JP3571731B2 - Cylindrical liquid ring mount - Google Patents

Cylindrical liquid ring mount Download PDF

Info

Publication number
JP3571731B2
JP3571731B2 JP22367492A JP22367492A JP3571731B2 JP 3571731 B2 JP3571731 B2 JP 3571731B2 JP 22367492 A JP22367492 A JP 22367492A JP 22367492 A JP22367492 A JP 22367492A JP 3571731 B2 JP3571731 B2 JP 3571731B2
Authority
JP
Japan
Prior art keywords
liquid
cylinder
inner cylinder
cylindrical
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22367492A
Other languages
Japanese (ja)
Other versions
JPH0674288A (en
Inventor
洋一 河本
恵一 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP22367492A priority Critical patent/JP3571731B2/en
Publication of JPH0674288A publication Critical patent/JPH0674288A/en
Application granted granted Critical
Publication of JP3571731B2 publication Critical patent/JP3571731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、例えばエンジンマウントなどに用いられるブッシュタイプの円筒型液封マウントに関するものである。
【0002】
【従来の技術】
従来より、この種の円筒型液封マウントとして、内筒体と外筒体との間をゴム弾性体により連結しかつ上記内筒体を挟んで筒軸に直交する方向の両側にそれぞれ液室を形成し、両液室間を連通するオリフィスを通る液体の流動抵抗により上記内筒体もしくは外筒体から上記筒軸に直交する方向に入力する振動の減衰を図るものが知られている(例えば、特開昭64−40734号公報、実公平1−31796号公報もしくは特開平3−121326号公報参照)。これらの液封マウントでは、上記筒軸に直交する方向からの振動入力により上記内筒体もしくは外筒体が上記方向に相対移動して弾性体が変形され、その結果、各液室が拡大もしくは縮小されて液体の流動が生じるように構成されている。
【0003】
【発明が解決しようとする課題】
ところが、一般に、液封マウントには上記筒軸に直交する方向の振動だけではなく、他の方向の振動、特に筒軸方向の振動も入力する。この筒軸方向振動が上記従来の液封マウントに入力した場合、弾性体の筒軸方向への変形は生じるものの、各液室の拡大、縮小が生じないため、上記筒軸方向振動に対して液体の流動抵抗による減衰を図ることができない。そればかりか、上記筒軸方向振動によりゴム弾性体に過大な引張応力が作用する場合があり、この場合、上記ゴム弾性体の耐久性を著しく損なう結果を招く。
【0004】
本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、同じ液封マウントにより、軸直方向振動に加えて軸直方向以外の振動、特に筒軸方向振動に対しても液体の流動抵抗による減衰が得られるようにすることにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、内筒体と、この内筒体を囲む外筒体と、外筒体及び内筒体を連結する弾性体と、上記内筒体を挟みかつ該内筒体の筒軸に直交する方向について該内筒体の両側上記外筒体と弾性体との間にそれぞれ形成された一対の液室と、この両液室に封入された液体と、上記両液室を互いに連通するオリフィスと、上記内筒体及び外筒体が上記径方向に相対移動したときの弾性体の変形を抑制するためのストッパー部とを備えた円筒形液封マウントを前提とする。このものにおいて、上記弾性体には、上記内筒体を挟む上記径方向の両側でかつ該内筒体と上記各液室との中間位置においてそれぞれ上記筒軸方向に貫通する一対の貫通空所を形成する。また、上記ストッパー部材は、上記内筒体の筒軸方向で見てほぼ長方形状とし、該内筒体の筒軸方向中間位置から上記径方向の両側に向かって突出させて、その各突出端部が、該貫通空所と液室とを区画する弾性体の隔壁部を貫通空所側から液室側に突き抜けるようにして該液室側に配置する。そして、上記各隔壁部に、それぞれ、上記ストッパー部の突出端部に対応する部位で液室側に膨出して、該突出端部を非接着状態で覆う被覆部と、この被覆部を含む部位から液室側に突出し、この液室内を筒軸方向に区画するように上記外筒体の内周面近傍まで延び、かつこの外筒体の内周面との間に隙間を形成する仕切り壁部とを一体に形成する構成とするものである。
【0006】
また、請求項2記載の発明は、上記請求項1記載の発明において、ストッパー部の各突出端部と、この各突出端部と筒軸に直交する方向に相対向する各被覆部の内面との間に空気室を画成する構成とするものである。
【0007】
【作用】
上記の構成により、請求項1記載の発明では、内筒体もしくは外筒体側から径方向に振動が入力した場合、上記内筒体と外筒体とを連結する弾性体が撓んで上記内筒体が外筒体に対して上記径方向に相対移動する。この相対移動に伴い一対の液室の一方が拡大され、他方が縮小されるため、縮小される側の液室から拡大される側の液室に向かってオリフィスを通して液体が強制的に流動される。このオリフィスを通る際の液体の流動抵抗により上記振動の吸収、減衰が行われる。
【0008】
一方、上記内筒体もしくは外筒体側から筒軸方向に振動が入力した場合、上記弾性体が撓んで上記内筒体が外筒体に対して上記筒軸方向に相対移動する。この相対移動に伴い上記内筒体のストッパー部に押されて隔壁部の被覆部および仕切り壁部が各液室内を上記筒軸方向に強制的に移動される。このため、上記仕切り壁部によって区画された上記各液室の両側部間で液体が上記仕切り壁部の外周端と外筒体の内周面との間の隙間を通って強制的に流動される。この隙間を通る際の液体の流動抵抗により上記筒軸方向振動の吸収、減衰が行われ、弾性体に過大な引張り応力の発生が防止される。
【0009】
また、請求項2記載の発明では、上記請求項1記載の発明による作用に加えて、ストッパー部の上記筒軸に直交する方向の突出端部と被覆部の内面との間に空気室が形成されているため、上記筒軸に直交する方向に入力する高周波振動であって、各液室の拡大、縮小を引き起こさない程度に微小な振幅の振動に対しても、上記内筒体の外筒体に対する上記筒軸に直交する方向への相対移動によって上記ストッパー部の突出端部が上記空気室を押圧するため、この空気室内の内圧上昇に伴う復元力により上記微小振動の吸収、減衰が図られる。
【0010】
【実施例】
以下、本発明の実施例を図面に基づいて説明する。
【0011】
図1〜図3は、本発明の第1実施例に係る円筒型液封マウントを示し、1は筒軸Xを横向きにして配置された内筒体、2は上記内筒体1の外方に所定間隔を隔てて配置された外筒体、3はこの外筒体2の内周面と上記内筒体1の外周面とを互いに連結する弾性体、4,4は上記内筒体1を挟んで上記筒軸Xに直交する方向であって主振動入力方向(径方向:図1〜図3における上下方向であり、以下、単に上下方向という)の両側位置の上記弾性体3を筒軸X方向に貫通する一対の貫通空所、5,5はこれら両貫通空所4,4の上下方向両側各位置の弾性体3と上記外筒体2の内周面との間に形成されて液体Lが封入された一対の液室、6,6は上記筒軸Xに直交しかつ上記主振動方向に直交する方向(図1の紙面に直交する方向、図2および図3の左右方向;以下、単に左右方向という)の両側の上記弾性体3の外周側各位置に形成されて上記一対の液室5,5を互いに連通する一対のオリフィスである。
【0012】
上記内筒体1の筒軸X方向中間位置には上下方向両側に突出するストッパー部7が設けられている。このストッパー部7はほぼ長方形のプレート部材により形成されており、上記内筒体1の上記筒軸X方向のほぼ中央位置の外周面に接着もしくは圧嵌合などの手段により固定されている。そして、上記ストッパー部7の上下方向両側の各突出端部である各先端部7aは、上記各貫通空所4を上下方向に突き抜けて上記各液室5内に突出されている。
【0013】
上記弾性体3は、上記一対の貫通空所4,4によって区画されて上記内筒体1を挟んで左右方向両側に延びる主弾性体部3aと、上記各貫通空所4と各液室5とを区画する上下一対の隔壁部3b,3bと、各隔壁部3bから上下方向に各液室5内に膨出して上記ストッパー部7の各先端部7aを覆う上下一対の被覆部3c,3cと、各被覆部3cおよび上記各隔壁部3bの外周面から両液室5,5内にそれぞれ突出して各液室5を筒軸X方向に2つに区画する上下一対の仕切り壁部3d,3dとからなる。
【0014】
上記主弾性体部3aは上記内筒体1を弾性支持するようになっており、その内筒体1は液封マウントが例えばエンジンマウントとして装着前の無負荷状態(図4に示す状態)で上記外筒体2に対して上方に所定量偏心した位置に位置付けられて、上側の貫通空所4の上下間隔が比較的小さくかつ下側の貫通空所4の上下間隔が比較的大きくなるようになっている。そして、上記液封マウントが装着されてエンジンの自重が負荷された装着状態(図1〜図3に示す状態)で、上記自重により上記主弾性体部3aが撓んで上記内筒体1が上記外筒体2と同心位置に位置付けられるようになっている。以下、上記液封マウントの装着状態における構成について説明を進める。
【0015】
上記各被覆部3cの内面は、上記ストッパー部7の各先端部7aの上下方向および左右方向端面と離されて両者間に上記各貫通空所4と連通するわずかな隙間4aが形成されているとともに、上記各先端部7aの筒軸X方向両側端面と非接着状態で密着されている。また、上記各仕切り壁部3dは上記外筒体2の内周面の近傍位置まで突出されており、その各外周端部3eと上記外筒体2の内周面との間に円弧状のわずかな隙間8がそれぞれ形成されるようになっている。つまり、上記ストッパー部7の筒軸X方向への相対移動により上記各被覆部3cが筒軸X方向に押されて、上記各仕切り壁部3dを各液室5内で筒軸X方向に強制的に相対移動させるようになっている。
【0016】
また、上記内筒体1と弾性体3とは、その弾性体3の外周側に埋め込んだ中間筒体9と予め一体的に加硫成形され、その中間筒体9の外周面を覆う薄膜3fを介して上記外筒体2の内周面に圧嵌合されて一体的に連結されている。そして、上記中間筒体9の上記各液室5に相当する範囲の筒壁面がそれぞれ切欠き窓部9aとされて、上記各隔壁部3cと外筒体2の内周面との間に上記各液室5が形成されている。また、上記両切欠き窓部9a,9a間の上記薄膜3fの一部が周方向に切り欠かれており(図5参照)、この切り欠かれた部分の中間筒体9の外周面と外筒体2の内周面との間に上下の両液室5,5を互いに連通する一対のオリフィス6,6が形成されている。
【0017】
上記構成の液封マウントは、上記内筒体1および外筒体2の一方がエンジン側に、他方が車体側に連結された状態で、上記エンジンと車体との間に介装される。そして、上記エンジン側もしくは車体側から上下方向の高周波振動が上記内筒体1もしくは外筒体2に入力された場合、上記主弾性体部3aが上下方向に撓まされて上記内筒体1が外筒体2に対して上下方向に隙間4aの上下間隔の微小範囲内で相対移動する。この際、上記主弾性体部3aは、その上下がそれぞれ貫通空所4により他の弾性体3の部分と分離されているため、上記微小振動に応じて自由に変形、復元することができる。これにより、上記上下方向の微小振動を上記主弾性体部3aのばね作用により吸収することができる。
【0018】
また、上記上下方向振動が低周波振動である場合、上記内筒体1が隙間4aの上下間隔以上に相対移動して、例えば上側被覆部3cの内面と当接して上側隔壁部3bとともに上方に押し上げることにより、上側液室5内の液体Lが圧縮される。この上側液室5の内圧上昇により液体Lが両オリフィス6,6を通して下側液室5側に流動する。このため、この液体Lの上記両オリフィス6,6を通る際の流動抵抗により上記上下方向振動の吸収、減衰を行うことができる。
【0019】
さらに、上記上下方向に大衝撃力が入力した場合、上記内筒体1が上下方向に相対移動する結果、上記ストッパー部7の一方の先端部7aが相対向する被覆部3cの内面に衝突し、そして、上記先端部7aがこの被覆部3cおよび仕切り壁部3dを介して外筒体2の内周面に衝突することになる。このため、上記被覆部3cおよび仕切り壁部3dにより上記大衝撃力の吸収、緩衝を図った状態で、上記大衝撃力による弾性体3の過度の変形を防止することができ、耐久性の向上に寄与することができる。
【0020】
一方、上記エンジン側もしくは車体側からの筒軸X方向の振動が上記内筒体1もしくは外筒体2に入力された場合、上記主弾性体部3aが筒軸X方向に撓まされて上記内筒体1が外筒体2に対して筒軸X方向に相対移動する。この内筒体1の相対移動に伴いストッパー部7が一体となって上記筒軸X方向に相対移動するため、上記ストッパー部7の各先端部7aにより上記各被覆部3cが押されて上記各仕切り壁部3dが各液室5内を筒軸X方向に相対移動させられる。このため、上記各仕切り壁部3dにより区画された各液室5の筒軸X方向一側の液室部分から他側液室部分へ隙間8を通して液体Lの強制的な流動が生じ、この液体Lの隙間8を通る際の流動抵抗により上記筒軸X方向振動の吸収、減衰を効果的に行うことができる。従って、弾性体3に過大な引張り応力が作用するのを防止することができ、液封マウントの耐久性の向上を図ることができる。
【0021】
さらに、上記エンジン側もしくは車体側から上記筒軸X方向もしくはこれに直交する方向以外の振動、例えば上記内筒体1もしくは外筒体2をこじるような方向(以下、こじり方向という)の振動が入力した場合であっても、上記内筒体1の上記こじり方向への相対移動に伴いストッパー部7が揺動し、その揺動運動により各被覆部3cを介して各仕切り壁部3dが各液室5内で強制的に揺動される。このため、液体Lが上記各隙間8もしくは各オリフィス6の一方もしくは双方を通して強制的に流動され、この際の流動抵抗により上記こじり方向の振動の吸収、減衰を行うことができる。
【0022】
図6は本発明の第2実施例に係る液封マウントを示し、10は内筒体1の筒軸X方向の中央位置の外周面に固定されて上下方向に突出するストッパー部である。このストッパー部10はほぼ長方形のプレート部材により形成されており、その左右両側縁10a,10aが上下方向に一直線状に形成されている。そして、このストッパー部10の左右方向幅は上記第1実施例のストッパー部7のそれよりも大きく形成されている。
【0023】
また、11は上記内筒体1と外筒体2とを連結する弾性体であり、この弾性体11は、一対の貫通空所4,4によって区画されて上記内筒体1を挟んで左右両側方向に延びる主弾性体部11aと、上記各貫通空所4と各液室5とを区画する上下一対の隔壁部11b,11bと、各隔壁部11bから上下方向に各液室5内に膨出して上記ストッパー部10の各先端部7bを覆う上下一対の被覆部11c,11cと、各被覆部11cおよび上記各隔壁部11bの外周面から両液室5,5内にそれぞれ突出して各液室5を筒軸X方向に2つに区画する上下一対の仕切り壁部11d,11dとからなる。
【0024】
上記主弾性体部11aは上記内筒体1を弾性支持するようになっており、上記第1実施例と同様に、無負荷状態で上記外筒体2に対して上方に所定量偏心した位置に位置付けられ、装着状態でエンジンなどの自重により上記主弾性体部11aが撓んで上記内筒体1が上記外筒体2と同心位置に位置付けられるようになっている。
【0025】
上記各被覆部11cの内面は、上記ストッパー部10の各先端部10bの上下方向端面と筒軸Xに直交する方向に所定間隔離されており、両者間に密閉された空気室12がそれぞれ形成されるようになっている。また、上記各被覆部11cの内面は、上記各先端部10bの左右方向両側端面と筒軸X方向両側端面と非接着状態でかつ上下方向に摺動可能に密着されている。つまり、上記ストッパー部10の上下方向への相対移動に際し、上記各先端部10bの先端面を除き筒軸X方向および左右方向の周囲の各端面が上記被覆部11cの内面と密着した状態を保ちつつ摺動するようになっており、これにより、上記各空気室12の気密性を維持するようになっている。すなわち、第1実施例における隙間4aの部分が本第2実施例では密閉された空気室12を構成するようになっている。また、上記各仕切り壁部11dは上記外筒体2の内周面の近傍位置まで突出されており、その各外周端部11eと上記外筒体2の内周面との間に、上記第1実施例と同様に、円弧状の隙間8がそれぞれ形成されるようになっている。
【0026】
上記各空気室12は、以下の手順により形成されるようになっている。すなわち、まず、内筒体1および中間筒体9と、両者を連結する弾性体11とを、各被覆部11cがストッパー部10を覆った状態でかつ両者が非接着状態となるように一体加硫成形する。次に、この一体加硫成形品に外筒体2を液体中で圧嵌合する。その後、各液室5から所定量の液体Lを抜き取ることにより上記各被覆部11cおよび各隔壁部11bに各液室5側に吸引する吸引力を作用させ、この吸引力により上記各被覆部11cとストッパー部10の各先端部10bとの間に各貫通空所4の側から空気を吸引させて、一対の空気室12,12を形成する。そして、この各空気室12が形成されて上記各被覆部11cなどが各液室5側に変位することにより、上記抜き取りによる吸引力が解消されて各液室5は平衡状態となる。
【0027】
なお、上記液封マウントのその他の構成は第1実施例のものと同様であるために、同一部材には同一符号を付して、その説明は省略する。
【0028】
そして、上記第2実施例において、エンジン側もしくは車体側から上下方向の高周波振動が上記内筒体1もしくは外筒体2に入力された場合、上記主弾性体部11aが上下方向に撓まされて上記内筒体1が外筒体2に対して上下方向に相対移動する。この際、上記ストッパー部10の各先端部10bが各空気室12内を上下方向に微小量相対移動して、上記各空気室12内の空気を圧縮もしくは膨脹させるため、上記上下方向の高周波振動の吸収、減衰を、特に各空気室12内の空気の緩衝作用により効果的に行うことができる。
【0029】
また、上記上下方向振動が低周波振動である場合、上記内筒体1とともにストッパー部7が上下方向に相対移動して圧縮側の空気室12、例えば上記ストッパー部7が上方に相対移動した際の上側空気室12の圧縮空気層を介して被覆部11cおよび隔壁部11bを押し上げることにより、上側液室5内の液体Lが圧縮される。このため、上記第1実施例と同様に、この上側液室5の内圧上昇により液体Lが両オリフィス6,6を通して下側液室5側に流動し、この液体Lの上記両オリフィス6,6を通る際の流動抵抗により上記上下方向の低周波振動の吸収、減衰を行うことができる。
【0030】
さらに、上記上下方向に大衝撃力が入力した場合、筒軸X方向の振動が入力した場合、および、こじり方向の振動が入力した場合などにおいても、上記第1実施例と同様に、各振動の吸収、減衰を行うことができる。すなわち、上記上下方向に大衝撃力が入力した場合、上記内筒体1が上下方向に相対移動して上記ストッパー部10の先端部10bが被覆部11cの内面に衝突し、そして、上記先端部10bがこの被覆部11cおよび仕切り壁部11dを介して外筒体2の内周面に衝突することになる。このため、上記被覆部11cおよび仕切り壁部11dにより上記大衝撃力の吸収、緩和を図った状態で、上記大衝撃力による弾性体11の過度の変形を防止することができ、耐久性の向上に寄与することができる。
【0031】
また、上記筒軸X方向の振動が入力した場合、上記内筒体1と一体となってストッパー部10が上記筒軸X方向に相対移動するため、このストッパー部10により上記各被覆部11cが押されて上記各仕切り壁部11dが各液室5内を筒軸X方向に相対移動させられる。このため、上記各仕切り壁部11dにより区画された各液室5の筒軸X方向一側の液室部分から他側液室部分へ隙間8を通して液体Lの強制的な流動が生じ、この液体Lの隙間8を通る際の流動抵抗により上記筒軸X方向振動の吸収、減衰を効果的に行うことができる。
【0032】
さらに、上記こじり方向の振動が入力した場合、上記内筒体1の上記こじり方向への相対移動に伴いストッパー部10が揺動して各被覆部11cおよび各仕切り壁部11dが各液室5内で強制的に揺動される。このため、各隙間8もしくは各オリフィス6の一方もしくは双方を通して液体Lが強制的に流動され、この際の流動抵抗により上記こじり方向の振動の吸収、減衰を行うことができる。
【0033】
【発明の効果】
以上説明したように、請求項1記載の発明における円筒型液封マウントによれば、内筒体もしくは外筒体側から筒軸に直交する方向に振動が入力した場合、上記内筒体と外筒体とを連結する弾性体が撓んで上記内筒体が外筒体に対して上記径方向に相対移動し、この相対移動に伴い一対の液室の一方が拡大され、他方が縮小されるため、縮小される側の液室から拡大される側の液室に向かってオリフィスを通して液体を強制的に流動させることができ、このオリフィスを通る際の液体の流動抵抗により上記径方向の振動の吸収、減衰を行うことができる。
【0034】
しかも、上記内筒体もしくは外筒体側から筒軸方向に振動が入力した場合、上記弾性体が撓んで上記内筒体が外筒体に対して上記筒軸方向に相対移動し、この相対移動に伴い上記内筒体のストッパー部に押されて隔壁部の被覆部および仕切り壁部が各液室内を上記筒軸方向に強制的に移動されるため、上記仕切り壁部によって区画された上記各液室の上記筒軸方向両側部間で液体を上記仕切り壁部の外周端と外筒体の内周面との間の隙間を通して強制的に流動させることができ、この隙間を通る際の液体の流動抵抗により上記筒軸方向振動の吸収、減衰をも行うことができる。
【0035】
従って、1つの液封マウントにより、筒軸に直交する方向の振動の吸収、減衰に加えて、筒軸方向の振動の吸収、減衰をも行うことができ、上記筒軸方向振動の入力に伴う弾性体の過大な引張り応力の発生を防止して耐久性の向上を図ることができる。
【0036】
また、請求項2記載の発明によれば、上記請求項1記載の発明による効果に加えて、ストッパー部の上記径方向の先端面と被覆部の内面との間に空気室が形成されているため、その径方向に入力する高周波振動であって、各液室の拡大、縮小を引き起こさない程度に微細な振幅の振動に対しても、上記内筒体の外筒体に対する上記筒軸に直交する方向への相対移動によって上記ストッパー部の先端面が上記空気室を圧縮もしくは膨脹させることになり、この空気室内の内圧上昇もしくは低下に伴う復元力により上記微細振動の吸収、減衰を効果的に行うことができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す縦断面図である。
【図2】図1のA−A線における断面図である。
【図3】図1のB−B線における断面図である。
【図4】無負荷状態の液封マウントの図2相当図である。
【図5】図2のC−C線断面図である。
【図6】本発明の第2実施例の図1相当図である。
【図7】図6のD−D線における断面図である。
【符号の説明】
1 内筒体
2 外筒体
3,11 弾性体
3a,11a 主弾性体部
3b,11b 隔壁部
3c,11c 被覆部
3d,11d 仕切り壁部
4 貫通空所
5 液室
6 オリフィス
7,10 ストッパー部
7a,10b ストッパー部の先端部(突出端部)
8 隙間
12 空気室
[0001]
[Industrial applications]
The present invention relates to a bush type cylindrical liquid ring mount used for an engine mount, for example.
[0002]
[Prior art]
Conventionally, as a cylindrical liquid ring mount of this type, an inner cylinder and an outer cylinder are connected by a rubber elastic body, and liquid chambers are provided on both sides in a direction orthogonal to a cylinder axis with the inner cylinder interposed therebetween. Is known, which attenuates the vibration input from the inner cylinder or the outer cylinder in a direction perpendicular to the cylinder axis by the flow resistance of the liquid passing through the orifice communicating between the two liquid chambers ( See, for example, JP-A-64-40734, JP-B-1-31796, or JP-A-3-121326. In these liquid ring mounts, the elastic body is deformed by the relative movement of the inner cylinder or the outer cylinder in the above-mentioned direction due to vibration input from a direction perpendicular to the above-mentioned cylinder axis, and as a result, each liquid chamber is enlarged or It is configured to be reduced to produce a liquid flow.
[0003]
[Problems to be solved by the invention]
However, in general, not only vibration in the direction perpendicular to the cylinder axis but also vibration in other directions, particularly vibration in the cylinder axis direction, is input to the liquid ring mount. When this cylinder axis direction vibration is input to the conventional liquid ring mount, although the elastic body is deformed in the cylinder axis direction, the expansion and contraction of each liquid chamber does not occur. Attenuation due to liquid flow resistance cannot be achieved. In addition, an excessive tensile stress may act on the rubber elastic body due to the vibration in the axial direction of the cylinder, in which case the durability of the rubber elastic body is significantly impaired.
[0004]
The present invention has been made in view of such circumstances, and an object of the present invention is to use the same liquid ring mount to reduce vibration in directions other than the axial direction, in particular, axial vibration in the cylindrical direction, in addition to the axial vibration. On the other hand, the object is to obtain attenuation by the flow resistance of the liquid.
[0005]
[Means for Solving the Problems]
To achieve the above object, a first aspect of the present invention, the inner cylinder, an outer cylinder body surrounding the inner cylinder, an elastic member for connecting the outer cylindrical member and the inner cylinder, the inner cylinder a pair of liquid chambers which are formed between the outer cylindrical member and the elastic body on both sides of the inner cylinder member for sandwiching the body and radial direction perpendicular to the cylindrical axis of said inner cover, this both liquid chambers A sealed liquid, an orifice communicating the two liquid chambers with each other , and a stopper for suppressing deformation of the elastic body when the inner cylinder and the outer cylinder relatively move in the radial direction . Assume a cylindrical liquid ring mount . In this case, the elastic body has a pair of through-holes penetrating in the cylinder axis direction at both radial sides of the inner cylinder and at intermediate positions between the inner cylinder and the respective liquid chambers. To form Further, the stopper member has a substantially rectangular shape when viewed in the cylinder axis direction of the inner cylinder, and is protruded toward both sides in the radial direction from an intermediate position in the cylinder axis direction of the inner cylinder, and each protruding end thereof. The portion is disposed on the liquid chamber side such that the partition wall portion of the elastic body that partitions the through space and the liquid chamber penetrates from the through space side to the liquid chamber side . Then, to the respective partition wall, respectively, bulging the liquid chamber side at the site corresponding to the projecting end of the stopper portion, and a cover portion covering the respective protruding end portions in a non-adhesive state, the coating unit Projecting from the containing portion to the liquid chamber side, extending to near the inner peripheral surface of the outer cylinder so as to partition the liquid chamber in the cylinder axis direction, and forming a gap between the inner cylinder and the inner peripheral surface of the outer cylinder. The partition wall and the partition wall are integrally formed.
[0006]
According to a second aspect of the present invention, in the first aspect of the present invention, each of the protruding ends of the stopper portion and an inner surface of each of the covering portions opposing each of the protruding ends in a direction orthogonal to the cylinder axis. Between the air chambers.
[0007]
[Action]
According to the first aspect of the present invention, when vibration is input in a radial direction from the inner cylinder or the outer cylinder, the elastic body connecting the inner cylinder and the outer cylinder is bent and the inner cylinder is bent. The body moves relative to the outer cylinder in the radial direction . Due to this relative movement, one of the pair of liquid chambers is enlarged and the other is contracted, so that the liquid is forced to flow from the contracted liquid chamber to the enlarged liquid chamber through the orifice. . The vibration is absorbed and attenuated by the flow resistance of the liquid when passing through the orifice.
[0008]
On the other hand, when vibration is input in the cylinder axis direction from the inner cylinder or the outer cylinder, the elastic body is bent and the inner cylinder moves relative to the outer cylinder in the cylinder axis direction. Along with this relative movement, the stopper portion of the inner cylindrical body is pushed by the stopper portion, and the covering portion and the partition wall portion of the partition portion are forcibly moved in each liquid chamber in the cylinder axis direction. For this reason, the liquid is forcibly flowed through the gap between the outer peripheral end of the partition wall portion and the inner peripheral surface of the outer cylindrical body between both side portions of each of the liquid chambers defined by the partition wall portion. You. Absorption and attenuation of the above-described cylinder axial vibration are performed by the flow resistance of the liquid when passing through the gap, and the generation of excessive tensile stress in the elastic body is prevented.
[0009]
According to the second aspect of the present invention, in addition to the operation of the first aspect, an air chamber is formed between the protruding end of the stopper portion in a direction perpendicular to the cylinder axis and the inner surface of the covering portion. Therefore, the high frequency vibration input in the direction perpendicular to the cylinder axis, and the vibration having a small amplitude that does not cause expansion and contraction of each liquid chamber, Since the protruding end of the stopper presses the air chamber by relative movement with respect to the body in a direction orthogonal to the cylinder axis, absorption and attenuation of the minute vibration can be achieved by a restoring force caused by an increase in internal pressure in the air chamber. Can be
[0010]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
FIGS. 1 to 3 show a cylindrical liquid ring mount according to a first embodiment of the present invention, wherein 1 is an inner cylinder disposed with a cylinder axis X oriented sideways, and 2 is an outer cylinder of the inner cylinder 1. Are arranged at a predetermined distance from each other, 3 is an elastic body for connecting the inner peripheral surface of the outer cylindrical body 2 and the outer peripheral surface of the inner cylindrical body 1 to each other, and 4 and 4 are the above-mentioned inner cylindrical body 1. The elastic body 3 is positioned on both sides of the main vibration input direction ( radial direction: vertical direction in FIGS. 1 to 3, hereinafter simply referred to as vertical direction) in a direction orthogonal to the cylindrical axis X with the cylindrical body X interposed therebetween . A pair of through-holes 5 and 5 penetrating in the direction of the axis X are formed between the elastic body 3 and the inner peripheral surface of the outer cylindrical body 2 at respective positions on both sides in the vertical direction of the through-holes 4 and 4. A pair of liquid chambers 6 and 6 in which the liquid L is sealed are perpendicular to the cylinder axis X and perpendicular to the main vibration direction (a direction perpendicular to the plane of FIG. 1; Left and right direction in FIG. 3; hereinafter, it is simply a pair of orifices on both sides of the formed on the outer peripheral side each position of the elastic body 3 communicate with each other the pair of liquid chambers 5,5) of the left-right direction.
[0012]
At an intermediate position of the inner cylinder 1 in the cylinder axis X direction, stopper portions 7 projecting from both sides in the vertical direction are provided. The stopper portion 7 is formed of a substantially rectangular plate member, and is fixed to the outer peripheral surface of the inner cylinder 1 at a substantially central position in the cylinder axis X direction by means of bonding or press fitting. Each tip 7 a, which is a projecting end on both sides in the vertical direction of the stopper portion 7, penetrates the through space 4 in the vertical direction and projects into the liquid chamber 5.
[0013]
The elastic body 3 includes a main elastic body portion 3a partitioned by the pair of through-holes 4 and 4 and extending on both sides in the left-right direction with the inner cylindrical body 1 interposed therebetween; each of the through-holes 4 and each of the liquid chambers 5; And a pair of upper and lower covering portions 3c, 3c swelling vertically from the respective partition portions 3b into the respective liquid chambers 5 to cover the respective distal end portions 7a of the stopper portions 7. A pair of upper and lower partition walls 3d projecting from the outer peripheral surfaces of the coating portions 3c and the partition portions 3b into the two liquid chambers 5, 5 to partition each liquid chamber 5 into two in the cylinder axis X direction. 3d.
[0014]
The main elastic body portion 3a elastically supports the inner cylinder 1, and the inner cylinder 1 is in a no-load state before the liquid seal mount is mounted as an engine mount (a state shown in FIG. 4). It is positioned at a position decentered upward by a predetermined amount with respect to the outer cylindrical body 2 so that the vertical space of the upper through space 4 is relatively small and the vertical space of the lower through space 4 is relatively large. It has become. Then, in the mounting state in which the liquid ring mount is mounted and the engine's own weight is loaded (the state shown in FIGS. 1 to 3), the main elastic body portion 3a is bent by the own weight, and the inner cylindrical body 1 is moved. It is designed to be positioned concentrically with the outer cylinder 2. Hereinafter, the configuration in the mounted state of the liquid ring mount will be described.
[0015]
The inner surface of each covering portion 3c is separated from the vertical and horizontal end surfaces of each tip portion 7a of the stopper portion 7 so that a slight gap 4a communicating with each through space 4 is formed therebetween. At the same time, they are in close contact with the end surfaces on both sides in the cylinder axis X direction of the tip portions 7a in a non-adhered state. Each of the partition walls 3 d protrudes to a position near the inner peripheral surface of the outer cylinder 2, and a circular arc is formed between each outer peripheral end 3 e and the inner peripheral surface of the outer cylinder 2. Slight gaps 8 are respectively formed. That is, the respective covering portions 3c are pushed in the cylinder axis X direction by the relative movement of the stopper portions 7 in the cylinder axis X direction, and the respective partition walls 3d are forced in the cylinder axis X direction in the respective liquid chambers 5. Relative movement.
[0016]
The inner cylindrical body 1 and the elastic body 3 are vulcanized and formed integrally with the intermediate cylindrical body 9 embedded in the outer peripheral side of the elastic body 3 in advance, and the thin film 3f covering the outer peripheral surface of the intermediate cylindrical body 9 is formed. Are press-fitted to the inner peripheral surface of the outer cylindrical body 2 and are integrally connected. A cylindrical wall surface of the intermediate cylindrical body 9 in a range corresponding to each of the liquid chambers 5 is formed as a notch window portion 9a, and between the partition wall portion 3c and the inner peripheral surface of the outer cylindrical body 2, Each liquid chamber 5 is formed. Further, a part of the thin film 3f between the notch windows 9a, 9a is cut out in the circumferential direction (see FIG. 5), and the cutout portion and the outer peripheral surface of the intermediate cylindrical body 9 are outside. A pair of orifices 6 and 6 are formed between the inner peripheral surface of the cylindrical body 2 and the upper and lower liquid chambers 5 and 5 to communicate with each other.
[0017]
The liquid ring mount having the above configuration is interposed between the engine and the vehicle body with one of the inner cylinder 1 and the outer cylinder 2 connected to the engine and the other connected to the vehicle body. When high-frequency vibrations in the vertical direction are input to the inner cylinder 1 or the outer cylinder 2 from the engine side or the vehicle body side, the main elastic body portion 3a is bent in the vertical direction, and the inner cylinder 1 Moves in the vertical direction relative to the outer cylindrical body 2 within a minute range of the vertical interval of the gap 4a. At this time, since the upper and lower portions of the main elastic body portion 3a are separated from the other elastic members 3 by the through holes 4, respectively, the main elastic body portion 3a can be freely deformed and restored in response to the minute vibration. Thereby, the minute vibration in the vertical direction can be absorbed by the spring action of the main elastic body portion 3a.
[0018]
When the vertical vibration is a low-frequency vibration, the inner cylinder 1 moves relative to the vertical gap of the gap 4a or more, and contacts the inner surface of the upper covering portion 3c and moves upward together with the upper partition 3b. By pushing up, the liquid L in the upper liquid chamber 5 is compressed. The liquid L flows through the orifices 6 and 6 toward the lower liquid chamber 5 due to the increase in the internal pressure of the upper liquid chamber 5. Therefore, the vertical vibration can be absorbed and attenuated by the flow resistance when the liquid L passes through the orifices 6 and 6.
[0019]
Further, when a large impact force is input in the vertical direction, the inner cylinder 1 relatively moves in the vertical direction. As a result, one end 7a of the stopper portion 7 collides with the inner surface of the facing covering portion 3c. Then, the distal end portion 7a collides with the inner peripheral surface of the outer cylindrical body 2 via the covering portion 3c and the partition wall portion 3d. For this reason, in a state where the large impact force is absorbed and buffered by the covering portion 3c and the partition wall portion 3d, excessive deformation of the elastic body 3 due to the large impact force can be prevented, and the durability is improved. Can be contributed to.
[0020]
On the other hand, when vibration in the cylinder axis X direction from the engine side or the vehicle body side is input to the inner cylinder body 1 or the outer cylinder body 2, the main elastic body portion 3a is bent in the cylinder axis X direction and The inner cylinder 1 moves relative to the outer cylinder 2 in the cylinder axis X direction. The stopper 7 is integrally moved relative to the cylinder axis X along with the relative movement of the inner cylinder 1, so that each covering portion 3 c is pushed by each tip 7 a of the stopper 7, and The partition wall 3d is relatively moved in each liquid chamber 5 in the cylinder axis X direction. For this reason, forcible flow of the liquid L occurs through the gap 8 from the liquid chamber portion on one side in the cylinder axis X direction of each of the liquid chambers 5 defined by the partition walls 3d to the other liquid chamber portion. The flow resistance when passing through the gap 8 of L can effectively absorb and attenuate the vibration in the cylinder axis X direction. Therefore, an excessive tensile stress can be prevented from acting on the elastic body 3, and the durability of the liquid-ring mount can be improved.
[0021]
Further, vibrations other than the direction of the cylinder axis X or a direction perpendicular to the direction of the cylinder axis X from the engine side or the vehicle body side, for example, vibrations in a direction that pry the inner cylinder 1 or the outer cylinder 2 (hereinafter referred to as prying direction). Even when the input is made, the stopper portion 7 swings with the relative movement of the inner cylindrical body 1 in the twisting direction, and the swinging motion causes each partition wall portion 3d to move through the covering portion 3c. It is forcibly swung in the liquid chamber 5. Therefore, the liquid L is forcibly flowed through one or both of the gaps 8 or the orifices 6, and the vibration in the twisting direction can be absorbed and attenuated by the flow resistance at this time.
[0022]
FIG. 6 shows a liquid ring mount according to a second embodiment of the present invention, and reference numeral 10 denotes a stopper portion fixed to the outer peripheral surface of the inner cylindrical body 1 at a central position in the cylinder axis X direction and projecting vertically. The stopper portion 10 is formed of a substantially rectangular plate member, and its left and right side edges 10a, 10a are formed in a straight line in the vertical direction. The width of the stopper portion 10 in the left-right direction is formed larger than that of the stopper portion 7 of the first embodiment.
[0023]
Reference numeral 11 denotes an elastic body that connects the inner cylindrical body 1 and the outer cylindrical body 2. The elastic body 11 is divided by a pair of through-holes 4, 4, and sandwiches the inner cylindrical body 1. A main elastic body portion 11a extending in both side directions, a pair of upper and lower partition portions 11b, 11b for partitioning the above-described through-holes 4 and the respective liquid chambers 5, and into each of the liquid chambers 5 from the respective partition portions 11b in a vertical direction. A pair of upper and lower covering portions 11c, 11c that swell and cover the respective leading end portions 7b of the stopper portion 10, and project from the outer peripheral surfaces of the covering portions 11c and the partition walls 11b into the two liquid chambers 5, 5, respectively. The liquid chamber 5 includes a pair of upper and lower partition walls 11d, 11d that divide the liquid chamber 5 into two in the cylinder axis X direction.
[0024]
The main elastic portion 11a is adapted to elastically support the inner cylinder 1, and is eccentric upward by a predetermined amount with respect to the outer cylinder 2 in a no-load state, similarly to the first embodiment. The main elastic body portion 11a is bent by the weight of the engine or the like in the mounted state, and the inner cylinder 1 is positioned concentrically with the outer cylinder 2.
[0025]
The inner surface of each covering portion 11c is separated from the vertical end surface of each tip portion 10b of the stopper portion 10 in a direction orthogonal to the cylinder axis X by a predetermined distance, and a sealed air chamber 12 is formed between the both. It is supposed to be. The inner surface of each covering portion 11c is in close contact with the left and right side end surfaces of each of the distal end portions 10b and both side end surfaces in the cylinder axis X direction in a non-adhered state and slidably in the vertical direction. That is, during the relative movement of the stopper portion 10 in the vertical direction, the end surfaces around the cylinder axis X direction and the left and right direction except for the end surfaces of the end portions 10b are kept in close contact with the inner surface of the covering portion 11c. The air chamber 12 is kept sliding while maintaining the airtightness of the air chambers 12. That is, the gap 4a in the first embodiment constitutes a closed air chamber 12 in the second embodiment. Further, each of the partition walls 11 d protrudes to a position near the inner peripheral surface of the outer cylinder 2, and the partition wall 11 d is provided between each outer peripheral end 11 e and the inner peripheral surface of the outer cylinder 2. As in the first embodiment, arc-shaped gaps 8 are respectively formed.
[0026]
Each of the air chambers 12 is formed by the following procedure. That is, first, the inner cylindrical body 1 and the intermediate cylindrical body 9 and the elastic body 11 connecting them are integrally added so that each covering portion 11c covers the stopper portion 10 and both are in a non-adhered state. Sulfur molding. Next, the outer cylinder 2 is press-fitted to the integrally vulcanized molded product in a liquid. Thereafter, a predetermined amount of liquid L is withdrawn from each liquid chamber 5 to apply a suction force to each of the coating portions 11c and each of the partition walls 11b toward each of the liquid chambers 5, and the suction force is applied to each of the coating portions 11c. A pair of air chambers 12, 12 is formed by sucking air from the side of each through space 4 between each of the end portions 10b of the stopper portion 10. Then, the air chambers 12 are formed, and the coating portions 11c and the like are displaced toward the liquid chambers 5, whereby the suction force due to the extraction is eliminated and the liquid chambers 5 are in an equilibrium state.
[0027]
Since other configurations of the liquid ring mount are the same as those of the first embodiment, the same members are denoted by the same reference numerals, and description thereof will be omitted.
[0028]
In the second embodiment, when high-frequency vibration in the vertical direction is input to the inner cylinder 1 or the outer cylinder 2 from the engine side or the vehicle body side, the main elastic body portion 11a is bent in the vertical direction. As a result, the inner cylinder 1 moves up and down relative to the outer cylinder 2. At this time, the distal end portions 10b of the stopper portion 10 vertically move relative to each other in the vertical direction by a very small amount in the respective air chambers 12 to compress or expand the air in the respective air chambers 12. Can be effectively absorbed and attenuated particularly by the buffering action of the air in each air chamber 12.
[0029]
When the vertical vibration is low-frequency vibration, when the stopper portion 7 moves relative to the upper and lower direction together with the inner cylindrical body 1 and the air chamber 12 on the compression side, for example, the stopper portion 7 moves relatively upward. The liquid L in the upper liquid chamber 5 is compressed by pushing up the covering part 11c and the partition part 11b through the compressed air layer of the upper air chamber 12. Therefore, as in the first embodiment, the liquid L flows to the lower liquid chamber 5 through the orifices 6 and 6 due to the increase in the internal pressure of the upper liquid chamber 5, and the liquid L flows into the two orifices 6 and 6. Can absorb and attenuate the above low frequency vibration in the vertical direction by the flow resistance when passing through.
[0030]
Further, when a large impact force is input in the vertical direction, when a vibration in the cylinder axis X direction is input, and when a vibration in the twisting direction is input, each vibration is applied in the same manner as in the first embodiment. Can be absorbed and attenuated. That is, when a large impact force is input in the up-down direction, the inner cylindrical body 1 relatively moves in the up-down direction, and the tip 10b of the stopper 10 collides with the inner surface of the covering portion 11c. 10b collides with the inner peripheral surface of the outer cylinder 2 via the covering portion 11c and the partition wall portion 11d. Therefore, in a state where the large impact force is absorbed and relaxed by the covering portion 11c and the partition wall portion 11d, excessive deformation of the elastic body 11 due to the large impact force can be prevented, and the durability is improved. Can be contributed to.
[0031]
Further, when the vibration in the direction of the cylinder axis X is input, the stopper portion 10 moves relative to the direction of the cylinder axis X integrally with the inner cylinder 1, so that the respective covering portions 11c are moved by the stopper portion 10. By being pushed, the partition walls 11d are relatively moved within the liquid chambers 5 in the cylinder axis X direction. For this reason, forcible flow of the liquid L occurs through the gap 8 from the liquid chamber portion on one side in the cylinder axis X direction of each liquid chamber 5 defined by the partition walls 11d to the other liquid chamber portion, and this liquid The flow resistance when passing through the gap 8 of L can effectively absorb and attenuate the vibration in the cylinder axis X direction.
[0032]
Further, when the vibration in the prying direction is input, the stopper portion 10 swings with the relative movement of the inner cylinder 1 in the prying direction, so that each covering portion 11c and each partition wall portion 11d are connected to each liquid chamber 5d. It is forcibly swung within. Therefore, the liquid L is forcibly flowed through one or both of the gaps 8 and / or the orifices 6, and the flow resistance at this time can absorb and attenuate the vibration in the twisting direction.
[0033]
【The invention's effect】
As described above, according to the cylindrical liquid seal mount according to the first aspect of the invention, when vibration is input in the radial direction orthogonal to the cylinder axis from the inner cylinder or the outer cylinder, the inner cylinder and the outer cylinder are connected to each other. The elastic body connecting the cylindrical body is bent, and the inner cylindrical body relatively moves in the radial direction with respect to the outer cylindrical body. With this relative movement, one of the pair of liquid chambers is enlarged and the other is reduced. Therefore, the liquid can be forced to flow through the orifice from the liquid chamber on the side to be reduced to the liquid chamber on the side of the expansion, and the flow resistance of the liquid when passing through the orifice causes the vibration in the radial direction to be reduced. Absorption and attenuation can be performed.
[0034]
In addition, when vibration is input in the direction of the cylinder axis from the inner cylinder or the outer cylinder, the elastic body is bent and the inner cylinder moves relative to the outer cylinder in the cylinder axis direction. Since the covering portion and the partition wall portion of the partition wall portion are forcibly moved in each liquid chamber in the cylinder axis direction by being pushed by the stopper portion of the inner cylindrical body, each of the above-described partition walls is partitioned by the partition wall portion. The liquid can be forced to flow through a gap between the outer peripheral end of the partition wall and the inner peripheral surface of the outer cylinder between the two sides of the liquid chamber in the axial direction of the cylinder. The flow resistance described above can also absorb and attenuate the cylinder axial vibration.
[0035]
Therefore, one liquid seal mount can not only absorb and attenuate vibration in the direction perpendicular to the cylinder axis, but also absorb and attenuate vibration in the cylinder axis direction. The generation of excessive tensile stress of the elastic body can be prevented, and the durability can be improved.
[0036]
According to the second aspect of the invention, in addition to the effect of the first aspect, an air chamber is formed between the radial end surface of the stopper portion and the inner surface of the covering portion. Therefore , even in the case of high-frequency vibration input in the radial direction and vibration having a small amplitude that does not cause expansion and contraction of each liquid chamber, the inner cylinder is perpendicular to the cylinder axis with respect to the outer cylinder. to the distal end surface of the stopper portion becomes possible to compress or expand the air chamber by a relative movement in the direction, the absorption of the fine vibration due to the restoring force due to internal pressure rise or drop in the air chamber, the damping effectively It can be carried out.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA of FIG.
FIG. 3 is a sectional view taken along line BB of FIG. 1;
FIG. 4 is a view corresponding to FIG. 2 of the liquid ring mount in a no-load state.
FIG. 5 is a sectional view taken along line CC of FIG. 2;
FIG. 6 is a view corresponding to FIG. 1 of a second embodiment of the present invention.
FIG. 7 is a sectional view taken along line DD of FIG. 6;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner cylinder body 2 Outer cylinder body 3, 11 Elastic body 3a, 11a Main elastic body part 3b, 11b Partition part 3c, 11c Covering part 3d, 11d Partition wall part 4 Penetrating space 5 Liquid chamber 6 Orifice 7, 10 Stopper part 7a, 10b Tip of stopper (projecting end)
8 gap 12 air chamber

Claims (2)

内筒体と、この内筒体を囲む外筒体と、外筒体及び内筒体を連結する弾性体と、上記内筒体を挟みかつ該内筒体の筒軸に直交する方向について該内筒体の両側上記外筒体と弾性体との間にそれぞれ形成された一対の液室と、この両液室に封入された液体と、上記両液室を互いに連通するオリフィスと、上記内筒体及び外筒体が上記径方向に相対移動したときの弾性体の変形を抑制するためのストッパー部とを備えた円筒形液封マウントにおいて、
上記弾性体には、上記内筒体を挟む上記径方向の両側でかつ該内筒体と上記各液室との中間位置においてそれぞれ上記筒軸方向に貫通する一対の貫通空所が形成され、
上記ストッパー部材は、上記内筒体の筒軸方向で見てほぼ長方形状とされていて、該内筒体の筒軸方向中間位置から上記径方向の両側に向かって上記各貫通空所内に突出し、その各突出端部が、該貫通空所と液室とを区画する弾性体の隔壁部を貫通空所側から液室側に突き抜けており、
上記各隔壁部には、それぞれ、
上記ストッパー部の突出端部に対応する部位で液室側に膨出して、該突出端部を非接着状態で覆う被覆部と、
上記被覆部を含む部位から液室側に突出し、この液室内を筒軸方向に区画するように上記外筒体の内周面近傍まで延び、かつこの外筒体の内周面との間に隙間を形成する仕切り壁部とが一体に形成されていることを特徴とする円筒型液封マウント。
An inner cylinder member, an outer cylindrical body surrounding the inner cylinder, an elastic member for connecting the outer cylindrical member and inner cylindrical member, the radial direction perpendicular to the cylindrical axis of the scissors and the inner cover the inner cover for a pair of liquid chambers which are formed between both sides of the inner cylinder and the outer cylindrical body and the elastic body, a liquid sealed in the two liquid chambers, and an orifice for communicating with each other the both liquid chambers In a cylindrical liquid seal mount having a stopper portion for suppressing deformation of the elastic body when the inner cylinder and the outer cylinder relatively move in the radial direction ,
The elastic body has a pair of through-holes penetrating in the cylinder axis direction at intermediate positions between the inner cylinder and each of the liquid chambers on both sides in the radial direction sandwiching the inner cylinder,
The stopper member has a substantially rectangular shape when viewed in the cylinder axis direction of the inner cylinder, and protrudes from the intermediate position in the cylinder axis direction of the inner cylinder toward both sides in the radial direction into the respective through-holes. , Each protruding end portion of the elastic body partitioning the through space and the liquid chamber penetrates from the through space side to the liquid chamber side,
In each of the above-mentioned partition parts,
Bulges in the liquid chamber side at the site corresponding to the projecting end of the stopper portion, and a cover portion covering the respective protruding end portions in a non-adhesive state,
It protrudes from the portion including the covering portion to the liquid chamber side, extends to near the inner peripheral surface of the outer cylinder so as to partition the liquid chamber in the cylinder axis direction, and between the inner peripheral surface of the outer cylinder. A cylindrical liquid-ring mount, wherein a partition wall forming a gap is integrally formed.
ストッパー部の各突出端部と、この各突出端部と筒軸に直交する方向に相対向する各被覆部の内面との間に空気室が画成されていることを特徴とする請求項1記載の円筒型液封マウント。Each projecting end of the stopper portion, the claims between the inner surface of each coating unit for the opposite direction orthogonal to the projecting end and the cylindrical shaft, characterized in that the air chamber is defined 2. The cylindrical liquid ring mount according to 1.
JP22367492A 1992-08-24 1992-08-24 Cylindrical liquid ring mount Expired - Fee Related JP3571731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22367492A JP3571731B2 (en) 1992-08-24 1992-08-24 Cylindrical liquid ring mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22367492A JP3571731B2 (en) 1992-08-24 1992-08-24 Cylindrical liquid ring mount

Publications (2)

Publication Number Publication Date
JPH0674288A JPH0674288A (en) 1994-03-15
JP3571731B2 true JP3571731B2 (en) 2004-09-29

Family

ID=16801873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22367492A Expired - Fee Related JP3571731B2 (en) 1992-08-24 1992-08-24 Cylindrical liquid ring mount

Country Status (1)

Country Link
JP (1) JP3571731B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3748625B2 (en) * 1996-06-18 2006-02-22 本田技研工業株式会社 Liquid-filled bush
JP7066647B2 (en) 2019-02-15 2022-05-13 本田技研工業株式会社 Variable stiffness bush
JP7066646B2 (en) 2019-02-15 2022-05-13 本田技研工業株式会社 Variable stiffness bush

Also Published As

Publication number Publication date
JPH0674288A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
JP3537872B2 (en) Fluid-filled engine mount and method of manufacturing the same
JPS63318339A (en) Vibration absorbing device
JP2776463B2 (en) Anti-vibration device
JPS61206838A (en) Bush assembling body with fluid
JP3571731B2 (en) Cylindrical liquid ring mount
JP2644430B2 (en) Liquid damping rubber bearing device
US6669181B2 (en) Vibration isolating apparatus
JP2002070924A (en) Liquid-sealed vibration control device
JP3736155B2 (en) Fluid-filled cylindrical vibration isolator and manufacturing method thereof
JP2603798B2 (en) Fluid-filled engine mount
JPH06207638A (en) Liquid sealed bushing
JP3771028B2 (en) Liquid-filled engine mount
JP3140816B2 (en) Cylindrical liquid ring vibration isolator and method of manufacturing the same
JP2735184B2 (en) Liquid-containing vibration isolator
JP2537935Y2 (en) Liquid enclosure structure
JPH02245537A (en) Vibrationproofing device
JPH0942367A (en) Antirattler
JP2582025Y2 (en) Liquid filled bush
JP3627397B2 (en) Fluid filled cylindrical mount
JP4315706B2 (en) Liquid seal vibration isolator
JP3753471B2 (en) Liquid-filled cylindrical mount
JP3573296B2 (en) Automotive engine mount
JP3059634B2 (en) Liquid ring bush
JPH02190638A (en) Liquid seal type elastic bush
JPH0570008B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees