JP3574850B2 - Axle load measurement method for vehicles running on bridges - Google Patents

Axle load measurement method for vehicles running on bridges Download PDF

Info

Publication number
JP3574850B2
JP3574850B2 JP2001368459A JP2001368459A JP3574850B2 JP 3574850 B2 JP3574850 B2 JP 3574850B2 JP 2001368459 A JP2001368459 A JP 2001368459A JP 2001368459 A JP2001368459 A JP 2001368459A JP 3574850 B2 JP3574850 B2 JP 3574850B2
Authority
JP
Japan
Prior art keywords
vehicle
bridge
load
axle load
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001368459A
Other languages
Japanese (ja)
Other versions
JP2003166870A (en
Inventor
達也 小塩
健太郎 山田
Original Assignee
名古屋大学長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 名古屋大学長 filed Critical 名古屋大学長
Priority to JP2001368459A priority Critical patent/JP3574850B2/en
Publication of JP2003166870A publication Critical patent/JP2003166870A/en
Application granted granted Critical
Publication of JP3574850B2 publication Critical patent/JP3574850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、橋梁上を車両が走行する際の、当該車両によって橋梁に加わる移動荷重に基づいて車両の軸重を測定する方法に関するものである。
【0002】
【従来の技術】
橋梁上を走行する車両の重量を測定することは、橋梁の維持管理の上で重要なものとなっている。かかる重量測定方法としては、例えば路面上にセンサーを設置し、このセンサー上を走行する車両の重量を測定する方法や、車両の走行によって橋梁の桁に生じる曲げモーメントを測定し、その測定値に基づいて車両の重量を求める方法などが従来より提案されている。
【0003】
しかしながら前者の場合、センサーが消耗し易く、またセンサーの保守作業を交通量の多い橋梁では交通規制等により作業員の安全を十分に確保した上で行う必要があるといった問題があり、また後者の場合には、データ処理や測定システムの調整が煩雑であったり、車両の総重量が測定できても、軸数や軸重の正確な測定が困難であるという問題があった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、上記の問題点を解決し、センサー等の測定手段の設置および保守が容易であり、またデータ処理や測定システムの調整も簡便に行うことができる、橋梁上を走行する車両の軸重測定方法を提供することにある。
【0005】
【課題を解決するための手段】
すなわち本発明による橋梁上を走行する車両の軸重測定方法は、
橋梁上を走行する車両の軸重測定に際し、
当該橋梁の、車両の走行に伴う移動荷重に対する前記橋梁の桁の支点反力の影響線の形状が急変する箇所における前記移動荷重に対する前記支点反力の変動量に基づいて当該車両の軸重を求めることを特徴とするものである。
【0006】
また本発明による橋梁上を走行する車両の軸重測定方法は、
前記橋梁の桁の支点反力の変動量に基づいて当該車両の種類および走行速度を求めることを特徴とするものである。
【0007】
【発明の効果】
本発明による橋梁上を走行する車両の軸重測定方法においては、橋梁上を車両が走行する際、その車両によって橋梁に加わる移動荷重に対する橋梁部材の応答値の関数である影響線に着目し、この影響線の形状が荷重の移動、すなわち車両の走行に伴って急変する箇所における、移動荷重に対する応答値の変動量、例えばひずみの変動量を検出し、これに基づいて荷重、つまり車両の軸重を測定することとしている。
【0008】
測定個所における移動荷重に対する応答値(例えばひずみ)は、車両の各車軸による軸重(すなわち移動荷重)が時間差を有して橋梁に到達することにより、各軸重の影響を受けることとなる。この軸重に対する橋梁部材の応答値の関数である影響線の形状が急変する箇所を車両の一つの車軸による移動荷重が通過する場合、そこでの移動荷重に対する応答値の波形にも急変が生じる。一方、他の車軸は影響線の形状が急変する箇所以外の所に位置しているため、短い時間間隔における前記応答値の波形の変動量は、主として測定個所を通過した車軸による荷重(軸重)の大きさに依存することとなる。本発明は、このことに基づいて車軸の測定を行うものである。
【0009】
それゆえ、影響線が急変する箇所のみを測定個所として選択すれば良いことから、測定個所を少なくすることができ、また、測定のためのセンサー等を必ずしも路面上に設置する必要も無くなることから、センサーが短期間で損耗することがなく、低コストで長期間に亘る測定が可能となると共に、センサーの設置や保守作業の際の作業員の安全を確保することが可能となる。
【0010】
しかも、移動荷重に対する応答値(例えばひずみ)の変動量を測定することから、比較的簡単なデータ処理手順によって高い精度で軸重を求めることが可能である。
【0011】
さらに、測定個所、すなわち影響線の形状が急変する箇所は、予め測定対象となる橋梁の設計図面から計算によって比較的容易に求めることができるので、測定個所の設定を簡便かつ効率的に行うことが可能である。
【0012】
特に本発明による橋梁上を走行する車両の軸重測定方法においては、移動荷重に対する応答値として橋梁の桁の支点反力を用い、車両の通過に伴う支点反力の変動量に基づいて軸重を求めることとしている。
【0013】
それによって、測定個所として橋梁の橋台または橋脚上の支点を利用することができ、また測定のためのセンサー(例えばひずみゲージ)を設置する個所の数も非常に少なくすることができ、しかも路面上に設置する必要が無いため、センサーが短期間で損耗することがなく、低コストで長期間に亘る測定がより一層可能となると共に、センサーの設置や保守作業の際の作業員の安全を確保することもできる。さらに、車両の通過に伴う支点反力の変動量より、当該車両の車種の判別や走行速度を求めることも可能である。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施形態について説明する。
【0015】
図1および図2は本発明の一実施形態を示すものであり、図1は軸重測定を行う橋梁を橋軸方向に沿った図であり、図2は幅員方向に沿った図である。車両の軸重を測定する橋梁1は、橋台2,3間に支承4,5を介して掛け渡された桁ウェブ6上に路面である床版7を設置し、床版7上を車両8が走行する単純桁型のプレートガーダー橋である。また、図2に示すように、橋梁1は4本の桁ウェブ6で床版7を支持する上下2車線型の橋梁であり、各桁ウェブ6には垂直補剛材9を設けると共に、各桁ウェブ4間には複数の横桁10を掛け渡し、また斜め補強材11,12をも設けている。
【0016】
本実施形態においては、橋梁1における車両の軸重の測定は橋梁1の支点反力から求めることとしており、ここでは橋台3上における支点反力を、ひずみゲージ13を用いて測定する。図3および図4はひずみゲージ取り付け箇所を詳細に示すものである。ひずみゲージ13は、橋台3上に支承5を介して設置した桁ウェブ6に設けた垂直補剛材9に取り付けている。
【0017】
垂直補剛材9に取り付けたひずみゲージ13を図示しない動ひずみ計と接続し、ひずみの時刻歴波形を測定する。すなわち、車両の通過に伴って垂直補剛材9には支点反力によるひずみ、ここでは支点反力に比例した圧縮ひずみが生じるため、この圧縮ひずみの変化を測定することで支点反力を求めることができる。また時刻歴波形を求めることにより、車両の通過に伴う支点反力の変動を求めることができる。
【0018】
図5は、単純桁上の荷重の移動に伴う支点反力の影響線の時間的な変化、すなわち影響線の形状を示すグラフであり、横軸は単純桁の原点からの距離を、縦軸は影響線の値をそれぞれ示す。ここで単純桁の原点は、荷重が進入して来る側の一端とし、支点反力は他端における値を示す。また縦軸に示す影響線の値は−1を最大値として無次元化している。
【0019】
図より明らかなように、着目している支点において影響線の値は最大となり、もう一方の支点では0となっている。また、影響線の形状も、着目している支点において最大値から最小値へと急激に変化していることがわかる。これは、桁上を移動する荷重が桁から退出することによって桁に加わる荷重が急激に消失するためであり、そのため支点反力も同時に消失するからである。このことから、着目している支点が、支点反力の影響線の形状が急激に変化する箇所であることが示される。
【0020】
次に、本発明に係る軸重測定方法を検証するために行った実験および、その結果について説明する。
【0021】
図6は、本発明に係る軸重測定方法の検証のため、橋梁上を走行する車両の軸重測定に用いた車両モデルを示すものである。モデルとして用いた車両20は6輪トラックであり、前輪(第1軸20a)の軸重が5tonf、後輪(第2軸20bおよび第3軸20c)の軸重がそれぞれ10tonfである。軸重の測定は、車両20が図1に示す橋梁1の左側(橋台2側)から進入し、橋梁1上を走行して右側(橋台3側)へ退出する際の支点反力の変動を、測定個所(図1〜図4参照)に設けたひずみゲージ13で検出したひずみの変動から求めた。
【0022】
図7は測定個所(図1〜4参照)におけるひずみの時間的な変化(時刻歴波形)を示すグラフであり、横軸に時間を、縦軸にひずみ(ひずみゲージの値)を取る。図より、車両20の各車軸が測定個所、すなわち支点上を通過する際、応答値であるひずみの値が急激に変化していることがわかる。これは、前述したように、各車軸が支点上を通過することにより荷重が急激に消失するため、荷重によって生じる支点反力もまた急激に消失し、これがひずみゲージ13によって検出されていることを示している。
【0023】
次に、このひずみの急変をより正確に行うため、図7の時刻歴波形に対して前進差分の計算を行い、差分波形を求めた。図8は、この差分波形を示すものであり、横軸に時間、縦軸にはひずみ値より換算した荷重を示す。
【0024】
時刻歴波形に対して前進差分計算を行って差分波形を求めた場合、元の波形が急変するところでは差分波形にピークが生じ、それ以外のところでは差分量は非常に小さくなる。したがって、このピークが生じた時刻が荷重、すなわち車軸の通過した時刻を示すものとなり、この時刻におけるひずみを換算することにより軸重が得られることとなる。軸重は、ひずみゲージを取り付けた垂直補剛材の面積と支承直上の桁ウェブの面積の和をA、ひずみをε、桁ウェブのヤング係数をEとすると、支点反力(荷重)Pは、次式
【数1】
P=A×E×ε
で求めることができる。
【0025】
図8より、得られた軸重は第1軸が2.5tonf、第2軸および第3軸がそれぞれ5tonfとなっている。これは、図6に示す車両の実際の軸重の半分であるが、図2に示すように橋梁1は2車線分の路面を4本の桁ウェブ4で支持する構造となっており、一つの車線を2本の桁ウェブ4で支持する、すなわち車両の軸重が2本の桁ウェブ4に均等に加わっているものとしているからである。
【0026】
さて、上記の測定は橋梁1の上り車線を走行する車両に対する応答値(支点反力)を求めたものであるが、実際には、下り車線を走行する車両によっても支点反力は発生する。しかしながら、下り車線を走行する車両からの荷重によって上り車線側の支点に生じる支点反力は、橋梁1における横方向の荷重分配によるものであり、上り車線側の桁ウェブに直接荷重が加わる場合とは、支点反力の影響線の形状は異なる。この荷重分配による支点反力は、例えば横桁10や斜め補強材11,12(図2参照)によって伝達されるものであり、それによる影響線の形状は、図5に示すものとは異なり、通常は急変部を有しないものとなる。
【0027】
そのため、ひずみゲージ13の時刻歴波形を車両の通行下で一定時間測定し、得られた時刻歴波形の差分波形を求め、そのピークから特定の車両の通過時刻を検出し、その時刻におけるひずみの変動量から当該車両の軸重を求めることが可能となる。
【0028】
また、差分波形のピークの発生時間の間隔からは、車両の種類の判別や、走行速度を求めることができる。この場合、例えば橋梁またはその近傍にテレビカメラを設置し、車両が通過した時刻とひずみのピーク発生時刻とを照合することにより車両の特定が可能となり、また、桁ウェブ両端の支点にひずみゲージを設置し、一台の車両の通過に伴うひずみの差分波形をそれぞれ求め、両者を比較してピークの発生時間差を求め、支点間距離をこの発生時間差で除することにより、車両の通過速度を求めることも可能である。
【0029】
さらに、ひずみの時刻歴波形の差分を求めることで特定の車両による軸重のピークを求めることが可能であることから、複数の車両が同じ車線、または隣接する車線を同時に走行している場合でも、軸重測定が可能である。
【0030】
以上説明したように、本発明による橋梁上を走行する車両の軸重測定方法は、比較的簡便な設備および測定手順により、車両の軸重を容易に、しかも高い精度で求めることができる。
【0031】
特に、測定個所を少なくすることができ、また、測定のためのセンサー等を必ずしも路面上に設置する必要も無くなることから、センサーが短期間で損耗することがなく、低コストで長期間に亘る測定が可能となると共に、センサーの設置や保守作業の際の作業員の安全を確保することが可能となる。
【0032】
なお、本発明は上述した実施形態に限定されるものではない。上述の実施形態においては支点反力を測定対象としていたが、車両の移動に伴って変動する橋梁部材の他の応答値、例えば曲げモーメント等を測定対象として選択することも可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る、車両の軸重測定を行う橋梁の橋軸方向に沿った図である。
【図2】図1の橋梁の幅員方向に沿った図である。
【図3】図1の橋梁におけるひずみゲージ取り付け位置を詳細に示す図であり、図3(a)は橋軸方向、図3(b)は幅員方向の図である。
【図4】図1の橋梁におけるひずみゲージ取り付け位置を上から見た図である。
【図5】単純桁上を荷重が移動する場合の支点反力の影響線を示す図である。
【図6】本発明による軸重測定を行う車両モデルを概略示す図である。
【図7】図6に示す車両が図1の橋梁上を走行する際に支点に発生する支点反力によるひずみの時間変化を示すグラフである。
【図8】図7の波形を差分計算することによって求めた軸重を示す図である。
【符号の説明】
1 橋梁
2,3 橋台
4,5 支承
6 桁ウェブ
7 床版
8 車両
9 垂直補剛材
10 横桁
11,12 斜め補強材
13 ひずみゲージ
20 車両モデル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring an axle load of a vehicle based on a moving load applied to the bridge by the vehicle when the vehicle runs on the bridge.
[0002]
[Prior art]
Measuring the weight of a vehicle traveling on a bridge is important in maintaining the bridge. As such a weight measuring method, for example, a sensor is installed on a road surface, a method of measuring the weight of a vehicle traveling on the sensor, or a method of measuring a bending moment generated on a bridge girder by running of the vehicle, and applying the measured value to the measured value. Conventionally, a method of determining the weight of a vehicle based on such information has been proposed.
[0003]
However, in the former case, there is a problem that the sensor is easily worn out, and maintenance work of the sensor on a bridge with heavy traffic needs to be performed after ensuring the safety of workers sufficiently due to traffic regulations. In such cases, there are problems that data processing and adjustment of the measurement system are complicated, and that accurate measurement of the number of axles and axle weight is difficult even if the total weight of the vehicle can be measured.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems, to facilitate installation and maintenance of a measuring means such as a sensor, and to easily perform data processing and adjustment of a measuring system. To provide a method for measuring axle load.
[0005]
[Means for Solving the Problems]
That is, the method of measuring the axle load of a vehicle traveling on a bridge according to the present invention is as follows.
When measuring the axle load of a vehicle traveling on a bridge,
The axle load of the vehicle is determined based on the amount of change in the fulcrum reaction force with respect to the moving load at a location where the shape of the line of influence of the fulcrum reaction force of the bridge girder with respect to the moving load of the bridge with respect to the moving load of the vehicle changes suddenly. It is a feature that is required.
[0006]
The method for measuring the axle load of a vehicle traveling on a bridge according to the present invention includes:
The type and running speed of the vehicle are obtained based on the amount of change in the fulcrum reaction force of the bridge girder .
[0007]
【The invention's effect】
In the method of measuring the axle load of a vehicle traveling on a bridge according to the present invention, when the vehicle travels on the bridge, paying attention to an influence line that is a function of a response value of a bridge member to a moving load applied to the bridge by the vehicle, At the point where the shape of the influence line changes in the load, that is, where the vehicle suddenly changes with the traveling of the vehicle, the amount of change in the response value to the moving load, for example, the amount of change in the strain is detected. The weight is to be measured.
[0008]
The response value (for example, strain) to the moving load at the measurement location is affected by each axle load when the axle load (that is, the moving load) of each axle of the vehicle reaches the bridge with a time difference. When a moving load due to one axle of a vehicle passes through a point where the shape of the influence line, which is a function of the response value of the bridge member to the axle load, suddenly changes, the waveform of the response value to the moving load there also occurs. On the other hand, since the other axles are located in places other than where the shape of the influence line changes suddenly, the amount of change in the waveform of the response value in a short time interval is mainly due to the load (axle load) due to the axle passing through the measurement point. ). The present invention measures the axle based on this.
[0009]
Therefore, it is sufficient to select only the location where the influence line changes suddenly as the measurement location, so that the number of measurement locations can be reduced, and it is not necessary to install sensors for measurement on the road surface. In addition, the sensor is not worn out in a short period of time, so that the measurement can be performed for a long time at a low cost, and the safety of a worker at the time of installing and maintaining the sensor can be ensured.
[0010]
In addition, since the amount of change in the response value (for example, strain) with respect to the moving load is measured, it is possible to obtain the axial load with high accuracy by a relatively simple data processing procedure.
[0011]
Furthermore, since the measurement location, that is, the location where the shape of the influence line changes abruptly, can be obtained relatively easily by calculation from the design drawing of the bridge to be measured in advance, the measurement location should be set easily and efficiently. Is possible.
[0012]
In particular, in the method of measuring the axle load of a vehicle traveling on a bridge according to the present invention, the fulcrum reaction force of a bridge girder is used as a response value to a moving load, and the axle load is calculated based on a variation amount of the fulcrum reaction force accompanying the passage of the vehicle. You are seeking.
[0013]
As a result, the abutment of the bridge or the fulcrum on the pier can be used as a measurement point, and the number of places where sensors (for example, strain gauges) for measurement are installed can be greatly reduced. Since the sensor does not need to be installed in a short time, the sensor does not wear out in a short period of time, making it possible to perform long-term measurement at a low cost and ensure the safety of workers when installing and maintaining the sensor. You can also. Further, it is also possible to determine the type of the vehicle and determine the traveling speed from the amount of change in the fulcrum reaction force accompanying the passage of the vehicle.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0015]
1 and 2 show an embodiment of the present invention. FIG. 1 is a view along a bridge axis direction of a bridge for which axle load is measured, and FIG. 2 is a view along a width direction. In the bridge 1 for measuring the axle load of a vehicle, a floor slab 7 as a road surface is installed on a girder web 6 bridged between abutments 2 and 3 via bearings 4 and 5, and a vehicle 8 is mounted on the floor slab 7. Is a simple girder plate girder bridge that runs. As shown in FIG. 2, the bridge 1 is an upper and lower two-lane type bridge supporting a floor slab 7 with four girder webs 6, and each girder web 6 is provided with a vertical stiffener 9 and Between the girder webs 4, a plurality of cross girder 10 are bridged, and diagonal reinforcing members 11, 12 are also provided.
[0016]
In the present embodiment, the measurement of the axle load of the vehicle on the bridge 1 is determined from the fulcrum reaction force of the bridge 1. Here, the fulcrum reaction force on the abutment 3 is measured using the strain gauge 13. FIG. 3 and FIG. 4 show the locations where strain gauges are attached in detail. The strain gauge 13 is attached to a vertical stiffener 9 provided on a girder web 6 installed on the abutment 3 via a bearing 5.
[0017]
The strain gauge 13 attached to the vertical stiffener 9 is connected to a dynamic strain meter (not shown) to measure the time history waveform of the strain. That is, a strain due to the fulcrum reaction force is generated in the vertical stiffener 9 with the passage of the vehicle, in this case, a compression strain proportional to the fulcrum reaction force is generated. Therefore, the change in the compression strain is measured to determine the fulcrum reaction force. be able to. Further, by obtaining the time history waveform, it is possible to obtain a change in the fulcrum reaction force accompanying the passage of the vehicle.
[0018]
FIG. 5 is a graph showing the temporal change of the influence line of the fulcrum reaction force due to the movement of the load on the simple girder, that is, the shape of the influence line. The horizontal axis represents the distance from the origin of the simple girder, and the vertical axis represents the distance. Indicates the value of the influence line. Here, the origin of the simple girder is one end on the side where the load enters, and the fulcrum reaction force indicates a value at the other end. The value of the influence line shown on the vertical axis is dimensionless with -1 being the maximum value.
[0019]
As is clear from the figure, the value of the influence line is maximum at the fulcrum of interest and is 0 at the other fulcrum. Also, it can be seen that the shape of the influence line is also rapidly changing from the maximum value to the minimum value at the fulcrum of interest. This is because the load applied to the girder suddenly disappears when the load moving on the girder withdraws from the girder, and the fulcrum reaction force also disappears at the same time. This indicates that the fulcrum of interest is a point where the shape of the influence line of the fulcrum reaction force changes abruptly.
[0020]
Next, an experiment performed to verify the axle load measurement method according to the present invention and the results thereof will be described.
[0021]
FIG. 6 shows a vehicle model used for measuring the axle load of a vehicle traveling on a bridge for verification of the axle load measurement method according to the present invention. The vehicle 20 used as a model is a six-wheel truck, in which the front wheels (first shaft 20a) have an axle load of 5 tonf and the rear wheels (the second shaft 20b and the third axle 20c) have an axle load of 10 tonf. The axle load is measured by measuring the change in the fulcrum reaction force when the vehicle 20 enters the bridge 1 shown in FIG. 1 from the left side (the abutment 2 side), travels on the bridge 1 and exits the right side (the abutment 3 side). , Determined from the variation in strain detected by the strain gauge 13 provided at the measurement location (see FIGS. 1 to 4).
[0022]
FIG. 7 is a graph showing the temporal change (time history waveform) of the strain at the measurement point (see FIGS. 1 to 4), in which the horizontal axis represents time and the vertical axis represents strain (strain gauge value). From the figure, it can be seen that when each axle of the vehicle 20 passes through the measurement point, that is, on the fulcrum, the value of the strain as the response value changes rapidly. This indicates that, as described above, the load suddenly disappears when each axle passes over the fulcrum, so that the fulcrum reaction force caused by the load also suddenly disappears, and this is detected by the strain gauge 13. ing.
[0023]
Next, in order to perform the sudden change of the distortion more accurately, the forward difference was calculated for the time history waveform of FIG. 7 to obtain a difference waveform. FIG. 8 shows this differential waveform, in which the horizontal axis represents time, and the vertical axis represents the load converted from the strain value.
[0024]
When the difference waveform is obtained by performing forward difference calculation on the time history waveform, a peak occurs in the difference waveform where the original waveform changes suddenly, and the difference amount becomes extremely small in other portions. Therefore, the time at which this peak occurs indicates the load, that is, the time at which the vehicle passed the axle, and the axle load can be obtained by converting the strain at this time. The axle load is defined assuming that the sum of the area of the vertical stiffener to which the strain gauge is attached and the area of the girder web immediately above the bearing is A, the strain is ε, and the Young's modulus of the girder web is E, the fulcrum reaction force (load) P is , And the following equation
P = A × E × ε
Can be obtained by
[0025]
From FIG. 8, the obtained axle weight is 2.5 tonf on the first axis, and 5 tonf on each of the second and third axes. This is half the actual axle load of the vehicle shown in FIG. 6, but as shown in FIG. 2, the bridge 1 has a structure in which the road surface for two lanes is supported by four girder webs 4, This is because one lane is supported by two girder webs 4, that is, the axle weight of the vehicle is equally applied to the two girder webs 4.
[0026]
In the above measurement, the response value (fulcrum reaction force) to the vehicle traveling on the up lane of the bridge 1 is obtained. However, actually, the fulcrum reaction force is also generated by the vehicle traveling on the down lane. However, the fulcrum reaction force generated at the fulcrum on the up lane side due to the load from the vehicle traveling on the down lane is due to the lateral load distribution on the bridge 1, and there are cases where a load is directly applied to the girder web on the up lane side. Has a different shape of the line of influence of the fulcrum reaction force. The fulcrum reaction force due to this load distribution is transmitted, for example, by the cross beam 10 and the diagonal reinforcing members 11 and 12 (see FIG. 2), and the shape of the influence line due thereto is different from that shown in FIG. Usually, there is no sudden change.
[0027]
Therefore, the time history waveform of the strain gauge 13 is measured for a certain period of time while the vehicle is passing, a difference waveform of the obtained time history waveform is obtained, the passing time of a specific vehicle is detected from the peak, and the distortion time at that time is detected. The axle load of the vehicle can be obtained from the variation.
[0028]
In addition, the type of the vehicle can be determined and the traveling speed can be obtained from the interval of the peak waveform occurrence time. In this case, for example, a TV camera is installed on the bridge or in the vicinity thereof, and it is possible to identify the vehicle by comparing the time at which the vehicle passes with the time at which the strain occurs, and strain gauges are provided at the fulcrums at both ends of the girder web. Install, determine the difference waveform of the strain due to the passage of one vehicle, determine the difference between the peak occurrence time by comparing the two, and determine the passing speed of the vehicle by dividing the distance between the fulcrum by this occurrence time difference It is also possible.
[0029]
Furthermore, since it is possible to obtain the peak of the axle load by a specific vehicle by obtaining the difference between the time history waveforms of the strains, even when a plurality of vehicles are traveling in the same lane or adjacent lanes at the same time. Axial load measurement is possible.
[0030]
As described above, the method for measuring the axle load of a vehicle traveling on a bridge according to the present invention can easily and accurately obtain the axle load of a vehicle with relatively simple equipment and measuring procedures.
[0031]
In particular, the number of measurement points can be reduced, and it is not necessary to install a sensor or the like for measurement on the road surface. Therefore, the sensor is not worn out in a short period of time, and has a low cost for a long period of time. Measurement can be performed, and the safety of workers during installation and maintenance of the sensor can be ensured.
[0032]
Note that the present invention is not limited to the embodiment described above. In the above-described embodiment, the fulcrum reaction force is set as a measurement target. However, another response value of a bridge member that fluctuates with movement of a vehicle, for example, a bending moment or the like can be selected as a measurement target.
[Brief description of the drawings]
FIG. 1 is a view along a bridge axis direction of a bridge for measuring axle load of a vehicle according to an embodiment of the present invention.
FIG. 2 is a view along the width direction of the bridge of FIG. 1;
3A and 3B are views showing in detail a strain gauge mounting position in the bridge of FIG. 1, wherein FIG. 3A is a view in a bridge axis direction and FIG. 3B is a view in a width direction.
FIG. 4 is a top view of a strain gauge mounting position in the bridge of FIG. 1;
FIG. 5 is a diagram showing an influence line of a fulcrum reaction force when a load moves on a simple girder.
FIG. 6 is a diagram schematically illustrating a vehicle model for performing axle load measurement according to the present invention.
FIG. 7 is a graph showing a time change of a strain caused by a fulcrum reaction force generated at the fulcrum when the vehicle shown in FIG. 6 travels on the bridge of FIG. 1;
FIG. 8 is a diagram showing an axial load obtained by calculating a difference between the waveforms of FIG. 7;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bridge 2, 3 Abutment 4, 5 Bearing 6 Girder web 7 Floor slab 8 Vehicle 9 Vertical stiffener 10 Horizontal girder 11, 12 Diagonal reinforcement 13 Strain gauge 20 Vehicle model

Claims (2)

橋梁上を走行する車両の軸重測定に際し、
当該橋梁の、車両の走行に伴う移動荷重に対する前記橋梁の桁の支点反力の影響線の形状が急変する箇所における前記移動荷重に対する前記支点反力の変動量に基づいて当該車両の軸重を求めることを特徴とする、橋梁上を走行する車両の軸重測定方法。
When measuring the axle load of a vehicle traveling on a bridge,
The axle load of the vehicle is determined based on the amount of change in the fulcrum reaction force with respect to the moving load at a location where the shape of the line of influence of the fulcrum reaction force of the bridge girder with respect to the moving load of the bridge with respect to the moving load of the vehicle changes suddenly. A method for measuring the axle load of a vehicle traveling on a bridge, the method being characterized in that:
請求項1記載の方法において、The method of claim 1, wherein
前記橋梁の桁の支点反力の変動量に基づいて当該車両の種類および走行速度を求めることを特徴とする、橋梁上を走行する車両の軸重測定方法。A method of measuring the axle load of a vehicle traveling on a bridge, wherein a type and a traveling speed of the vehicle are obtained based on a variation amount of a fulcrum reaction force of the bridge girder.
JP2001368459A 2001-12-03 2001-12-03 Axle load measurement method for vehicles running on bridges Expired - Lifetime JP3574850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001368459A JP3574850B2 (en) 2001-12-03 2001-12-03 Axle load measurement method for vehicles running on bridges

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001368459A JP3574850B2 (en) 2001-12-03 2001-12-03 Axle load measurement method for vehicles running on bridges

Publications (2)

Publication Number Publication Date
JP2003166870A JP2003166870A (en) 2003-06-13
JP3574850B2 true JP3574850B2 (en) 2004-10-06

Family

ID=19178048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001368459A Expired - Lifetime JP3574850B2 (en) 2001-12-03 2001-12-03 Axle load measurement method for vehicles running on bridges

Country Status (1)

Country Link
JP (1) JP3574850B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231791B1 (en) * 2012-08-31 2013-02-08 한국해양대학교 산학협력단 System for measuring vehicle-weight automatically using response characteristics of vertical stiffener of steel bridge

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3896465B2 (en) * 2004-09-17 2007-03-22 国立大学法人東京工業大学 Bridge characteristic change detection system
JP4799034B2 (en) * 2005-04-01 2011-10-19 大和製衡株式会社 Weight measuring device
JP5164100B2 (en) * 2008-03-26 2013-03-13 株式会社エヌ・ティ・ティ・データ Bridge passing vehicle monitoring system, bridge passing vehicle monitoring method, and computer program
JP5153572B2 (en) * 2008-10-28 2013-02-27 財団法人阪神高速道路管理技術センター Measurement method of live load of bridge
KR101366103B1 (en) * 2012-11-12 2014-02-27 부산대학교 산학협력단 Bridge weigh in motion system using reaction force of supporting points and method for controlling the same
AT513258B1 (en) * 2012-12-13 2014-03-15 Univ Wien Method for measuring a moving vehicle
CN104819813B (en) * 2015-04-29 2017-04-26 中南大学 Bridge influence line dynamic test method
JP6645102B2 (en) * 2015-10-02 2020-02-12 セイコーエプソン株式会社 Measuring device, measuring system, measuring method, and program
WO2017141294A1 (en) 2016-02-15 2017-08-24 パナソニックIpマネジメント株式会社 Stress distribution measurement method and stress distribution measurement system
CN107132011B (en) * 2017-05-31 2018-08-31 中南大学 A kind of bridge rapid detection method based on influence line
CN109827647B (en) * 2019-01-17 2021-11-09 同济大学 Bridge dynamic weighing system
CN110296801B (en) * 2019-07-25 2020-11-06 四川农业大学 Method for quickly acquiring influence line of continuous beam bridge based on strain response
CN111488639B (en) * 2020-04-08 2023-02-10 华设设计集团股份有限公司 Prefabricated bridge member segmenting method and device based on transportation conditions
CN114577385B (en) * 2022-02-28 2023-08-04 中铁第四勘察设计院集团有限公司 Bridge dynamic load identification method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231791B1 (en) * 2012-08-31 2013-02-08 한국해양대학교 산학협력단 System for measuring vehicle-weight automatically using response characteristics of vertical stiffener of steel bridge

Also Published As

Publication number Publication date
JP2003166870A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP3574850B2 (en) Axle load measurement method for vehicles running on bridges
JP6086486B2 (en) Passing vehicle weight analysis processing apparatus and method
EP3187838B1 (en) System for vehicles weight preselection and evaluation of the technical state of road infrastructure
JP5153572B2 (en) Measurement method of live load of bridge
JP7375637B2 (en) Measurement method, measurement device, measurement system and measurement program
KR101105854B1 (en) System for measuring vehicle-weight automatically using bridge response, and method for the same
US10365186B2 (en) Diagnostic device for detecting an out-of-roundness on railway vehicle wheels in accordance with an impulse evaluation method
JP5164100B2 (en) Bridge passing vehicle monitoring system, bridge passing vehicle monitoring method, and computer program
KR101231791B1 (en) System for measuring vehicle-weight automatically using response characteristics of vertical stiffener of steel bridge
JP7400566B2 (en) Measurement method, measurement device, measurement system and measurement program
MX2007000578A (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset.
O’Brien et al. Strategies for axle detection in bridge weigh-in-motion systems
Chan et al. Wheel loads from highway bridge strains: field studies
US20140180609A1 (en) Method of establishing the deflection and/or the stiffness of a supporting structure
Carey et al. Direct field measurement of the dynamic amplification in a bridge
JP2013174481A (en) Vehicle axle load measurement system and bridge monitoring system using the same
Jeon et al. Development of displacement estimation method of girder bridges using measured strain signal induced by vehicular loads
KR101366103B1 (en) Bridge weigh in motion system using reaction force of supporting points and method for controlling the same
JP3702238B2 (en) Vehicle weight measuring method, vehicle axle weight measuring system, and overloaded vehicle warning system
JP2009192347A (en) Device for measuring axle load of traveling vehicle
MacLeod et al. Enhanced bridge weigh-in-motion system using hybrid strain–acceleration sensor data
KR100499223B1 (en) Axle weight measuring apparatus, vehicle weight measuring method and overweighted vehicle identification method using the same
JP2017025662A (en) Device, method, program, and recording medium for identifying vehicle's traveling position in transverse direction of traffic road
JP6746006B2 (en) Method and apparatus for detecting weight of load moving on scale
KR102323095B1 (en) System for specifying location and velocity of running vehicle for improving precision of bridge deflection estimation, and method for the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040520

R150 Certificate of patent or registration of utility model

Ref document number: 3574850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term