JP3575633B2 - Nucleic acid synthesis method - Google Patents
Nucleic acid synthesis method Download PDFInfo
- Publication number
- JP3575633B2 JP3575633B2 JP34036094A JP34036094A JP3575633B2 JP 3575633 B2 JP3575633 B2 JP 3575633B2 JP 34036094 A JP34036094 A JP 34036094A JP 34036094 A JP34036094 A JP 34036094A JP 3575633 B2 JP3575633 B2 JP 3575633B2
- Authority
- JP
- Japan
- Prior art keywords
- pcr
- added
- sample
- nucleic acid
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、核酸合成法、特にポリメラーゼ連鎖反応(PCR)法を用いる核酸合成法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来、肝炎の原因ウイルスであるHBV、HCV又はAIDSの原因ウイルスであるHIV等のウイルス、敗血症を起こす細菌又は遺伝病等の遺伝子検査には、血液中に存在するウイルス、細菌又は末梢血白血球のDNAまたは逆転写酵素によりRNAより合成したcDNAをポリメラーゼ連鎖反応(PCR)法により増幅させて検出する方法が用いられている。
しかし、血液、血清又は血漿試料を直接PCR反応溶液中に添加しても、試料中に含まれる夾雑物によりPCRが強く抑制され、目的とする核酸の検出が困難となる。従って、核酸合成前に、試料中のウイルス、細菌又は細胞からDNA又はRNAの分離精製が必須となる(Blin,N and D.W.Stafford,Nucleic Acids Res.,3,2303−2306,1976 )。
【0003】
試料から、ウイルス、細菌、又は細胞の核酸を分離精製するには、フェノール−クロロホルム、イオン交換樹脂、ガラスビーズ、蛋白凝集剤等種種の材料を用いて行われ、一定の時間を必要とする。しかし、遺伝子検査は迅速を要する場合が多く、また、PCR法は極めて高感度であるため、コンタミネーションの機会を可能な限り減らすことが必要であることから、試料の前処理はなるべく行わず、試料中の核酸を直接増幅させる方法の開発が必要とされている。
従って、本発明の目的は、血液を多く含む試料中の核酸を、複雑な前処理なしにPCR法により増幅させる方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、上記の状況に鑑み、PCR法に対する血清の影響を鋭意検討したところ、PCR反応溶液にヒト血清を10%の濃度で添加し、標的DNAを加えてPCRを行ったところ、PCR反応溶液が白濁化し、PCRが阻害された。このことから、本発明者らは、反応溶液の白濁化は、蛋白の凝集であり、PCRが阻害される原因の一つは、反応中の蛋白の凝集によるものであると考え、種々検討を加えたところ、血清試料についてPCRを行う前に、予め、血液成分を凝固させることにより、PCRが血清の影響を受けることなく進行する事実を発見した。本発明は、かかる発見に基づき更に検討を進めて完成するに至ったものである。
【0005】
即ち、本発明の要旨は、血液を主成分とする試料中に存する、目的核酸の塩基配列を増幅させる核酸合成法において、予め血液成分を凝固させることを特徴とする核酸合成法、に関する。
【0006】
以下に本発明について詳細に説明する。
本発明に用いられる血液を主成分とする試料としては、PCRによる増幅の目的となる肝炎やエイズ等の原因ウイルス、細菌、細胞等を含む試料であれば、特に限定されるものではない。
【0007】
本発明における血液を凝固させる方法としては、熱処理による方法が代表的なものである。熱処理の方法としては、ヒートブロックを用いる方法、温浴を用いる方法、電子レンジを用いる方法等のいずれでもよく、その他の熱処理方法でもよい。
本発明における熱処理の温度は、通常65〜100℃、好ましくは75〜100℃である。熱処理の時間は、熱処理の温度により変わるが、試料の温度が処理温度に達してから通常1秒間〜60分間、好ましくは1秒間〜10分間である。
【0008】
熱処理に付される本発明に係る試料としては、PCR法による増幅の目的となる肝炎やエイズ等の原因ウイルス、細菌、細胞等を含む血清そのもの又は蒸留水で1〜3倍以内に希釈された試料が用いられる。
【0009】
本発明に用いられる試料中の可溶性蛋白の含量は、通常25mg/ml以上、、好ましくは40mg/ml以上である。
【0010】
血液を主成分とする試料については、本発明の方法で処理することにより、以下の実施例に示すように、PCRは支障なく行うことができる。熱処理が不十分であり蛋白の凝固が不十分であれば、PCR中に白濁が生じ、核酸の合成は進行し難い。従って、本発明の方法を用いることにより、血液を含む試料からの核酸合成を簡易かつ迅速に行うことができる。
【0011】
PCRは、Saiki らが開発した方法(Science 230, 1350−1354(1985))に従って行うことができる。この方法は、ある特定のヌクレオチド配列領域(本発明の場合は、試料中に存在するDNA)を検出する場合、その領域の両端の一方は+鎖を、他方は−鎖をそれぞれ認識してハイブリダイゼーションするようなオリゴヌクレオチドを用意し、それを熱変性により1本鎖状態にした試料核酸に対し鋳型依存性ヌクレオチド重合反応のプライマーとして機能させ、生成した2本鎖核酸を再び1本鎖に分離し、再び同様な反応を起こさせる。この一連の操作を繰り返すことで2つのプライマーに挟まれた領域は検出できるまでにコピー数が増大する。
【0012】
本発明の方法は、PCRのみでなく、逆転写酵素反応やリガーゼチェインリアクション(Ligarse chain reaction) 等にも利用可能であると思われる。
【0013】
【実施例】
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。
【0014】
実施例1
ヒト血清10μlに段階希釈したHIV−1のDNA1μl(100ag/μl〜10fg/μl)および1〜5倍希釈となるように適当量の蒸留水を加えた後、ミネラルオイル50μlを添加し、95℃にて5分間の熱処理を行ったものを試料として用いた。熱処理試料に、PCR反応溶液を添加し、溶液量を100μlとしてPCRを行った。
【0015】
PCRのプライマーは、C−Y.Ou(Science 239, 295−297,1988)が用いたHIV−1env遺伝子領域内に位置するSK68(配列番号:1)とSK69(配列番号:2)とを用いた。なお、SK68とSK69の塩基配列は次の通りであり、2種類のプライマーに挟まれる領域には142塩基対(プライマーを含む)が存在する。
SK68:AGCAGCAGGAAGCACTATGG
SK69:CCAGACTGTGAGTTGCAACAG
PCR反応溶液は、各プライマーを1μM、4種のデオキシリボヌクレオシド三リン酸(dNTP)を200μM含む反応液(10mMのトリス塩酸(pH8.3)、50mMのKCl、1.5mMのMgCl2 、0.01%(w/v)のゼラチン、0.025U/μlの耐熱性DNAポリメラーゼ(AmpliTaq,Perkin Elmer Cetus 社製)を用いた。
PCRは、94℃にて1分間の熱変性、55℃にて1分間のアニーリング、72℃にて1分間のDNA鎖伸長反応を1サイクルとして40サイクルの反応を行い、最後に72℃にて7分間のDNA鎖伸長反応を行うことにより、2種類のプライマーに挟まれた領域のDNA部分の増幅を行った。
【0016】
PCR終了後、反応液の10μlを用いて、3%アガロースを含むTAE(40mMのトリス−酢酸、1mMのEDTA(pH8.0))液中で電気泳動を行い、臭化エチジウムによるDNAの染色と検出を行った。
その結果を図1に示す。図は、電気泳動によるDNAの検出結果であり、矢印は、特異的なPCR産物の泳動位置を、Mはマーカー(HincIIて切断した125ngのφX174のDNA)を示す。
【0017】
蒸留水で希釈しない試料および2倍希釈した試料の熱処理により、血清蛋白の凝固が認められたが、3倍希釈もしくは5倍希釈した試料の熱処理では、血清蛋白の凝固が不完全であった。熱処理後、PCRを行ったところ、熱処理により血清蛋白の凝固が認められた希釈なしもしくは2倍希釈の試料を用いた場合、PCR中に反応溶液の白濁が認められず、試料中に10コピーのHIV−1のDNAが存在すれば、HIV−1env遺伝子に特異的なPCR産物が検出された。一方、熱処理により、血清蛋白の凝固が不完全な3倍希釈もしくは5倍希釈の試料を用いた場合、PCR中に反応溶液の白濁化が認められ、試料中に1000コピーのHIV−1のDNAが存在しても、特異的なPCR産物は認められなかった。
【0018】
実施例2
ヒト血清10μlに段階希釈したλファージ2μl(0.05〜5000PFU(plaque forming unit)/μl)を加え、ミネラルオイル50μlを添加し、95℃にて5分間の熱処理を行ったものを試料として用いた。熱処理試料に、PCR反応溶液を添加し、溶液量を100μlとしてPCRを行った。
【0019】
PCRのプライマーは、λファージ遺伝子領域内に位置するP1(配列番号:3)およびP2(配列番号:4)を用いた。なお、P1およびP2の塩基配列は次のとおりであり、2種類のプライマーに挟まれる領域には500bpの塩基配列(プライマーを含む)が存在する。
P1:GATGAGTTCGTGTCCGTACAACTGG
P2:GGTTATCGAAATCAGCCACAGCGCC
PCR反応溶液の組成、PCRおよび電気泳動は、実施例1と同様に行った。結果を図2に示す。図2は、電気泳動によるDNA検出結果であり、矢印とマーカーは図1と同様である。
【0020】
血清を予め熱処理せずにPCRに用いた場合、10000PFUのλファージが存在しても、λファージ遺伝子に特異的なPCR産物は認められないが、予め熱処理し、血清蛋白を凝固させた場合、1PFUのλファージが存在すれば、特異的なPCR産物が認められた。
【0021】
実施例3
ヒト血清4μlに段階希釈した易熱性エントロトキシン(LT)産生大腸菌4μl(0.25〜2500cfu/μl)を加え、さらにミネラルオイル25μlを添加し、95℃にて5分間の熱処理を行ったものを試料として用いた。熱処理試料にPCR反応溶液を添加し溶液量を40μlとしてPCRを行った。
【0022】
PCRのプライマーは、LT遺伝子領域内に位置するELT1、ELT2(島津製作所製)を用いた。なお、2種類のプライマーに挟まれる領域には264bpの塩基配列(プライマーを含む)が存在する。
PCR反応溶液の組成、PCRおよび電気泳動は、実施例1と同様に行った。結果を図3に示す。図は電気泳動によるDNA検出結果であり、矢印とマーカーは図1に同じである。
【0023】
血清を予め熱処理せずにPCRに用いた場合、1試料当り10000個のの大腸菌細胞が存在しても、反応終了液中にはLT遺伝子に特異的なPCR産物は認められないが、熱処理により血清蛋白を凝固させた場合は1試料当り1個の細胞の大腸菌が存在すれば特異的なPCR産物が認められた。
【0024】
【発明の効果】
本発明により、核酸の分離精製の過程を経ずに、血液を主成分とする試料から直接目的のDNAを増幅することが可能となる。
従って、本発明により、簡便、迅速、かつコンタミネーションの危険の少ない核酸合成法を提供することができる。
【0025】
【配列表】
配列番号:1
配列の長さ:20
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:Genomic DNA
ハイポセティカル配列:NO
アンチセンス:NO
起源:HIVenv遺伝子
配列の特徴
特徴を決定した方法:S
配列
AGCAGCAGGA AGCACTATGG 20
【0026】
配列番号:2
配列の長さ:21
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:Genomic DNA
ハイポセティカル配列:NO
アンチセンス:NO
起源:HIVenv遺伝子
配列の特徴
特徴を決定した方法:S
配列
CCAGACTGTG AGTTGCAACA G 21
【0027】
配列番号:3
配列の長さ:25
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:Genomic DNA
ハイポセティカル配列:NO
アンチセンス:NO
起源:λファージ遺伝子
配列の特徴
特徴を決定した方法:S
配列
GATGAGTTCG TGTCCGTACA ACTGG 25
【0028】
配列番号:4
配列の長さ:25
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:Genomic DNA
ハイポセティカル配列:NO
アンチセンス:NO
起源:λファージ遺伝子
配列の特徴
特徴を決定した方法:S
配列
GGTTATCGAA ATCAGCCACA GCGCC 25
【図面の簡単な説明】
【図1】図1は、HIV−1 DNAを添加したヒト血清を蒸留水で希釈して作成した試料を熱処理した後PCRを行った場合の電気泳動図である。
【図2】図2は、λファージを添加したヒト血清を熱処理後にPCRを行った場合の電気泳動図である。
【図3】図3は、易熱性エンテロトキシン(LT)産生大腸菌を添加したヒト血清を熱処理後にPCRを行った場合の電気泳動図である。
【符号の説明】
M マーカー
A ヒト血清を希釈しない群
B ヒト血清を2倍希釈した群
C ヒト血清を3倍希釈した群
D ヒト血清を5倍希釈した群
E 血清無添加・熱処理なし(コントロール)の群
F 血清添加し、熱処理した群
G 血清無添加・熱処理なし(コントロール)の群
H 血清添加し熱処理なし(コントロール)の群
I 血清添加し、熱処理した群
J 血清無添加・熱処理なし(コントロール)の群
K 血清添加し熱処理なし(コントロール)の群
1 添加したHIV−1 DNAのコピー数が1000コピー
2 添加したHIV−1 DNAのコピー数が100コピー
3 添加したHIV−1 DNAのコピー数が10コピー
4 HIV−1 DNA無添加
5 添加したλファージが10PFU
6 添加したλファージが1PFU
7 添加したλファージが0.1PFU
8 λファージを無添加
9 添加したλファージが10000PFU
10 添加した大腸菌が100CFU
11 添加した大腸菌が10CFU
12 添加した大腸菌が1CFU
13 添加した大腸菌が0.1CFU
14 大腸菌無添加
15 添加した大腸菌が10000CFU[0001]
[Industrial applications]
The present invention relates to a nucleic acid synthesis method, particularly to a nucleic acid synthesis method using a polymerase chain reaction (PCR) method.
[0002]
2. Description of the Related Art
Conventionally, viruses such as HBV, HCV which is a virus causing hepatitis or HIV which is a virus causing AIDS, bacteria which cause sepsis, or genetic tests such as genetic diseases, include viruses, bacteria or peripheral blood leukocytes present in blood. A method has been used in which DNA or cDNA synthesized from RNA by reverse transcriptase is amplified and detected by polymerase chain reaction (PCR).
However, even if a blood, serum or plasma sample is directly added to a PCR reaction solution, PCR is strongly suppressed by impurities contained in the sample, making it difficult to detect a target nucleic acid. Therefore, prior to nucleic acid synthesis, separation or purification of DNA or RNA from viruses, bacteria or cells in a sample is essential (Blin, Nand DW Stafford, Nucleic Acids Res., 3, 2303-2306, 1976). .
[0003]
Separating and purifying nucleic acids of viruses, bacteria, or cells from a sample is performed using various materials such as phenol-chloroform, ion exchange resin, glass beads, and a protein flocculant, and requires a certain period of time. However, genetic testing often requires a high speed, and since the PCR method is extremely sensitive, it is necessary to reduce the chance of contamination as much as possible. There is a need to develop a method for directly amplifying nucleic acids in a sample.
Therefore, an object of the present invention is to provide a method for amplifying a nucleic acid in a sample containing a large amount of blood by a PCR method without complicated pretreatment.
[0004]
[Means for Solving the Problems]
In view of the above situation, the present inventors have conducted intensive studies on the effect of serum on the PCR method. When the human serum was added to the PCR reaction solution at a concentration of 10% and the target DNA was added, PCR was performed. The PCR reaction solution became cloudy, and PCR was inhibited. From this, the present inventors consider that the clouding of the reaction solution is caused by protein aggregation, and that one of the causes of the inhibition of PCR is due to the aggregation of the protein during the reaction. In addition, it was discovered that by performing blood coagulation in advance before performing PCR on a serum sample, the PCR proceeded without being affected by serum. The present invention has been completed by further study based on such findings.
[0005]
That is, the gist of the present invention relates to a nucleic acid synthesis method for amplifying a base sequence of a target nucleic acid , which is present in a sample containing blood as a main component, wherein the blood component is previously coagulated.
[0006]
Hereinafter, the present invention will be described in detail.
The sample containing blood as a main component used in the present invention is not particularly limited as long as it is a sample containing viruses, bacteria, cells, etc., which cause amplification by PCR, such as hepatitis and AIDS.
[0007]
As a method of coagulating blood in the present invention, a method by heat treatment is typical. The method of heat treatment may be any of a method using a heat block, a method using a warm bath, a method using a microwave oven, and other heat treatment methods.
The temperature of the heat treatment in the present invention is usually 65 to 100 ° C, preferably 75 to 100 ° C. The time of the heat treatment varies depending on the temperature of the heat treatment, and is usually 1 second to 60 minutes, preferably 1 second to 10 minutes after the temperature of the sample reaches the processing temperature.
[0008]
The sample according to the present invention to be subjected to the heat treatment was diluted within 1 to 3 times with serum itself containing distilled viruses such as hepatitis and AIDS, bacteria, cells, etc., or distilled water, which was the purpose of amplification by the PCR method. A sample is used.
[0009]
The content of the soluble protein in the sample used in the present invention is usually 25 mg / ml or more, preferably 40 mg / ml or more.
[0010]
By treating a sample containing blood as a main component by the method of the present invention, PCR can be performed without any trouble as shown in the following Examples. If the heat treatment is insufficient and the coagulation of the protein is insufficient, cloudiness occurs during the PCR, and the synthesis of the nucleic acid hardly proceeds. Therefore, by using the method of the present invention, nucleic acid synthesis from a sample containing blood can be performed easily and quickly.
[0011]
PCR can be performed according to the method developed by Saiki et al. (Science 230, 1350-1354 (1985)). In this method, when detecting a specific nucleotide sequence region (in the case of the present invention, DNA present in a sample), one of both ends of the region recognizes a positive strand and the other recognizes a negative strand, respectively, to detect a high strand. An oligonucleotide to be hybridized is prepared, and it is used as a primer for a template-dependent nucleotide polymerization reaction on a sample nucleic acid which has been made into a single strand by thermal denaturation, and the generated double-stranded nucleic acid is separated again into a single strand. Then, a similar reaction is caused again. By repeating this series of operations, the copy number of the region sandwiched between the two primers increases until it can be detected.
[0012]
The method of the present invention seems to be applicable not only to PCR but also to reverse transcriptase reaction, ligase chain reaction, and the like.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples and the like.
[0014]
Example 1
After adding 1 μl (100 ag / μl to 10 fg / μl) of HIV-1 DNA serially diluted to 10 μl of human serum and an appropriate amount of distilled water so as to obtain a 1 to 5-fold dilution, 50 μl of mineral oil was added, and 95 ° C. Heat treated for 5 minutes at was used as a sample. A PCR reaction solution was added to the heat-treated sample, and PCR was performed with a solution volume of 100 μl.
[0015]
The primers for PCR were CY. SK68 (SEQ ID NO: 1) and SK69 (SEQ ID NO: 2) located in the HIV-1 env gene region used by Ou (Science 239, 295-297 , 1988) were used. The base sequences of SK68 and SK69 are as follows, and there are 142 base pairs (including primers) in the region between the two types of primers.
SK68: AGCAGCAGGAAGCACTATGG
SK69: CCAGACTGTGAGTTGCAACAG
The PCR reaction solution was a reaction solution containing 1 μM of each primer and 200 μM of four kinds of deoxyribonucleoside triphosphates (dNTPs) (10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl 2 , 0.1 mM 01% (w / v) gelatin and 0.025 U / μl thermostable DNA polymerase (AmpliTaq, manufactured by Perkin Elmer Cetus) were used.
The PCR was carried out for 40 cycles, with 1 cycle of heat denaturation at 94 ° C., 1 minute of annealing at 55 ° C., and 1 minute of DNA strand extension at 72 ° C., and finally, at 72 ° C. By performing a DNA chain extension reaction for 7 minutes, the DNA portion in the region between the two types of primers was amplified.
[0016]
After completion of the PCR, 10 μl of the reaction solution was subjected to electrophoresis in a TAE (40 mM Tris-acetic acid, 1 mM EDTA (pH 8.0)) solution containing 3% agarose to stain the DNA with ethidium bromide. Detection was performed.
The result is shown in FIG. The figure shows the results of detection of DNA by electrophoresis. The arrow indicates the migration position of the specific PCR product, and M indicates the marker (125 ng φX174 DNA cut with HincII).
[0017]
Heat treatment of the sample not diluted with distilled water and the sample diluted 2-fold showed coagulation of serum protein, but heat treatment of the sample diluted 3-fold or 5-fold resulted in incomplete coagulation of serum protein. After the heat treatment, PCR was performed. When no dilution or 2-fold dilution of the sample was observed in which the serum protein was coagulated by the heat treatment, no turbidity of the reaction solution was observed during PCR, and 10 copies of the sample were contained in the sample. If HIV-1 DNA was present, a PCR product specific for the HIV-1 env gene was detected. On the other hand, in the case of using a 3-fold or 5-fold diluted sample in which coagulation of serum proteins is incomplete due to heat treatment, clouding of the reaction solution is observed during PCR, and 1000 copies of HIV-1 DNA are contained in the sample. , No specific PCR product was observed.
[0018]
Example 2
2 μl of λ phage (0.05 to 5000 PFU (plaque forming unit) / μl) serially diluted with 10 μl of human serum was added, 50 μl of mineral oil was added, and heat treatment at 95 ° C. for 5 minutes was used as a sample. Was. A PCR reaction solution was added to the heat-treated sample, and PCR was performed with a solution volume of 100 μl.
[0019]
P1 (SEQ ID NO: 3) and P2 (SEQ ID NO: 4) located in the λ phage gene region were used as PCR primers. The base sequences of P1 and P2 are as follows, and a 500 bp base sequence (including primers) exists in the region between the two types of primers.
P1: GATGAGTTCGTGTCCGTACAACTGG
P2: GGTTATCGAAATCAGCCACAGCGCC
The composition of the PCR reaction solution, PCR and electrophoresis were performed in the same manner as in Example 1. FIG. 2 shows the results. FIG. 2 shows the results of DNA detection by electrophoresis, and the arrows and markers are the same as in FIG.
[0020]
When serum was used for PCR without heat treatment in advance, even if 10,000 PFU of λ phage was present, no PCR product specific to the λ phage gene was observed, but when heat treatment was performed in advance to coagulate serum proteins, Specific PCR product was observed when 1 PFU of λ phage was present.
[0021]
Example 3
4 μl of heat-labile entropotoxin (LT) -producing Escherichia coli (0.25 to 2500 cfu / μl) serially diluted with 4 μl of human serum was added, and 25 μl of mineral oil was further added, followed by heat treatment at 95 ° C. for 5 minutes. Used as a sample. A PCR reaction solution was added to the heat-treated sample to make the solution volume 40 μl, and PCR was performed.
[0022]
As primers for PCR, ELT1 and ELT2 (manufactured by Shimadzu Corporation) located in the LT gene region were used. The region between the two types of primers has a 264 bp base sequence (including the primers).
The composition of the PCR reaction solution, PCR and electrophoresis were performed in the same manner as in Example 1. The results are shown in FIG. The figure shows the results of DNA detection by electrophoresis. The arrows and markers are the same as in FIG.
[0023]
When serum was used for PCR without heat treatment in advance, even if 10,000 E. coli cells were present per sample, no PCR product specific to the LT gene was observed in the reaction termination solution. When serum protein was coagulated, a specific PCR product was recognized if E. coli was present in one cell per sample.
[0024]
【The invention's effect】
According to the present invention, it is possible to directly amplify a target DNA from a sample containing blood as a main component without passing through a process of separating and purifying nucleic acids.
Therefore, according to the present invention, it is possible to provide a method for synthesizing a nucleic acid that is simple, rapid, and has little risk of contamination.
[0025]
[Sequence list]
SEQ ID NO: 1
Sequence length: 20
Sequence type: Number of nucleic acid strands: Single-stranded topology: Type of linear sequence: Genomic DNA
Hypothetical sequence: NO
Antisense: NO
Origin: Features of HIV env gene sequence Characterized method: S
Sequence AGCAGCAGGA AGCACTATGG 20
[0026]
SEQ ID NO: 2
Sequence length: 21
Sequence type: Number of nucleic acid strands: Single-stranded topology: Type of linear sequence: Genomic DNA
Hypothetical sequence: NO
Antisense: NO
Origin: Features of HIV env gene sequence Characterized method: S
Sequence CCAGACTGTG AGTTGCAACA G 21
[0027]
SEQ ID NO: 3
Sequence length: 25
Sequence type: Number of nucleic acid strands: Single-stranded topology: Type of linear sequence: Genomic DNA
Hypothetical sequence: NO
Antisense: NO
Origin: Characteristic of λ phage gene sequence Characterized method: S
Sequence GATGAGTTCG TGTCCGTACA ACTGG 25
[0028]
SEQ ID NO: 4
Sequence length: 25
Sequence type: Number of nucleic acid strands: Single-stranded topology: Type of linear sequence: Genomic DNA
Hypothetical sequence: NO
Antisense: NO
Origin: Characteristic of λ phage gene sequence Characterized method: S
Sequence GGTTATCGAA ATCAGCCACA GCGCC 25
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an electrophoretogram when PCR is performed after heat-treating a sample prepared by diluting human serum to which HIV-1 DNA has been added with distilled water.
FIG. 2 is an electrophoretogram when human serum to which λ phage has been added is subjected to PCR after heat treatment.
FIG. 3 is an electrophoretogram when PCR is performed after heat treatment of human serum to which heat-labile enterotoxin (LT) -producing Escherichia coli has been added.
[Explanation of symbols]
M Marker A Group without dilution of human serum Group B Group with 2-fold dilution of human serum Group D with 3-fold dilution of human serum Group E with 5-fold dilution of human serum Group F with no serum added and no heat treatment (control) Group G with added and heat treated Group H with no serum added and no heat treatment (control) Group I with serum added and no heat treatment (control) Group J with serum added and heat treated Group K with no serum added and no heat treatment (control)
6 The added λ phage is 1 PFU
7 When the added λ phage is 0.1 PFU
8 No λ phage added 9 λ phage added was 10,000 PFU
10 100 CFU of added E. coli
11 Escherichia coli added is 10 CFU
12 1 E. coli added CFU
13 0.1 CFU of added E. coli
14 No E. coli added 15 E. coli added was 10,000 CFU
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34036094A JP3575633B2 (en) | 1994-12-27 | 1994-12-27 | Nucleic acid synthesis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34036094A JP3575633B2 (en) | 1994-12-27 | 1994-12-27 | Nucleic acid synthesis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08173198A JPH08173198A (en) | 1996-07-09 |
JP3575633B2 true JP3575633B2 (en) | 2004-10-13 |
Family
ID=18336201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34036094A Expired - Fee Related JP3575633B2 (en) | 1994-12-27 | 1994-12-27 | Nucleic acid synthesis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3575633B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012144485A1 (en) | 2011-04-20 | 2012-10-26 | オリンパス株式会社 | Method for detecting nucleic acid molecule in biosample |
-
1994
- 1994-12-27 JP JP34036094A patent/JP3575633B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012144485A1 (en) | 2011-04-20 | 2012-10-26 | オリンパス株式会社 | Method for detecting nucleic acid molecule in biosample |
Also Published As
Publication number | Publication date |
---|---|
JPH08173198A (en) | 1996-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5104792A (en) | Method for amplifying unknown nucleic acid sequences | |
CA2017522C (en) | Process for controlling contamination of nucleic acid amplification reactions | |
CA2071594C (en) | Methods for nucleic acid amplification | |
US5962665A (en) | Nucleic acid primers and probes for detecting HIV-1 and HIV-2 | |
AU749882B2 (en) | A method of removing nucleic acid contamination in amplification reactions | |
US5869251A (en) | Use of primers containing nucleotides having altered base pairing characteristics in the amplification of nucleic acid molecules | |
EP1598429A1 (en) | Detection of amplicon contamination during PCR exhibiting two different annealing temperatures | |
US5569582A (en) | Rapid amplification and detection of nucleic acids | |
EP0415755B1 (en) | Process for controlling contamination of oligonucleotide-dependent nucleic acid amplification reactions | |
JPH09107997A (en) | Method for amplification of target nucleic acid and kit for amplification and composition for pcr | |
JP2000342274A (en) | Oligonucleotide reverse transcription primer for efficient detection of hiv-1 and hiv-2 and its use | |
JPH07163370A (en) | Method for simultaneous amplification of nucleic acid | |
PT94576A (en) | PROCESS OF DETECTION AND / OR IDENTIFICATION OF NUCLEIC ACID | |
EP0585660A2 (en) | Exonuclease decontamination method | |
WO2022024935A1 (en) | Method for suppressing non-specific nucleic acid amplification | |
JPH09500539A (en) | Linked linear amplification of nucleic acids | |
JP5442917B2 (en) | Oligonucleotide primers for efficient multiplex detection of hepatitis C virus (HCV) and human immunodeficiency virus (HIV) | |
WO1994003635A1 (en) | Rapid amplification and detection of nucleic acids | |
JP3575633B2 (en) | Nucleic acid synthesis method | |
JP3494509B2 (en) | Nucleic acid synthesis method | |
JP3416981B2 (en) | Nucleic acid synthesis method | |
EP0479158A1 (en) | Reagent for RNA detection and RNA detection method using it | |
RU2720768C1 (en) | Crispr-cas system for detecting proviral dna of human immunodeficiency virus integrated into a human genome in ultra-low concentrations | |
JP2006187221A (en) | Pretreatment method of whole blood sample and method for amplifying nucleic acid | |
JPH09187277A (en) | Direct pcr amplification technique of nucleic acid using whole blood as template |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040701 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |