transpiration rate is 87% or more. On the other hand, in the case of Comparative Example 1, the transpiration rate was only 57%.
[0039]
From the results in Table 1, when the removal rate of the charged organic mixture B by TOC for the TOC was calculated, 97%, 104%, 92%, and 100% were obtained for Comparative Example 1 and Examples 1 to 4, respectively. % And 104%.
[0040]
From the above, under all the conditions of Comparative Example 1 and Examples 1 to 4, almost all of the charged organic waste is decomposed and evaporated, and moreover, a high concentration of microorganisms can be stably secured. I understand. Further, it can be seen that when the method of the present invention is used, this high TOC removal rate and stable securing of a high concentration of microorganisms can be obtained not only when oxygen is introduced but also when fine air is introduced.
[0041]
【The invention's effect】
According to the method of the present invention, a high microorganism concentration can be stably ensured by improving the aeration method such as the introduction of oxygen or the introduction of fine air. Then, by biodegrading the organic substance mixture containing the high-concentration microorganisms, the decomposition rate is high even in the case of treating the organic substance mixture with a high organic carbon concentration. , And is evaporated to nitrogen or the like, and the evaporation rate is 100% or more. Therefore, according to the organic matter treatment method of the present invention, the low concentration treatment following the high concentration treatment in the first half treatment stage as in the conventional activated sludge method can be unnecessary. That is, according to the method for treating organic matter of the present invention, not only the problem of requiring the low-concentration treatment in the above-described conventional method is solved, but also the separation of treated water from the organic matter mixed solution in the latter half of the treatment step, In addition, treatment such as discharge of treated water can be eliminated.
[0042]
That is, in the present invention, the concentration of microorganisms is stably maintained at a high concentration during the treatment with organic matter. In addition, the solid organic matter is completely decomposed into carbon dioxide, water, nitrogen and the like, further evaporates, and does not generate excess sludge and treated water to be discharged.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an organic substance processing apparatus of the present invention.
[Explanation of symbols]
2 treatment tank 4 crusher 6 mixed solution containing organic matter and microorganisms 8 air diffuser 10 oxygen cylinder

Claims (4)

有機物と微生物とを有し、微生物濃度が全有機炭素濃度で10000ppm以上の混合液中に、酸素を導入して有機物を生分解することにより、前記混合液中からの分解処理物及び水の排出を生分解反応による温度上昇で蒸散させて、余剰スラッジ及び処理水を外部に放出しないことを特徴とする有機物の処理方法。Organic matter and microorganisms, the microorganism concentration is 10,000 ppm or more in total organic carbon concentration, by introducing pure oxygen to biodegrade the organic matter, the decomposition product from the mixed solution and water A method for treating organic matter, characterized in that the discharge is transcribed by a temperature rise caused by a biodegradation reaction, so that surplus sludge and treated water are not released to the outside. 混合液中の微生物濃度が全有機炭素濃度で15000ppm以上である請求項1に記載の有機物の処理方法。The method for treating organic matter according to claim 1, wherein the concentration of microorganisms in the mixture is 15000 ppm or more in total organic carbon concentration. 有機物の粒子径が50μm以下である請求項1に記載の有機物の処理方法。The method for treating an organic substance according to claim 1, wherein the particle diameter of the organic substance is 50 μm or less. 混合液中に導入する酸素の粒子径が50μm以下である請求項1に記載の有機物の処理方法。The method for treating an organic substance according to claim 1, wherein the particle diameter of oxygen introduced into the mixed liquid is 50 µm or less.
JP31406298A 1998-10-16 1998-10-16 Organic matter treatment method Expired - Fee Related JP3575668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31406298A JP3575668B2 (en) 1998-10-16 1998-10-16 Organic matter treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31406298A JP3575668B2 (en) 1998-10-16 1998-10-16 Organic matter treatment method

Publications (2)

Publication Number Publication Date
JP2000117235A JP2000117235A (en) 2000-04-25
JP3575668B2 true JP3575668B2 (en) 2004-10-13

Family

ID=18048777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31406298A Expired - Fee Related JP3575668B2 (en) 1998-10-16 1998-10-16 Organic matter treatment method

Country Status (1)

Country Link
JP (1) JP3575668B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237789B (en) * 2021-05-12 2023-07-28 雅安百图高新材料股份有限公司 Method for detecting content of organic modifier on surface of alumina powder

Also Published As

Publication number Publication date
JP2000117235A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP4754749B2 (en) System and method for treating sludge in a waste liquid facility
GB2073727A (en) A method of treating effluent and of producing fertilizer
JPH11221541A (en) Method for recycling organic waste
US20070056902A1 (en) Process for treating septage to extract a bio-fuel
JP4907123B2 (en) Organic waste processing method and processing system
JPH11197636A (en) Method for treatment of organic waste
JPH10235315A (en) Treatment of fluid organic waste
JP3575668B2 (en) Organic matter treatment method
JPH11300323A (en) Treatment of organic waste
JP2000015230A (en) Method for removing ammonia
JP2004008843A (en) Method for treating organic waste water
JPH11197639A (en) Treatment of organic waste
JP2003340408A (en) Treatment system and treatment method for methane fermentation
JP3163294B2 (en) Waste chemical and biological treatment system
JP2000189932A (en) Device for organic waste treatment
JP2004089858A (en) Organic waste processing method and apparatus
JP2006239625A (en) Method and equipment for treating organic waste
KR20020075046A (en) The treating method of high concentration organic waste water
JP2696146B2 (en) Wastewater and sludge treatment methods
JPH10286591A (en) Waste disposal method
JPH10216691A (en) Garbage treating device
JP2001205291A (en) Method for treating wastewater containing polyethylene glycol
EP0293374B1 (en) Effluent treatment
JP2696145B2 (en) Wastewater and sludge treatment methods
JP2006212537A (en) Treatment method of organic material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees