JP3573367B2 - Micro displacement measuring device - Google Patents

Micro displacement measuring device Download PDF

Info

Publication number
JP3573367B2
JP3573367B2 JP32889294A JP32889294A JP3573367B2 JP 3573367 B2 JP3573367 B2 JP 3573367B2 JP 32889294 A JP32889294 A JP 32889294A JP 32889294 A JP32889294 A JP 32889294A JP 3573367 B2 JP3573367 B2 JP 3573367B2
Authority
JP
Japan
Prior art keywords
light
diffraction grating
pitch
diffraction
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32889294A
Other languages
Japanese (ja)
Other versions
JPH08180493A (en
Inventor
英男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP32889294A priority Critical patent/JP3573367B2/en
Publication of JPH08180493A publication Critical patent/JPH08180493A/en
Application granted granted Critical
Publication of JP3573367B2 publication Critical patent/JP3573367B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE: To improve detection sensitivity of a focus error signal by setting the grating shape of double diffraction gratings constituting an interference fringes generation means in a prescribed relation. CONSTITUTION: The recording surface of an optical disk 13 is irradiated with a beam emitted from a semiconductor laser (LD) 9 through a collimate lens 10, a beam splitter 11 and an objective lens 12, and the reflected light is made incident on a photodetector(PD) 14 through the objective lens 12, the beam splitter 11. The double diffraction grating 15 consisting of a first diffraction grating 15a generating a first diffracted beam k1 and a second diffraction grating 15b generating plural second diffracted beams k2 is arranged between the beam splitter 11 and the PD 14, and a movement amount in the axial direction of the optical disk 13 is measured from the phase change of the interference fringes of the second diffracted beams k2 . At this time, the grating shape is set so that the phase is shifted by 1/4 wavelength from the second diffracted beams k2 becoming the interference fringes. For instance, the relative phases of the first, second diffraction gratings 15a, (b) are made to have 1/8 pitch of the grating.

Description

【0001】
【産業上の利用分野】
【0002】
【従来の技術】
従来、光磁気ディスク用の光学ヘッドに使用されているフォーカスエラー信号を用いたフォーカスサーボ方式としては、非点収差法、臨界角法、ナイフエッジ法などが知られている。この中において、非点収差法は光磁気ディスク用として用いられる他、コンパクトディスク、レーザディスクを含む光ディスク全般に用いられている。非点収差法に関する公知技術としては、特公昭53−39123号公報に「自動焦点調整装置」、特公昭57−12188号公報に「動いているデータキャリア上に読取光ビームを集束させる装置」、特公昭60−48949号公報に「光ビームで情報を読み取る装置」、特公昭61−61178号公報に「自動焦点調節法」としてそれぞれ開示されている。
【0003】
図10は、光ピックアップ装置における非点収差法の動作原理を示したものである。半導体レーザ(図示せず)から出射した光は、コリメートレンズ(図示せず)によりコリメートされ、ビームスプリッタ1を透過して対物レンズ2により集光されて光ディスク3の面上に照射され、これにより情報の記録等が行われる。また、光ディスク3からの反射光は、対物レンズ2を透過し、ビームスプリッタ1により今度は反射され、集光レンズ4、円筒レンズ5を順次透過して非点収差が発生したビーム6となり、このビーム6は4分割受光面a,b,c,dをもつ受光素子7に導かれる。そして、その受光素子7の出力がアンプ8に送られることによりフォーカスエラー信号Feが検出される。
【0004】
この場合、光ディスク3の合焦時には、その光ディスク3からの反射光のビーム6の形状は、受光素子7の4分割受光面a,b,c,dにおいて円形となる。この時、差動出力{(a+c)−(b+d)}の値は零となり、フォーカスエラー信号Feの値は0となり検出されない。また、光ディスク3が対物レンズ2から遠くなったり近くなったりすると、ビーム6の形状は円形から長円形状となり、差動出力は零とならず、これによりフォーカスエラー信号の値は正(遠い)或いは負(近い)となって、対物レンズの位置調整が行われる。
【0005】
【発明が解決しようとする課題】
近年、この種の光ディスク装置においては、アクセスタイムの高速化が要求されており、このような目的を達成するためには、光ピックアップ部の小型化、軽量化が必要不可欠となる。しかし、前述したような非点収差法を用いたフォーカスサーボ方式では、ビームの形状変化を検出するために、受光素子7までの距離(検出長)をある程度大きく(数cm)しなければ十分な検出感度を得ることができない。従って、従来の光ディスク装置においては小型化におのずと限界がある。また、受光素子7上のスポット径は数ミクロンから数十ミクロンとかなり小さいため、調整が難しく、環境によってはオフセットが生じることになるので、検出された信号が不安定となる。
【0006】
【課題を解決するための手段】
請求項1記載の発明では、n 次光とn 次光との第一回折光を発生する第一回折格子と、前記第一回折光が入射することにより複数の回折された第二回折光を発生する第二回折格子とからなり、互いに干渉し合う前記第二回折光の位相が1/4波長だけずれるような形状に各回折格子が形成された干渉縞発生手段と、この干渉縞発生手段からの光を受光する少なくとも2分割された領域からなる受光素子とを設け、前記干渉縞発生手段により生じた前記第二回折光の間での干渉により干渉縞の位相の変化を前記受光素子に検知することによって前記測定物の光軸方向への移動量を測定するようにした。
【0007】
請求項2記載の発明では、請求項1記載の発明において、第一回折格子と第二回折格子との相対的な位相を、回折格子の4分の1ピッチを(n −n )で割った値、又は、その値にさらに1ピッチを(n −n )で割った値を1個ないしは複数個加算又は減算した値に設定した。
【0008】
請求項3記載の発明では、請求項1記載の発明において、第一回折格子と第二回折格子とを等ピッチとし、±1次光の第二回折光を用いて干渉縞を発生させる場合、第一回折格子と第二回折格子との相対的な位相を、回折格子の8分の1ピッチ、又は、8分の5ピッチの値に設定した。
【0009】
請求項4記載の発明では、請求項1記載の発明において、ピッチがΛ の第一回折格子により得られる第一回折光をn 次光とn 次光とし、ピッチがΛ の第二回折格子により得られる第二回折光をm 次光とm 次光としたとき、各回折格子のピッチと回折光の次数とを、
Λ +Λ =Λ +Λ
の関係式を満たすように設定した。
【0010】
【作用】
請求項1記載の発明においては、第二回折光の位相が1/4波長だけずれるような形状に干渉縞発生手段の各回折格子を形成したことによって、第二回折光の干渉縞分布から求められるフォーカスエラー信号のS字曲線を最大にすることができ、この最大とされたS字曲線からデフォーカス量を容易に求めることができる。
【0011】
請求項2記載の発明においては、4分の1ピッチを(n −n )で割った値か、又は、その4分の1ピッチを(n −n )で割った値に、1ピッチを(n −n )で割った値を1個ないしは複数個加算又は減算した値に設定することによって、互いに干渉し合う第二回折光の位相を1/4波長だけ正確にずらすことができる。
【0012】
請求項3記載の発明においては、第一回折格子と第二回折格子との相対的な位相を、8分の1ピッチ、又は、8分の5ピッチの値に設定したことによって、互いに干渉し合う第二回折光の位相を1/4波長だけ正確にしかも容易にずらすことができる。また、第一回折格子と第二回折格子とを等ピッチすなわち同一の格子ピッチとし、±1次光の第二回折光を用いて干渉縞を発生させることによって、回折格子の作成を容易に行うことができ、しかも、これにより干渉縞を受光する受光素子側の形状も簡易化させることができる。
【0013】
請求項4記載の発明においては、第一回折格子と第二回折格子とのピッチを異ならせ、各回折格子のピッチと回折光の次数との間で一定の条件式を満足させることによって、干渉縞となる第二回折光の位相を1/4波長だけずらすことができる。
【0014】
【実施例】
本発明の第一の実施例を図1〜図3に基づいて説明する(請求項1記載の発明に対応する)。まず、微小変位測定装置の全体構成を図2に基づいて述べる。光源としての半導体レーザ9(以下、LDという)からの出射光はコリメートレンズ10により平行光とされた後、ビームスプリッタ11により反射され、対物レンズ12により集光されたビームとなって測定物としての光ディスク13の面上に照射される。そして、その光ディスク13からの反射光は、再び対物レンズ12を通過した後、今度はビームスプリッタ11を透過し受光素子14(以下、PDという)に向かう。
【0015】
そのビームスプリッタ11とPD14との間の光路上には、干渉縞発生手段としての二重回折格子15が配置されている。この二重回折格子15は、n 次光とn 次光との第一回折光K を発生する第一回折格子15aと、第一回折光K が入射することにより複数の回折された第二回折光K を発生する第二回折格子15bとからなっている。そして、光ディスク13からの反射光がそのような二重回折格子15を通過することによって第二回折光K の干渉縞が発生し、この干渉縞の位相の変化がPD14に検出され、光ディスク13の光軸方向への移動量の測定が行われる。
【0016】
本実施例では、二重回折格子15を構成する第一回折格子15aと第二回折格子15bとが、干渉縞となる第二回折光K2 の位相が1/4波長(λ)だけずれるような格子形状に形成されている。以下、これら2つの回折光K1 ,K2 の位相がλ/4だけずれる理由について述べる。図1は、PD14面上の中心を座標Oとした座標軸x,y,zを示す。今、PD14面に対して2つの点光源P1 ,P2 からの距離をL1 ,L2 とし、これら点光源間のx方向の距離をl1 とし、点光源P1 ,P2 の中心の(y,z)座標を(y0 ,z0 )とする。このとき、L1 2,L2 2の値は、
1 2=( l1 /2+x)2+y0 2+z2 …(1)
2 2=(−l1 /2+x)2+y0 2+z2 …(2)
として表わされる。これにより、二重回折格子15による位相差を付与していないときの光路長差dLは、

Figure 0003573367
となる。ここで、二重回折格子15による位相差をπ/2+δ0 としたとき、光路長の位相差δは、
Figure 0003573367
として表わされる。そして、2つの点光源P1 ,P2 による干渉縞の強度Iは、
I∝cos2(δ/2) …(5)
として表わされる。さらに、(4)式を(5)式に代入すると、干渉縞強度分布I(x)は、
I(x)∝cos2(πl1 x/λy0+π/4+δ0/2) =〔−sin(2πl1 x/λy0+δ0)+1〕/2 …(6)
として表わされる。
【0017】
次に、光ディスク13にデフォーカスが生じた場合におけるy の値を求める。今、対物レンズ12の焦点距離をf とし、対物レンズ12からの反射光の検出光路側の焦点位置をy とすると、
1/(f +d)+1/y =1/f …(7)
の関係が成立する。これにより、y は、
≒f /d …(8)
として表わされる。そして、y =y −y とし、(8)式を(6)式に代入すると、
Figure 0003573367
を得る。このI(x,d)が干渉縞分布を示す基本式である。そして、(9)式中、y が小さいとし、y =0を(9)式に代入すると、
I(x,d)∝−sin〔2πl xd/λf +δ〕+1 …(10)
となる。これにより、干渉縞分布I(x,d)は、x,dに対して対称であり、二重回折格子15に位相差をもたせた効果を得ることができ、波長変動の影響によりその干渉縞分布も対称的に変化する。なお、デフォーカスがないときは波長に拘らず干渉縞分布は平坦になり、ジャストオンフォーカス時には影響がない。
【0018】
図3は、その干渉縞分布I(x,d)をx方向に積分することにより得られるデフォーカス量に対するフォーカスエラー信号FeのS字曲線S(d)を示す。S字曲線S(d)の波形A(実線)は実験値を示し、波形B(破線)は理論的な計算値を示す。この場合、PD14の面をx座標にして、−aから0、そして、0からaの2つの領域に分けられるため、その場の干渉縞分布I(x,d)を平坦な光量分布を仮定してそれぞれを積分してその差をとると、S(d)は、
S(d)∝λf0 2・ cosδ0〔−1+cos(2πl1 ad/λf0 2 〕/πl1 d …(11)
として表わすことができる。この(11)式中には、cosδ0の項があり、δ0 =0のときには、cosδ0=1となり、δ0 =πのときにはcosδ0=−1となり、これによりS(d)の絶対値は最大となる。
【0019】
従って、δ =0のとき、すなわち、干渉する2つの第二回折光K の位相がλ/4だけずれるように、第一回折格子15aと第二回折格子15bとの格子形状を形成することによって、フォーカスエラー信号FeのS字曲線を最大にすることができ、これにより、デフォーカス量を容易に求めることができ、信号の検出感度を向上させることができる。
【0020】
次に、本発明の第二の実施例を図4〜図6に基づいて説明する(請求項2,3記載の発明に対応する)。なお、前述した第一の実施例と同一部分についての説明は省略し、その同一部分については同一符号を用いる。
【0021】
本実施例では、第一回折格子15aと第二回折格子15bとの相対的な位相は、その回折格子の1/4ピッチを(n −n )で割った値、又は、その値にさらに1ピッチを(n −n )で割った値を1個ないしは複数個加算又は減算した値に設定されている。この場合、特に、第一回折格子15aと第二回折格子15bとの相対的な位相を、その回折格子の1/8ピッチ、又は、5/8ピッチの値に設定するようにしてもよい。
【0022】
以下、回折格子15a,15bの相対的な位相関係を、上記条件に設定することにより、フォーカスエラー信号FeのS字曲線を最大にすることができる理由について述べる。図4は、単一の回折格子16に光を入射させ、その回折格子16が移動するときに回折光の波面も移動することを示す例である。今、回折格子16が1ピッチ移動し、その移動方向に回折する光をn 次光とし、反対方向に回折する光をn 次光とする。この場合、回折格子16の移動方向に対して同一方向に進む光は波面17aも同一方向に進み、次数のn に対して1ピッチ当たり波長のn 倍進む。一方、回折格子16の移動方向に対して反対方向に進む光は波面17bが後退し、次数のn に対して1ピッチ当たり波長のn 倍後退する(n が負の数とすると、−n 倍進む)。また、図5に示すように、2枚の回折格子、例えば第一、第二回折格子15a,15bからなる二重回折格子15の場合、一方の第一回折格子15aを1ピッチ移動させ、他方の第二回折格子15bを固定したとすると、n 次光の波面17aとn 次光の波面17bとの進行が逆になるため、(n −n )倍×2πの位相変化となり、この変化分だけ波面17a,17bが重なることになる。例として、n =1、n =−1とすると、(n −(−n ))×2π=(1−(−1))×2π=2×2πなる位相変化を生じる。
【0023】
また、図6に示すように、第一、第二回折格子15a,15bの相対的な位相がピッタリ合っていると波面17a,17bも揃う。このような状態から、一方の第一回折格子15aが移動して、波面17aを波面17bに対してλ/4だけ異ならせるためには、回折格子の4分の1ピッチを(n −n )で割った距離だけ移動させることによってその目的を達成できる。例として、n =1、n =−1の場合は、4分の1ピッチを(1−(−1))=2で割った1/8ピッチだけ回折格子を相対的に移動させることによって、λ/4だけ波面の位相を異ならせることができる。なお、回折格子を移動させる方向は左右どちらでもよい。
【0024】
さらに、第一、第二回折格子15a,15bのうちの一方を1ピッチ移動させると、(n −n )倍×2πの位相変化となることから、2つの波面17a,17bの位相差は回折格子の1ピッチの移動の間に(n −n )回の同じ位相となり、これにより1ピッチを(n −n )で割った位相分だけ回折格子を移動させることで同一の位相となる。例として、n =1、n =−1の場合は、1ピッチを(1−(−1))=2で割った値、すなわち、1/2ピッチの移動で2つの波面17a,17bの位相関係が同一となる。従って、波面17aを波面17bに対してλ/4だけ異ならせるためには、1ピッチを(n −n )で割った値に、回折格子の4分の1ピッチを(n −n )で割った距離(n −n )で割った値を加算又は減算させるようにすればよい。この例では、1/2ピッチと1/8ピッチとを加算して5/8ピッチだけ移動させることによって、λ/4だけ波面の位相を異ならせることができる。
【0025】
この他の高次数を例にとると、n =2、n =−3の場合は、1/4ピッチを(2−(−3))=5で割って、1/20ピッチの分だけ回折格子の位相変化をもたせることによって、λ/4だけ波面の位相を異ならせることができる。さらにこのことは、1ピッチを(2−(−3))=5で割った1/5ピッチの値と、1/20ピッチとを加算した1/4ピッチだけ移動させることによって、λ/4だけ波面の位相を異ならせることができる。
【0026】
上述したように、第一回折格子15aと第二回折格子15bとの相対的な位相を、1/4ピッチを(n −n )で割った値か、又は、その1/4ピッチを(n −n )で割った値に、1ピッチを(n −n )で割った値を1個ないしは複数個加算又は減算した値に設定したので、干渉縞となる第二回折光の位相を1/4波長だけ正確にしかも容易にずらすことができ、これにより、フォーカスエラー信号FeのS字曲線を最大にして、デフォーカス量を正確に求めることができる。特に、±1次光を用い、1/8ピッチ、5/8ピッチの値に設定することによって、第一,第二回折格子15a,15bや受光素子14の形状が単純化されて作成が容易となり、生産コストを低減することができる。
【0027】
次に、本発明の第三の実施例を図7〜図9に基づいて説明する(請求項4記載の発明に対応する)。なお、前記各実施例と同一部分についての説明は省略し、その同一部分については同一符号を用いる。
【0028】
本実施例では、二重回折格子15における第一回折格子15aのピッチはΛ とされ、第二回折格子15bのピッチはΛ とされている。そして、第一回折格子15aにより回折される第一回折光K はn 次光とn 次光とされ、また、第二回折格子15bにより得られる第二回折光K はm 次光とm 次光とされている。この場合、各回折格子のピッチと回折光の次数との間は、
Λ +Λ =Λ +Λ …(12)
の関係式に設定されている。
【0029】
以下、回折格子15a,15bの相対的な位相関係を、上記(12)式の条件に設定することにより、フォーカスエラー信号FeのS字曲線を最大にすることができる理由について述べる。図7は、ピッチΛ の第一回折格子15aとピッチΛ の第二回折格子15bとが形成された二重回折格子15での回折条件を示す。今、光ディスク13からの反射光が入射角θ で二重回折格子15に入射し、第一回折格子15a側で出射角θ のn 次光,出射角θ のn 次光が発生し、第二回折格子15b側で出射角θ のm 次光,出射角θ のm 次光が発生するものとする。この場合、第一回折格子15a側では、
sinθ +sinθ =n λ/Λ …(13)
sinθ +sinθ =n λ/Λ …(14)
が成り立つ。一方、第二回折格子15b側では、
sinθ +sinθ =−m λ/Λ …(15)
sinθ +sinθ =−m λ/Λ …(16)
が成り立つ。これにより、二重回折格子15から出射したm 次光、m 次光の2つの回折光を平行にするために、θ =θ とすると、
Λ +Λ =Λ +Λ …(17)
の関係が得られる。
【0030】
例として、図8に示すように、第一回折格子15aのΛ =1μm、第二回折格子15bのΛ =2μm、n =2、n =−1として、(17)式に代入すると、
2・2+1・m =2・(−1)+1・m
すなわち、
−m =−6 …(18)
の関係式を得る。この(18)式から、例えば、図9に示すように、m =−2、m =4とすると、第一回折格子15aにより2次光と−1次光が発生し、第二回折格子15bにより−2次光と4次光が発生する。これにより、回折されたm ,m 次光の位相をλ/4だけずらすことが可能となる。
【0031】
上述したように、(12)式の関係を満たすように設定することによって、干渉縞となる第二回折光K の位相をλ/4だけずらすことができ、これにより、フォーカスエラー信号FeのS字曲線を最大にして、デフォーカス量を正確に求めることができる。なお、ここでは、回折格子に入射する光が垂直であることを前提としているが、垂直に入射しない場合にも、2つの回折光の位相がλ/4だけずれるように調整すればよい。
【0032】
【発明の効果】
請求項1記載の発明は、互いに干渉し合う第二回折光の位相が1/4波長だけずれるように、干渉縞発生手段の各回折格子を形成したので、フォーカスエラー信号のS字曲線を最大にしてデフォーカス量を容易に求めることができ、これにより、従来のナイフエッジ法や非点収差法に比べて、信号の検出感度を格段に向上させて微小変位の測定を正確に行うことができる。また、このような干渉縞を用いた測定方式においては、検出光路長を従来よりも短くとることができるため、光ピックアップ部の小型化を図ることができる。さらに、このような干渉縞による検出においてはビーム形状を比較的大きくとれるため、光学素子の位置調整を極めてラフに行うことができ、耐環境性を向上させ、常に安定した信号検出を行うことができる。
【0033】
請求項2記載の発明は、第一回折格子と第二回折格子との相対的な位相を、4分の1ピッチを(n −n )で割った値か、又は、その4分の1ピッチを(n −n )で割った値に、1ピッチを(n −n )で割った値を1個ないしは複数個加算又は減算した値に設定したので、干渉縞となる第二回折光の位相を1/4波長だけ正確にずらすことができ、これにより、フォーカスエラー信号のS字曲線を最大にして、デフォーカス量を正確に求めることができる。
【0034】
請求項3記載の発明は、第一回折格子と第二回折格子との相対的な位相を、8分の1ピッチ、又は、8分の5ピッチの値に設定したので、干渉縞となる第二回折光の位相を1/4波長だけ正確にしかも容易にずらすことができ、これにより、フォーカスエラー信号のS字曲線を最大にして、デフォーカス量を一段と正確に求めることができる。また、第一回折格子と第二回折格子とを等ピッチすなわち同一の格子ピッチとし、±1次光の第二回折光を用いて干渉縞を発生させるようにしたので、回折格子や受光素子の作成が容易となり、生産コストを一段と削減することができる。
【0035】
請求項4記載の発明は、ピッチがΛ の第一回折格子により得られる第一回折光をn 次光とn 次光とし、ピッチがΛ の第二回折格子により得られる第二回折光をm 次光とm 次光としたとき、各回折格子のピッチと回折光の次数とを、
Λ +Λ =Λ +Λ
の関係式を満たすように設定したので、干渉縞となる第二回折光の位相を1/4波長だけずらし、フォーカスエラー信号のS字曲線を最大にしてデフォーカス量を一段と正確に求めることができる。
【図面の簡単な説明】
【図1】本発明の第一の実施例として2つの回折光により1/4波長の位相差が生じた場合の理論的解析の等価光学系を示す模式図である。
【図2】微小変位測定装置の全体構成を示す光路図である。
【図3】デフォーカス量に対するフォーカスエラー信号のS字曲線を示す波形図である。
【図4】本発明の第二の実施例として回折格子の移動により回折光の波面も移動することを示す側面図である。
【図5】回折格子を2枚重ねて構成し、回折格子を1ピッチだけ移動した場合における回折光に位相差が生じている様子を示す側面図である。
【図6】回折格子の相対的な位相が一致している場合に回折光の波面も一致する場合の様子を示す側面図である。
【図7】本発明の第三の実施例である回折格子のピッチが異なっている場合の回折光の発生の様子を示す側面図である。
【図8】ピッチが異なっている回折格子を用いた場合に回折光に位相差が生じている様子を示す側面図である。
【図9】高次の回折光が発生した場合の様子を示す側面図である。
【図10】従来の装置におけるフォーカスエラー信号の検出方式を示す光路図である。
【符号の説明】
9 光源
12 対物レンズ
13 測定物
14 受光素子
15 干渉縞発生手段
15a 第一回折格子
15b 第二回折格子
第一回折光
第二回折光[0001]
[Industrial applications]
[0002]
[Prior art]
Conventionally, as a focus servo method using a focus error signal used in an optical head for a magneto-optical disk, an astigmatism method, a critical angle method, a knife edge method, and the like are known. Among them, the astigmatism method is used not only for magneto-optical disks but also for all optical disks including compact disks and laser disks. As known techniques relating to the astigmatism method, Japanese Patent Publication No. 53-39123 discloses an "automatic focus adjustment device" and Japanese Patent Publication No. 57-12188 discloses a "device for focusing a reading light beam on a moving data carrier". Japanese Patent Publication No. 60-48949 discloses a "device for reading information with a light beam", and Japanese Patent Publication No. 61-61178 discloses an "automatic focus adjustment method".
[0003]
FIG. 10 shows the operation principle of the astigmatism method in the optical pickup device. Light emitted from a semiconductor laser (not shown) is collimated by a collimating lens (not shown), passes through a beam splitter 1, is condensed by an objective lens 2, and is irradiated on the surface of an optical disc 3, Information recording and the like are performed. The reflected light from the optical disk 3 passes through the objective lens 2 and is reflected by the beam splitter 1 this time, and sequentially passes through the condenser lens 4 and the cylindrical lens 5 to form a beam 6 in which astigmatism has occurred. The beam 6 is guided to a light receiving element 7 having four divided light receiving surfaces a, b, c, and d. Then, the output of the light receiving element 7 is sent to the amplifier 8 to detect the focus error signal Fe.
[0004]
In this case, when the optical disk 3 is focused, the shape of the beam 6 of the reflected light from the optical disk 3 is circular on the four-divided light receiving surfaces a, b, c, and d of the light receiving element 7. At this time, the value of the differential output {(a + c)-(b + d)} is zero, and the value of the focus error signal Fe is zero, and is not detected. When the optical disk 3 moves farther or closer to the objective lens 2, the shape of the beam 6 changes from a circle to an ellipse, and the differential output does not become zero, so that the value of the focus error signal is positive (far). Or, it becomes negative (close), and the position of the objective lens is adjusted.
[0005]
[Problems to be solved by the invention]
In recent years, in this type of optical disc device, a faster access time has been demanded, and in order to achieve such a purpose, it is indispensable to reduce the size and weight of the optical pickup unit. However, in the focus servo method using the astigmatism method as described above, in order to detect a change in the shape of the beam, it is not sufficient to increase the distance (detection length) to the light receiving element 7 to some extent (several cm). No detection sensitivity can be obtained. Therefore, there is a limit in miniaturization of the conventional optical disk device. In addition, since the spot diameter on the light receiving element 7 is considerably small from several microns to several tens of microns, adjustment is difficult, and an offset is generated depending on the environment, so that the detected signal becomes unstable.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, the first diffraction grating that generates the first diffracted light of the n 1st order light and the n 2nd order light, and the second diffracted light diffracted when the first diffracted light enters. second consists of a diffraction grating, an interference fringe generating means for each diffraction grating is shaped to deviate by a phase 1/4 wavelength of the second diffracted light interfere with each other, the interference fringes generated light a light receiving element composed of at least two divided regions for receiving light from generating means is provided, said receiving a change in the phase of the interference fringe by the interference between the second diffraction light generated by the interference fringe generating means The amount of movement of the measurement object in the optical axis direction is measured by detecting the element.
[0007]
According to a second aspect of the present invention, in the first aspect of the present invention, the relative phase between the first diffraction grating and the second diffraction grating is set such that a quarter pitch of the diffraction grating is (n 1 −n 2 ). divided by, or set a value obtained by dividing a further one pitch to the value (n 1 -n 2) to one or a plurality adding or subtracting a value.
[0008]
In the invention according to claim 3, in the invention according to claim 1, when the first diffraction grating and the second diffraction grating have an equal pitch, and interference fringes are generated using the second diffraction light of ± 1st order light, The relative phase between the first diffraction grating and the second diffraction grating was set to a value of 1/8 pitch or 5/8 pitch of the diffraction grating.
[0009]
In the invention of claim 4, wherein, in the invention according to the first aspect, the first diffracted light pitch obtained by the first diffraction grating of lambda 1 and n 1 order light and n 2 order light, the pitch is lambda 2 second When the second diffracted light obtained by the two diffraction gratings is m 1 order light and m 2 order light, the pitch of each diffraction grating and the order of the diffracted light are
Λ 2 n 1 + Λ 1 m 1 = Λ 2 n 2 + Λ 1 m 2
Was set to satisfy the relational expression.
[0010]
[Action]
According to the first aspect of the present invention, the respective diffraction gratings of the interference fringe generating means are formed in such a shape that the phase of the second diffracted light is shifted by 4 wavelength, so that it can be obtained from the interference fringe distribution of the second diffracted light. The S-shaped curve of the focus error signal to be obtained can be maximized, and the defocus amount can be easily obtained from the maximized S-shaped curve.
[0011]
In the invention according to claim 2, a value obtained by dividing a quarter pitch by (n 1 −n 2 ) or a value obtained by dividing the quarter pitch by (n 1 −n 2 ) is given by: By setting the value obtained by dividing one pitch by (n 1 −n 2 ) to a value obtained by adding or subtracting one or more, the phases of the second diffracted lights that interfere with each other are accurately shifted by 1 / wavelength. be able to.
[0012]
According to the third aspect of the present invention, since the relative phase between the first diffraction grating and the second diffraction grating is set to a value of 1/8 pitch or 5/8 pitch, they interfere with each other. The phase of the matched second diffracted light can be shifted precisely and easily by 4 wavelength. Further, the first diffraction grating and the second diffraction grating have the same pitch, that is, the same grating pitch, and the interference fringes are generated using the second diffraction light of the ± 1st order light, so that the diffraction grating can be easily formed. Therefore, the shape of the light receiving element that receives interference fringes can be simplified.
[0013]
According to the fourth aspect of the present invention, the pitch between the first diffraction grating and the second diffraction grating is made different, and by satisfying a certain conditional expression between the pitch of each diffraction grating and the order of the diffracted light, interference can be achieved. The phase of the second diffracted light that becomes a stripe can be shifted by 波長 wavelength.
[0014]
【Example】
A first embodiment of the present invention will be described with reference to FIGS. 1 to 3 (corresponding to the first embodiment). First, the overall configuration of the minute displacement measuring device will be described with reference to FIG. Light emitted from a semiconductor laser 9 (hereinafter, referred to as an LD) as a light source is collimated by a collimator lens 10, reflected by a beam splitter 11, and becomes a beam condensed by an objective lens 12 to be measured. Is irradiated on the surface of the optical disk 13. Then, the reflected light from the optical disk 13 passes through the objective lens 12 again, and then passes through the beam splitter 11 and travels to the light receiving element 14 (hereinafter, referred to as PD).
[0015]
On the optical path between the beam splitter 11 and the PD 14, a double diffraction grating 15 as interference fringe generating means is arranged. This double diffraction grating 15, a first diffraction grating 15a for generating a first diffracted beam K 1 and n 1 order light and n 2 order light, a plurality of diffraction by the first diffraction light K 1 is incident consists a second diffraction grating 15b for generating a second diffracted light K 2 which is. Then, the interference fringes of the second diffracted beam K 2 is generated by the reflected light from the optical disc 13 passes through such a double diffraction grating 15, the change in phase of the interference fringe is detected in PD 14, the optical disk The measurement of the amount of movement of the optical disc 13 in the optical axis direction is performed.
[0016]
In this embodiment, the first diffraction grating 15a constituting the double diffraction grating 15 and the second diffraction grating 15b is, the second diffracted light K 2 the phase of the interference fringe shifts 1/4 wavelength (lambda) It is formed in such a lattice shape. Hereinafter, the reason why the phases of these two diffracted lights K 1 and K 2 are shifted by λ / 4 will be described. FIG. 1 shows coordinate axes x, y, and z with the center on the surface of the PD 14 as the coordinate O. Now, let L 1 and L 2 be the distances from the two point light sources P 1 and P 2 with respect to the surface of the PD 14, and let the distance in the x direction between these point light sources be l 1 and the center of the point light sources P 1 and P 2 . Let (y, z) coordinates be (y 0 , z 0 ). At this time, L 1 2, L 2 2 values,
L 1 2 = (l 1/ 2 + x) 2 + y 0 2 + z 2 ... (1)
L 2 2 = (- l 1 /2 + x) 2 + y 0 2 + z 2 ... (2)
It is represented as Accordingly, the optical path length difference dL when the phase difference due to the double diffraction grating 15 is not given is:
Figure 0003573367
It becomes. Here, when the phase difference due to the double diffraction grating 15 is π / 2 + δ 0 , the phase difference δ of the optical path length is
Figure 0003573367
It is represented as Then, the intensity I of the interference fringes due to the two point light sources P 1 and P 2 is
I∝cos 2 (δ / 2) (5)
It is represented as Further, by substituting equation (4) into equation (5), the interference fringe intensity distribution I (x) becomes
I (x) αcos 2 (πl 1 x / λy 0 + π / 4 + δ 0/2) = [- sin (2πl 1 x / λy 0 + δ 0) +1 ] / 2 ... (6)
It is represented as
[0017]
Next, find the value of y 0 in the case where defocusing occurs in the optical disk 13. Now, assuming that the focal length of the objective lens 12 is f 0 and the focal position on the detection optical path side of the reflected light from the objective lens 12 is y 1 ,
1 / (f 0 + d) + 1 / y 1 = 1 / f 0 (7)
Is established. Thus, y 1 becomes
y 1 ≒ f 0 2 / d ... (8)
It is represented as Then, when y 0 = y 1 −y 2 and equation (8) is substituted into equation (6),
Figure 0003573367
Get. This I (x, d) is a basic expression showing the interference fringe distribution. Then, in equation (9), if y 2 is small and y 2 = 0 is substituted into equation (9),
I (x, d) ∝-sin [2πl 1 xd / λf 0 2 + δ 0 ] +1 (10)
It becomes. As a result, the interference fringe distribution I (x, d) is symmetric with respect to x and d, and an effect can be obtained in which the double diffraction grating 15 has a phase difference. The fringe distribution also changes symmetrically. Note that when there is no defocus, the interference fringe distribution becomes flat regardless of the wavelength, and there is no effect during just-on focus.
[0018]
FIG. 3 shows an S-shaped curve S (d) of the focus error signal Fe with respect to a defocus amount obtained by integrating the interference fringe distribution I (x, d) in the x direction. The waveform A (solid line) of the S-shaped curve S (d) indicates an experimental value, and the waveform B (dashed line) indicates a theoretical calculated value. In this case, since the surface of the PD 14 is divided into two regions from -a to 0 and from 0 to a when the surface of the PD 14 is set as the x coordinate, the interference fringe distribution I (x, d) at that position is assumed to be a flat light amount distribution. And integrating each of them and taking the difference, S (d) becomes
S (d) ∝λf 0 2 · cos δ 0 [−1 + cos (2πl 1 ad / λf 0 2 ) ] / πl 1 d (11)
Can be represented as During this (11), some sections of cos [delta] 0, when [delta] 0 = 0 is, cos [delta] 0 = 1 becomes, cos [delta] 0 = -1 becomes when the [delta] 0 = [pi, thereby absolute S (d) The value is maximum.
[0019]
Therefore, when [delta] 0 = 0, i.e., as interfering two second diffracted light K 2 phases shifted by lambda / 4, to form a lattice shape of the first diffraction grating 15a and the second diffraction grating 15b Thereby, the S-shaped curve of the focus error signal Fe can be maximized, whereby the defocus amount can be easily obtained, and the signal detection sensitivity can be improved.
[0020]
Next, a second embodiment of the present invention will be described with reference to FIGS. 4 to 6 (corresponding to claims 2 and 3). The description of the same parts as those in the first embodiment is omitted, and the same reference numerals are used for the same parts.
[0021]
In this embodiment, the relative phase between the first diffraction grating 15a and the second diffraction grating 15b is a value obtained by dividing a quarter pitch of the diffraction grating by (n 1 −n 2 ), or a value obtained by dividing the value by (n 1 −n 2 ). It is further set a value obtained by dividing a pitch (n 1 -n 2) to one or a plurality adding or subtracting a value. In this case, in particular, the relative phase between the first diffraction grating 15a and the second diffraction grating 15b may be set to a value of 1/8 pitch or 5/8 pitch of the diffraction grating.
[0022]
Hereinafter, the reason why the S-shaped curve of the focus error signal Fe can be maximized by setting the relative phase relationship between the diffraction gratings 15a and 15b under the above condition will be described. FIG. 4 shows an example in which light is incident on a single diffraction grating 16 and the wavefront of the diffracted light also moves when the diffraction grating 16 moves. Now, a diffraction grating 16 1 and a pitch movement, the light diffracted in the moving direction and n 1-order light, the light diffracted in the opposite direction and n 2 order light. In this case, light traveling in the same direction to the moving direction of the diffraction grating 16 is wavefront 17a also proceeds in the same direction, the process proceeds 1 times n of one pitch per wavelength with respect to n 1 in order. On the other hand, when the light traveling in the opposite direction to the moving direction of the diffraction grating 16 is wavefront 17b is retracted, relative to n 2 orders retracted twice n wavelengths per pitch (n 2 is a negative number, -N 2 times). Also, as shown in FIG. 5, in the case of a double diffraction grating 15 including two diffraction gratings, for example, first and second diffraction gratings 15a and 15b, one of the first diffraction gratings 15a is moved by one pitch, When fixing the other of the second diffraction grating 15b, since the progression of the wave front 17b of n 1-order light wavefront 17a and n 2 order light is reversed, the phase change in the (n 1 -n 2) times × 2 [pi The wavefronts 17a and 17b overlap by this change. For example, if n 1 = 1 and n 2 = −1, a phase change of (n 1 − (− n 2 )) × 2π = (1 − (− 1)) × 2π = 2 × 2π occurs.
[0023]
Also, as shown in FIG. 6, when the relative phases of the first and second diffraction gratings 15a and 15b are perfectly matched, the wavefronts 17a and 17b are also aligned. From such a state, in order to move one of the first diffraction gratings 15a to make the wavefront 17a different from the wavefront 17b by λ / 4, the quarter pitch of the diffraction grating is set to (n 1 −n). The object can be achieved by moving by a distance divided by 2 ). As an example, when n 1 = 1 and n 2 = -1, the diffraction grating is relatively moved by 1 / pitch obtained by dividing a quarter pitch by (1 − (− 1)) = 2. Thus, the phase of the wavefront can be made different by λ / 4. The direction in which the diffraction grating is moved may be either left or right.
[0024]
Further, when one of the first and second diffraction gratings 15a and 15b is moved by one pitch, a phase change of (n 1 −n 2 ) × 2π occurs, so that the phase difference between the two wavefronts 17a and 17b is obtained. Is the same phase (n 1 −n 2 ) times during one pitch movement of the diffraction grating, whereby the same pitch is obtained by moving the diffraction grating by the phase obtained by dividing one pitch by (n 1 −n 2 ). Phase. As an example, when n 1 = 1 and n 2 = -1, a value obtained by dividing one pitch by (1 − (− 1)) = 2, that is, two wavefronts 17a and 17b by a movement of ピ ッ チ pitch Have the same phase relationship. Therefore, in order to vary the wavefront 17a only lambda / 4 with respect to the wavefront 17b is 1 divided by the pitch (n 1 -n 2), a ¼ pitch of the diffraction grating (n 1 -n 2 ) The value divided by the distance (n 1 −n 2 ) divided by 2 ) may be added or subtracted. In this example, the phase of the wavefront can be changed by λ / 4 by adding 1 / pitch and 8 pitch and moving by / pitch.
[0025]
Taking another higher order as an example, in the case of n 1 = 2 and n 2 = −3, the quarter pitch is divided by (2 − (− 3)) = 5 to obtain the 1/20 pitch. Only by changing the phase of the diffraction grating, the phase of the wavefront can be changed by λ / 4. Further, this is achieved by moving the pitch by 4 pitch obtained by adding 1/5 pitch value obtained by dividing one pitch by (2 − (− 3)) = 5 and 1/20 pitch. Only the phase of the wavefront can be different.
[0026]
As described above, the relative phase between the first diffraction grating 15a and the second diffraction grating 15b is determined by dividing a quarter pitch by (n 1 −n 2 ) or by setting the quarter pitch to divided by the (n 1 -n 2), since a value obtained by dividing the one pitch in (n 1 -n 2) to one or a plurality adding or subtracting a value, the second diffraction an interference fringe The phase of the light can be shifted precisely and easily by 波長 wavelength, whereby the S-curve of the focus error signal Fe is maximized, and the defocus amount can be determined accurately. In particular, by setting the values to 1/8 pitch and 5/8 pitch using ± 1st order light, the shapes of the first and second diffraction gratings 15a and 15b and the light receiving element 14 are simplified, and the fabrication is easy. And the production cost can be reduced.
[0027]
Next, a third embodiment of the present invention will be described with reference to FIGS. 7 to 9 (corresponding to the invention described in claim 4). The description of the same parts as those in the above embodiments is omitted, and the same reference numerals are used for the same parts.
[0028]
In this embodiment, the pitch of the first diffraction grating 15a of the double diffraction grating 15 is set to lambda 1, the pitch of the second diffraction grating 15b is a lambda 2. The first diffracted beam K 1 diffracted by the first diffraction grating 15a is the n 1-order light and n 2 order light and second diffracted light K 2 obtained by the second diffraction grating 15b is m 1 primary there is a light and m 2 order light. In this case, between the pitch of each diffraction grating and the order of the diffracted light,
Λ 2 n 1 + Λ 1 m 1 = Λ 2 n 2 + Λ 1 m 2 ... (12)
Is set in the relational expression.
[0029]
Hereinafter, the reason why the S-curve of the focus error signal Fe can be maximized by setting the relative phase relationship between the diffraction gratings 15a and 15b under the condition of the above equation (12) will be described. Figure 7 shows the diffraction condition of the double diffraction grating 15 and the second diffraction grating 15b of the first diffraction grating 15a and the pitch lambda 2 pitches lambda 1 is formed. Now, the reflected light incident on the incident angle theta 0 double diffraction grating 15 from the optical disk 13, the emission angle theta 1 of n 1-order light in the first diffraction grating 15a side, n 2 order light emission angle theta 3 There occurs, it is assumed that the second diffraction grating 15b side exit angle theta 2 of the m 1-order light, m 2 order light emission angle theta 4 occurs. In this case, on the first diffraction grating 15a side,
sin θ 0 + sin θ 1 = n 1 λ / Λ 1 (13)
sin θ 0 + sin θ 3 = n 2 λ / Λ 1 (14)
Holds. On the other hand, on the second diffraction grating 15b side,
sin θ 1 + sin θ 2 = −m 1 λ / Λ 2 (15)
sin θ 3 + sin θ 4 = −m 2 λ / Λ 2 (16)
Holds. Thus, in order to make two diffracted lights of m 1 -order light and m 2 -order light emitted from the double diffraction grating 15 parallel, θ 2 = θ 4 ,
Λ 2 n 1 + Λ 1 m 1 = Λ 2 n 2 + Λ 1 m 2 ... (17)
Is obtained.
[0030]
As an example, as shown in FIG. 8, Λ 1 = 1 μm of the first diffraction grating 15a, Λ 2 = 2 μm, n 1 = 2, and n 2 = −1 of the second diffraction grating 15b are substituted into the equation (17). Then
2 · 2 + 1 · m 1 = 2 · (-1) +1 · m 2
That is,
m 1 −m 2 = −6 (18)
Is obtained. From this equation (18), for example, as shown in FIG. 9, when m 1 = −2 and m 2 = 4, the first diffraction grating 15a generates the second-order light and the −1st-order light, and the second diffraction light. The grating 15b generates -2nd order light and 4th order light. This makes it possible to shift the diffracted m 1, m 2 order light phase by lambda / 4.
[0031]
As described above, by setting so as to satisfy the equation (12) in relation to the second diffracted light K 2 the phase of the interference fringes can be shifted by lambda / 4, thereby, the focus error signal Fe The defocus amount can be accurately obtained by maximizing the S-shaped curve. Here, it is assumed that the light incident on the diffraction grating is vertical. However, even when the light does not enter vertically, adjustment may be made so that the phases of the two diffracted lights are shifted by λ / 4.
[0032]
【The invention's effect】
According to the first aspect of the present invention, since each diffraction grating of the interference fringe generating means is formed so that the phases of the second diffracted lights that interfere with each other are shifted by 4 wavelength, the S-shaped curve of the focus error signal is maximized. The amount of defocus can be easily obtained by using this method, which makes it possible to significantly improve the signal detection sensitivity and accurately measure minute displacement compared to the conventional knife edge method and astigmatism method. it can. Further, in the measurement method using such interference fringes, the length of the detection optical path can be made shorter than in the past, so that the size of the optical pickup unit can be reduced. Furthermore, since the beam shape can be made relatively large in the detection using such interference fringes, the position of the optical element can be adjusted extremely rough, the environment resistance can be improved, and stable signal detection can always be performed. it can.
[0033]
According to a second aspect of the present invention, the relative phase between the first diffraction grating and the second diffraction grating is a value obtained by dividing a quarter pitch by (n 1 −n 2 ), or a quarter of that value. the value obtained by dividing a pitch (n 1 -n 2), since a value obtained by dividing the one pitch in (n 1 -n 2) to one or a plurality adding or subtracting a value, an interference fringe The phase of the second diffracted light can be accurately shifted by 1 / wavelength, so that the S-curve of the focus error signal can be maximized and the defocus amount can be accurately obtained.
[0034]
According to the third aspect of the present invention, since the relative phase between the first diffraction grating and the second diffraction grating is set to a value of 1/8 pitch or 5/8 pitch, the second phase becomes an interference fringe. The phase of the two diffracted lights can be accurately and easily shifted by 1 / wavelength, so that the S-shaped curve of the focus error signal can be maximized, and the defocus amount can be obtained more accurately. Further, since the first diffraction grating and the second diffraction grating have the same pitch, that is, the same grating pitch, and interference fringes are generated using the second diffraction light of ± 1st order light, the diffraction grating and the light receiving element The production is easy, and the production cost can be further reduced.
[0035]
Fourth aspect of the present invention, the first diffracted light pitch obtained by the first diffraction grating of lambda 1 and n 1 order light and n 2 order light, the second pitch is obtained by the second diffraction grating of lambda 2 When the diffracted lights are m 1st order light and m 2nd order light, the pitch of each diffraction grating and the order of the diffracted light are
Λ 2 n 1 + Λ 1 m 1 = Λ 2 n 2 + Λ 1 m 2
, The phase of the second diffracted light, which becomes an interference fringe, is shifted by を wavelength, and the S-curve of the focus error signal is maximized to obtain the defocus amount more accurately. it can.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an equivalent optical system of a theoretical analysis when a phase difference of 差 wavelength is generated by two diffracted lights as a first embodiment of the present invention.
FIG. 2 is an optical path diagram showing the entire configuration of the minute displacement measuring device.
FIG. 3 is a waveform diagram showing an S-shaped curve of a focus error signal with respect to a defocus amount.
FIG. 4 is a side view showing that a wavefront of diffracted light also moves by moving the diffraction grating as a second embodiment of the present invention.
FIG. 5 is a side view illustrating a state in which a phase difference is generated in diffracted light when two diffraction gratings are stacked and the diffraction grating is moved by one pitch.
FIG. 6 is a side view showing a state where the wavefronts of the diffracted light also match when the relative phases of the diffraction gratings match.
FIG. 7 is a side view showing a state of generation of diffracted light when the pitch of the diffraction grating according to the third embodiment of the present invention is different.
FIG. 8 is a side view showing a state in which a phase difference occurs in diffracted light when diffraction gratings having different pitches are used.
FIG. 9 is a side view showing a state where high-order diffracted light is generated.
FIG. 10 is an optical path diagram showing a focus error signal detection method in a conventional device.
[Explanation of symbols]
Reference Signs List 9 light source 12 objective lens 13 measured object 14 light receiving element 15 interference fringe generating means 15a first diffraction grating 15b second diffraction grating K 1 first diffraction light K 2 second diffraction light

Claims (4)

光源からの光を対物レンズにより集光して測定物に照射しその測定物により反射され前記対物レンズを再び通過した光が入射することによりn 次光とn 次光との第一回折光を発生する第一回折格子と、前記第一回折光が入射することにより複数の回折された第二回折光を発生する第二回折格子とからなり、互いに干渉し合う前記第二回折光の位相が1/4波長だけずれるような形状に各回折格子が形成された干渉縞発生手段と、この干渉縞発生手段からの光を受光する少なくとも2分割された領域からなる受光素子とを設け、前記干渉縞発生手段により生じた前記第二回折光の間での干渉により干渉縞の位相の変化を前記受光素子で検知することによって前記測定物の光軸方向への移動量を測定するようにしたことを特徴とする微小変位測定装置。The light from the light source is condensed by the objective lens, irradiates the object to be measured, and the light reflected by the object and passed through the objective lens again is incident, whereby the first diffraction of the n 1st light and the n 2nd light is performed. A first diffraction grating that generates light, and a second diffraction grating that generates a plurality of diffracted second diffracted light by the incidence of the first diffracted light, the second diffracted light interferes with each other An interference fringe generating means in which each diffraction grating is formed in such a shape that the phase is shifted by 4 wavelength; and a light receiving element comprising at least two divided areas for receiving light from the interference fringe generating means , to measure the amount of movement in the optical axis direction of the measured object by sensing changes in the phase of the interference fringe in the light receiving element by the interference between the second diffraction light generated by the interference fringe generating means Small changes characterized by Measuring device. 第一回折格子と第二回折格子との相対的な位相を、回折格子の4分の1ピッチを(n −n )で割った値、又は、その値にさらに1ピッチを(n −n )で割った値を1個ないしは複数個加算又は減算した値に設定したことを特徴とする請求項1記載の微小変位測定装置。The relative phase between the first diffraction grating and the second diffraction grating is obtained by dividing a quarter pitch of the diffraction grating by (n 1 −n 2 ), or further adding one pitch to the value (n 1 2. The minute displacement measuring device according to claim 1, wherein a value obtained by adding or subtracting one or a plurality of values divided by −n 2 ) is set. ±1次光の干渉縞を発生させる第一回折格子と第二回折格子とを等ピッチとし、第一回折格子と第二回折格子との相対的な位相を、回折格子の8分の1ピッチ、又は、8分の5ピッチの値に設定したことを特徴とする請求項1記載の微小変位測定装置。The first and second diffraction gratings that generate interference fringes of ± 1st-order light have the same pitch, and the relative phase between the first and second diffraction gratings is ピ ッ チ pitch of the diffraction grating. The minute displacement measuring device according to claim 1, wherein the value is set to a value of 5/8 pitch. ピッチがΛ の第一回折格子により得られる第一回折光をn 次光とn 次光とし、ピッチがΛ の第二回折格子により得られる第二回折光をm 次光とm 次光としたとき、各回折格子のピッチと回折光の次数とを、
Λ +Λ =Λ +Λ
の関係式を満たすように設定したことを特徴とする請求項1記載の微小変位測定装置。
A first diffracted light pitch obtained by the first diffraction grating of lambda 1 and n 1 order light and n 2 order light, a second diffracted light pitch obtained by the second diffraction grating of lambda 2 and m 1-order light m Assuming the secondary light, the pitch of each diffraction grating and the order of the diffracted light are:
Λ 2 n 1 + Λ 1 m 1 = Λ 2 n 2 + Λ 1 m 2
2. The small displacement measuring device according to claim 1, wherein the relationship is set so as to satisfy the following relationship.
JP32889294A 1994-12-28 1994-12-28 Micro displacement measuring device Expired - Lifetime JP3573367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32889294A JP3573367B2 (en) 1994-12-28 1994-12-28 Micro displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32889294A JP3573367B2 (en) 1994-12-28 1994-12-28 Micro displacement measuring device

Publications (2)

Publication Number Publication Date
JPH08180493A JPH08180493A (en) 1996-07-12
JP3573367B2 true JP3573367B2 (en) 2004-10-06

Family

ID=18215266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32889294A Expired - Lifetime JP3573367B2 (en) 1994-12-28 1994-12-28 Micro displacement measuring device

Country Status (1)

Country Link
JP (1) JP3573367B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725756B2 (en) * 1998-05-14 2011-07-13 前田 資郎 Directional diffraction grating
EP1193564B1 (en) * 2000-09-28 2006-04-05 Ricoh Company, Ltd. Toner, developer and container for the developer, and method of and apparatus for forming an image
KR100444913B1 (en) * 2002-01-28 2004-08-21 한국과학기술원 Displacement Measurement Sensor
CN103759656B (en) * 2014-01-23 2017-01-18 清华大学 Two-degree-of-freedom heterodyne grating interferometer displacement measurement system

Also Published As

Publication number Publication date
JPH08180493A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
JP2683918B2 (en) Device for optically scanning the information surface
KR930002166B1 (en) Optical diffaction grating element and optical pick-up device and optical scan device
JPH04364231A (en) Optical head device
JPH01106341A (en) Optical scanner
JP3563210B2 (en) Optical device for optical disk device and optical disk device
US8045432B2 (en) Optical disc device
KR100831138B1 (en) Apparatus for optically recording and reproducing information
JP3573367B2 (en) Micro displacement measuring device
US5572323A (en) Infinitesimal displacement measuring apparatus and optical pick-up unit
KR960011790B1 (en) Optical head device
JP3303250B2 (en) Displacement measuring device and optical pickup
JPH0370859B2 (en)
JP2761180B2 (en) Micro displacement measuring device and optical pickup device
JPH073700B2 (en) Optical head device
EP0942414B1 (en) Optical disk apparatus
JP4285955B2 (en) Hologram optical element, misregistration detection device, and optical recording medium driving device
JP3415938B2 (en) Displacement measuring device and optical pickup
JP3300536B2 (en) Displacement measuring device and optical pickup
JPH07311961A (en) Optical pickup
JP3423991B2 (en) Displacement measuring device and optical pickup
JP2683293B2 (en) Optical head device
JP4147912B2 (en) Optical lens aberration detection method and apparatus, and optical pickup
JP2648140B2 (en) Optical head device
JPS6033003A (en) Shape measuring device
JP3371305B2 (en) Optical pickup

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6