JP3568451B2 - Belt in high temperature oil - Google Patents

Belt in high temperature oil Download PDF

Info

Publication number
JP3568451B2
JP3568451B2 JP2000093444A JP2000093444A JP3568451B2 JP 3568451 B2 JP3568451 B2 JP 3568451B2 JP 2000093444 A JP2000093444 A JP 2000093444A JP 2000093444 A JP2000093444 A JP 2000093444A JP 3568451 B2 JP3568451 B2 JP 3568451B2
Authority
JP
Japan
Prior art keywords
power transmission
rubber
transmission belt
oil
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000093444A
Other languages
Japanese (ja)
Other versions
JP2001280424A (en
Inventor
勉 徳永
重洋 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gates Unitta Asia Co
Original Assignee
Gates Unitta Asia Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gates Unitta Asia Co filed Critical Gates Unitta Asia Co
Priority to JP2000093444A priority Critical patent/JP3568451B2/en
Publication of JP2001280424A publication Critical patent/JP2001280424A/en
Application granted granted Critical
Publication of JP3568451B2 publication Critical patent/JP3568451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/024Belt drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts
    • F16H7/023Gearings for conveying rotary motion by endless flexible members with belts; with V-belts with belts having a toothed contact surface or regularly spaced bosses or hollows for slipless or nearly slipless meshing with complementary profiled contact surface of a pulley

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関内に設けられ、クランク軸の回転を吸排気弁の開閉駆動カム軸等に伝達させる動力伝達ベルトに関する。
【0002】
【従来の技術】
内燃機関において使用される動力伝達ベルトは、その素材であるゴムの酸化により、時間の経過と共に硬化し劣化する。ゴムが一定の硬さに達するとベルト表面にクラックが生じ、その後ベルトは破断するおそれがある。動力伝達ベルトの寿命を延ばすために、ゴムの初期硬度を下げて動力伝達ベルトが破断するまでの時間を遅らせることが従来知られている。
【0003】
通常、動力伝達ベルトは機関外部に設けられるが、近年、内燃機関の軽量化等のため機関内部において動力伝達ベルトが構成されることが提案されている。内燃機関の内部に設けられる動力伝達ベルトは、機関内部の潤滑油に常に接しており、通常の動力伝達ベルトと異なる環境下で使用される。
【0004】
【発明が解決しようとする課題】
本発明は、内燃機関の内部で使用される動力伝達ベルトの耐久性を向上させることを目的とする。
【0005】
【課題を解決するための手段】
本発明に係る動力伝達ベルトは,耐熱性等を維持するために水素添加率が95%以上であり、かつ油を吸収しやすくするためにアクリロニトリル量を15〜23%と抑えた水素添加ニトリルゴム (以下H−NBRという)を原料ゴムとして成型されることを特徴とする。
【0006】
動力伝達ベルトの原料ゴムには耐熱性、内部摩擦による発熱を抑制するために、ジメタクリル亜鉛を配合する。配合量は、H−NBR又はH−NBRとエチレンプロピレンコポリマー( 以下EPMという)とを配合したもの100重量部に対して13. 5重量部のジメタクリル酸亜鉛とすることが好ましい。
【0007】
例えば、油による原料ゴムの膨潤を適度なレベルに設定するため、動力伝達ベルトの原料ゴムにH−NBR100重量部に対し、EPM20重量部以下を配合する。
【0008】
動力伝達ベルトの原料ゴムに含まれるH−NBR又はH−NBRとEPMとを配合したもの加硫には過酸化物系加硫剤が用いられる。これにより、弾性が増大し、ベルトの歯欠けに対する強度が増す。
【0009】
例えば、上述の原料ゴムを動力伝達ベルトの背ゴム部のみ、歯ゴム部のみ、または背ゴム部と歯ゴム部の両方に使用する。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0011】
図1は、本発明の一実施形態である動力伝達ベルト14が適用された内燃機関の断面図である。動力伝達ベルト14はクランクシャフトプーリ15とカムシャフトプーリ13とに装着されており、時計回りに回転するクランクシャフトプーリ15の回転運動を吸排気弁を駆動するカムシャフトプーリ13に伝達する。内燃機関11の内部には潤滑油12が貯溜されており、クランクシャフトプーリ15の回転運動に連動して矢印方向に回転する羽根車16が油案内板17に沿って潤滑油12を跳ね上げる。跳ね上げられた潤滑油12によりクランクシャフトプーリ15や動力伝達ベルト14が油を浴びることとなる。
【0012】
図2は、動力伝達ベルト14の一部を切断した斜視図である。動力伝達ベルト14の一方の面には円形の歯部19が形成されており、その表面は、帆布20により覆われている。ベルト本体18(ベルト背ゴム部)と歯部19との境には、ベルトの長手方向に心線21が埋設される。動力伝達ベルト14のベルト本体18及び歯部19には、水素添加率95%以上のH−NBR (ポリマー) が原料ゴムとして用いられる。
【0013】
動力伝達ベルト14の原料ゴムとして用いられるは、従来の動力伝達ベルトの原料ゴムとして使用されるH−NBRに比べ、含有されるアクリロニトリル量が低減されている。動力伝達ベルト14の原料ゴムとして一般に使用されるH−NBRに配合される耐油の性質を有するアクリロニトリル量は、約25%以上であるのに対し、本実施形態のH−NBRには15〜23%しか配合されていない。このため本実施態様の動力伝達ベルト14は、通常の動力伝達ベルトに比べ油を吸収しやすい。油を吸収した動力伝達ベルト14は膨潤し軟化する。
【0014】
動力伝達ベルト14の原料ゴムは、時間の経過と共に酸化し、その硬度は増大する。動力伝達ベルトの原料ゴム14の硬度が一定のレベルに達するとベルト背部にクラックが生じその後破断に至るおそれがある。動力伝達ベルト14は、ゴムの油吸収による膨潤、軟化を利用して原料ゴムが一定の硬度に至るまでの時間を延ばし、クラックの発生を遅らせる。これによってベルト寿命を延ばすことができる。
【0015】
動力伝達ベルト14の原料ゴムには耐熱性等を向上させるため、ジメタクリル酸亜鉛が配合されることが好ましい。例えば動力伝達ベルト14の原料ゴムに用いられるH−NBR又はH−NBRとEPMとを配合したものを100重量部としたとき、ジメタクリル酸亜鉛は13. 5重量部配合される。
【0016】
動力伝達ベルト14の原料ゴムとして、H−NBR100重量部に対してEPMを20重量部以下配合したものを用いてもよい。すなわちH−NBRと、膨潤性の高いポリマーEPMを所定の割合で配合したものを、動力伝達ベルト14の原料ゴムとして使用することにより、動力伝達ベルト14の油による膨潤を適切なレベルに設定することができる。これによって原料ゴムが一定の硬度に達するまでの時間を遅らせベルト寿命を延ばすことができる。
【0017】
動力伝達ベルトの原料ゴムが油を吸収しすぎると、動力伝達ベルトの膨潤が過剰となり、ベルト歯部19とプーリとの噛合不良を起す。動力伝達ベルトの体積が膨潤前の体積から15%以上増加するとベルト歯部19はプーリとの噛合不良となる。したがって、EPMの配合量はH−NBR100重量部に対して20重量部以下とすることが望ましい。
【0018】
動力伝達ベルト14の原料ゴムは、H−NBR又は、H−NBRとEPMとを配合したものに対して過酸化物による加硫を施すことにより得られる。過酸化物による加硫は、原料ゴムの塑性変形を抑え、弾性を増加させ、動力伝達ベルト14の歯欠けに対する強度を増大させる効果を奏する。原料ゴムに含まれるH−NBRを又はH−NBRとEPMとを配合したもの100重量部としたとき、過酸化物系加硫剤を6重量部用いて加硫することが望ましい。
【0019】
本実施形態において歯部19の表面は帆布20により被覆されるが、目的に応じて帆布20を省略してもよい。動力伝達ベルト14に設けられた歯部19は円形の歯として形成されているが、歯の形状は円形に限定されない。
【0020】
本実施形態では歯部19及びベルト背部18の両方にH−NBR又はH−NBRとEPMとを配合したものを原料ゴムとして用いているが、歯ゴム部、又は背ゴム部の一方のみにH−NBR又はH−NBRとEPMとを配合したものを原料ゴムとして用いてもよい。また、心線20の材質は特に限定されないが、高強度ガラス繊維が好適に用いられる。
【0021】
【実施例】
以下、比較例と共に実施例を挙げて本発明を説明するが、本発明はこれらの実施例により何ら限定されるものではない。
【0022】
図3に示された表のA欄は、実施例1〜7、比較例1,2の動力伝達ベルトに用いられた原料ゴムのポリマー配合を示している。A欄の一列目は、H−NBRの水素添加率、A欄の二列目は、H−NBRに含まれるアクリロニトリル量、A欄の三列目は、H−NBR100重量部に対して配合されたEPMの重量部を示している。表に示されないが、実施例1〜7、比較例1、2の原料ゴムには、H−NBR又はH−NBRとEPMとを配合したもの100重量部に対して、酸化亜鉛10重量部、ジメタクリル酸亜鉛13. 5重量部、カーボンブラック20重量部、トリメリテートイソノリル8重量部、置換ジフェニルアミン1. 5重量部、ベンツイミダゾール亜鉛塩1. 5重量部、過酸化物系加硫剤6重量部が配合されている。
【0023】
図3のB欄、C欄は、実施例1〜7、比較例1,2の動力伝達ベルトに用いられた原料ゴムに対して行なわれた原料ゴムを油に漬ける油浸漬試験の結果を示している。油浸漬試験では、原料ゴムの体積変化及び硬度変化の測定を行なった。B欄は実施例1〜7、比較例1,2の原料ゴムを150℃の油に168時間浸漬した後の各原料ゴムの体積変化及び硬度変化を示している。B欄の一列目は原料ゴムを油に浸漬する前の体積を100としたときの体積変化を百分率で示している。B欄の二列目は原料ゴムを油に浸漬する前の硬度を100としたときの硬度変化を百分率で示しており、硬度の測定はDURO−Aの規格に準拠して行なわれた。C欄は実施例1〜7、比較例1、2の原料ゴムを150℃の油に672時間浸漬した後の各原料ゴムの体積変化及び硬度変化を示している。C欄の一、二列目はB欄の一、二列目に対応しており、C欄の一列目は体積変化、二列目は硬度変化を数値で示している。
【0024】
D欄は、実施例1〜7、比較例1、2の動力伝達ベルトに対して行なわれた油中走行試験の結果を示している。油中走行試験は、図4に示される油中走行試験装置22において行なわれた。実施例1〜7、比較例1、2の各動力伝達ベルト23の形状は、HU歯形、6. 35mmピッチ、ベルト歯数84歯、ベルト幅7mmとした。各動力伝達ベルト23を19歯の駆動プーリ24と38歯の被駆動プーリ25に掛けて、3600rpmで回転走行させた。このとき油中走行試験装置22内の雰囲気温度は140℃として、ベルトの一部がヒーター26で熱せられたオイル27に漬かる状態とした。各数値は、動力伝達ベルトが破断に至る目安としての硬度95に達するまでの時間を計測したものである。ただし、実施例7に示される時間は原料ゴムが硬度95に至る前に、ベルト歯部とプーリとの噛合い不良により動力伝達ベルトが破壊に至ったため、ベルトが破断するまでの時間を示している。
【0025】
[実施例と比較例の原料ゴム]
実施例1、2、3の原料ゴムには、水素添加率95%、アクリロニトリル量が23%以下のH−NBRを用い、EPMは配合されていない。比較例1、比較例2の原料ゴムは、アクリロニトリル量が25%以上のH−NBRで、近年、一般に動力伝達ベルトの原料ゴムとして使用されるものである。実施例4、5、7は水素添加率95%、アクリロニトリル量が23%である実施例3と同じH−NBRに、EPMを配合したものを原料ゴムとした。それぞれEPMの配合量はH−NBR量を100重量部としたとき実施例4は20重量部、実施例5は10重量部、実施例7は30重量部である。実施例6の原料ゴムには、水素添加率95%、アクリロニトリル量17%のH−NBRと、実施例5と同量のEPMの配合したものを用いた。
【0026】
[油浸漬試験及び油中走行試験]
実施例1〜3と比較例1、2について比較する。原料ゴムを150℃の油に168時間浸漬した油浸漬試験の結果を示す表1のB欄において、比較例1、2における原料ゴムの体積は油浸漬前に比較して、5. 0%未満の増加にとどまったのに対し、実施例1〜3では6. 8〜12. 4%に増加した。すなわち、水素添加率が同一の原料ゴムでは、アクリロニトリル量が少ないほど油による膨潤が大きく、体積の増加が大きい。一方、実施例1〜3の硬度変化についてはマイナスの数値を示した。すなわち実施例1〜3はいずれも油浸前と比べて軟化している。これに対して比較例1、2における硬度変化は、共に+2であり油浸前と比べて硬化を示した。
【0027】
原料ゴムを150℃の油に、672時間浸漬した油浸試験後の結果を示すC欄において、実施例1〜3の体積は7. 4〜13. 3%に、比較例1、2の体積は4. 7〜6. 2%に増加した。いずれもプーリとの噛合い不良を起す目安である15%の体積増加にまでには至ってない。硬度変化は、実施例1、2、3ではそれぞれ+1、+3、+4であり、比較例1、2ではそれぞれ+11、+7である。すなわち、B欄の結果と同様、油中環境下では、アクリロニトリル量が少ない程、膨潤による体積増加は大きいが、硬化の度合は小さいことが示されている。
【0028】
これらを原料ゴムとするベルトの油中走行試験の結果を示すD欄によると、実施例1〜3が硬度95にいたる時間はいずれも950時間を超えたのに対し、比較例1、2は800時間に満たなかった。以上より、油中環境下では、アクリロニトリル量が少ないH−NBRを原料ゴムとする動力伝達ベルトほど油の膨潤により体積は増加するが、これによりその硬度は低下する。すなわち、原料ゴムが一定の硬度に達するまでの時間が延びることによりベルトが破断に至るまでの時間が遅れ、油中でのベルトの寿命が延びていることが分かる。
【0029】
次に実施例3、4、5、7について比較する。実施例3、4、5、7のB欄、C欄の結果を比較するとEPMの配合量が多いほど、原料ゴムの油による膨潤が増大し体積が増加した一方、硬化が抑えられた。しかし、実施例7はB欄の168時間の油浸漬試験において既に体積の増加が15%を超えていた。またD欄のベルトの油中走行試験においても硬度が95に至る前にプーリとの噛合不良により800時間で破壊された。したがって、H−NBR100重量部に対し、EPM30重量部を配合する実施例7は油による膨潤が大き過ぎるものと思慮される。一方、EPM配合量がH−NBR100重量部に対して20重量部以下である実施例3、4、5は、油浸漬試験の結果、原料ゴムが適度に膨潤しゴムの硬化が抑えられ、ベルトの油中走行試験の結果も900時間以上と長い。よって実施例3、4、5、7の比較からH−NBRに対するEPMの配合の割合は、H−NBR100重量部に対し、EPM20重量部以下が適量と思慮される。
【0030】
次に実施例5、6を比較して、H−NBRとEPMとを配合したものを原料ゴムとするベルトにおけるアクリロニトリル量の影響を考察する。B欄及びC欄の原料ゴムによる油浸漬試験の結果、実施例5と6の原料ゴムはEPMの配合量が同量であるが、H−NBRのアクリロニトリル量が少ない実施例6の方がより油を吸収することにより体積が増加し、ゴムの硬化が少ないことが分かる。D欄の示すベルトによる油中走行試験においては、原料ゴムの硬化が抑えられるため、実施例6の方が硬度95に至る時間が長い。以上より、動力伝達ベルトの原料ゴムがH−NBRとEPMを配合したものであっても、H−NBRを原料ゴムとする場合と同様、H−NBRのアクリロニトリル量が少ない方が、ゴムの硬化を抑え、ベルトの破断に至るま時間が延びることが分かる。
【0031】
【発明の効果】
本発明によると、ゴムの初期硬度を下げることなく、油中環境でゴムが油を吸収し硬化を抑えることを利用して、ベルト破断に至る時間を延ばし、動力伝達ベルトの走行寿命を延ばすことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態である動力伝達ベルトを設置した内燃機関の断面図である。
【図2】図1に示す動力伝達ベルトを拡大し、一部を切断して示す斜視図である。
【図3】実施例1〜7、比較例1、2の原料ゴムのポリマーの配合、油浸漬試験の結果及び実施例1〜7、比較例1、2の油中走行試験の結果を示した表である。
【図4】動力伝達ベルトの油中走行試験装置の断面図である。
【符号の説明】
11 内燃機関
12 潤滑油
13 カムシャフトプーリ
14 動力伝達ベルト
15 クランクシャフトプーリ
16 羽根車
17 油案内板
18 ベルト本体(ベルト背部)
19 歯部
20 帆布
21 心線
22 油中走行試験装置
23 動力伝達ベルト
24 駆動プーリ
25 被駆動プーリ
26 ヒーター
27 オイル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power transmission belt provided in an internal combustion engine and transmitting rotation of a crankshaft to an opening / closing drive camshaft of an intake / exhaust valve and the like.
[0002]
[Prior art]
A power transmission belt used in an internal combustion engine hardens and deteriorates over time due to oxidation of rubber as a material thereof. When the rubber reaches a certain hardness, cracks occur on the belt surface, and the belt may be broken thereafter. In order to extend the life of the power transmission belt, it is conventionally known to lower the initial hardness of rubber to delay the time until the power transmission belt breaks.
[0003]
Normally, the power transmission belt is provided outside the engine. In recent years, however, it has been proposed that the power transmission belt be configured inside the engine to reduce the weight of the internal combustion engine. A power transmission belt provided inside an internal combustion engine is always in contact with lubricating oil inside the engine, and is used under an environment different from a normal power transmission belt.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to improve the durability of a power transmission belt used inside an internal combustion engine.
[0005]
[Means for Solving the Problems]
The power transmission belt according to the present invention has a hydrogenation rate of 95% or more for maintaining heat resistance and the like, and a hydrogenated nitrile rubber having an acrylonitrile amount of 15 to 23% for facilitating oil absorption. (Hereinafter, referred to as H-NBR) as a raw rubber.
[0006]
Dimethacrylic zinc is compounded in the raw material rubber of the power transmission belt in order to suppress heat generation and heat generation due to internal friction. The amount is 13.13 parts by weight based on 100 parts by weight of H-NBR or a mixture of H-NBR and ethylene-propylene copolymer (hereinafter referred to as EPM). Preferably, it is 5 parts by weight of zinc dimethacrylate.
[0007]
For example, in order to set the swelling of the raw rubber by oil to an appropriate level, the raw rubber of the power transmission belt is blended with not more than 20 parts by weight of EPM based on 100 parts by weight of H-NBR.
[0008]
A peroxide-based vulcanizing agent is used for vulcanization of H-NBR or a mixture of H-NBR and EPM contained in the raw material rubber of the power transmission belt. As a result, the elasticity is increased, and the strength of the belt against chipping is increased.
[0009]
For example, the above-described raw rubber is used only for the back rubber portion, only the tooth rubber portion, or both the back rubber portion and the tooth rubber portion of the power transmission belt.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
FIG. 1 is a sectional view of an internal combustion engine to which a power transmission belt 14 according to one embodiment of the present invention is applied. The power transmission belt 14 is mounted on the crankshaft pulley 15 and the camshaft pulley 13, and transmits the rotational movement of the crankshaft pulley 15 that rotates clockwise to the camshaft pulley 13 that drives the intake and exhaust valves. A lubricating oil 12 is stored inside the internal combustion engine 11, and an impeller 16 that rotates in the direction of the arrow in conjunction with the rotational movement of the crankshaft pulley 15 jumps up the lubricating oil 12 along the oil guide plate 17. The splashed lubricating oil 12 causes the crankshaft pulley 15 and the power transmission belt 14 to receive oil.
[0012]
FIG. 2 is a perspective view in which a part of the power transmission belt 14 is cut. A circular tooth portion 19 is formed on one surface of the power transmission belt 14, and the surface is covered with a canvas 20. At a boundary between the belt body 18 (belt back rubber portion) and the tooth portion 19, a core wire 21 is embedded in the longitudinal direction of the belt. For the belt body 18 and the teeth 19 of the power transmission belt 14, H-NBR (polymer) having a hydrogenation rate of 95% or more is used as a raw rubber.
[0013]
The amount of acrylonitrile used as the raw material rubber of the power transmission belt 14 is smaller than that of H-NBR used as the raw material rubber of the conventional power transmission belt. The amount of acrylonitrile having oil resistance which is blended with H-NBR generally used as a raw material rubber of the power transmission belt 14 is about 25% or more, whereas H-NBR of the present embodiment has 15 to 23%. % Only. For this reason, the power transmission belt 14 of this embodiment is more likely to absorb oil than a normal power transmission belt. The power transmission belt 14 that has absorbed the oil swells and softens.
[0014]
The raw rubber of the power transmission belt 14 oxidizes with time, and its hardness increases. If the hardness of the raw material rubber 14 of the power transmission belt reaches a certain level, cracks may occur on the back of the belt, which may cause breakage thereafter. The power transmission belt 14 extends the time required for the raw rubber to reach a certain hardness by utilizing swelling and softening due to oil absorption of rubber, and delays the generation of cracks. As a result, the life of the belt can be extended.
[0015]
It is preferable that zinc dimethacrylate is blended in the raw material rubber of the power transmission belt 14 in order to improve heat resistance and the like. For example, when 100 parts by weight of H-NBR or a mixture of H-NBR and EPM used for the raw material rubber of the power transmission belt 14 is 100 parts by weight, zinc dimethacrylate is 13. 5 parts by weight are blended.
[0016]
As the raw material rubber of the power transmission belt 14, a rubber obtained by blending 20 parts by weight or less of EPM with respect to 100 parts by weight of H-NBR may be used. That is, by using a mixture of H-NBR and polymer EPM having a high swelling property at a predetermined ratio as a raw material rubber of the power transmission belt 14, the swelling of the power transmission belt 14 by oil is set to an appropriate level. be able to. As a result, the time until the raw rubber reaches a certain hardness can be delayed to extend the life of the belt.
[0017]
If the raw material rubber of the power transmission belt absorbs too much oil, the swelling of the power transmission belt becomes excessive, resulting in poor meshing between the belt teeth 19 and the pulley. If the volume of the power transmission belt increases by 15% or more from the volume before swelling, the belt teeth 19 become incompletely meshed with the pulley. Therefore, it is desirable that the blending amount of EPM is 20 parts by weight or less based on 100 parts by weight of H-NBR.
[0018]
The raw rubber of the power transmission belt 14 is obtained by subjecting H-NBR or a mixture of H-NBR and EPM to vulcanization with a peroxide. Vulcanization with peroxide has the effect of suppressing plastic deformation of the raw rubber, increasing the elasticity, and increasing the strength of the power transmission belt 14 against chipping. When 100 parts by weight of H-NBR contained in the raw rubber or a mixture of H-NBR and EPM is 100 parts by weight, it is preferable to perform vulcanization using 6 parts by weight of a peroxide-based vulcanizing agent.
[0019]
In this embodiment, the surface of the tooth portion 19 is covered with the canvas 20, but the canvas 20 may be omitted according to the purpose. Although the teeth 19 provided on the power transmission belt 14 are formed as circular teeth, the shape of the teeth is not limited to a circle.
[0020]
In the present embodiment, H-NBR or a mixture of H-NBR and EPM is used as the raw material rubber in both the tooth portion 19 and the belt back portion 18, but H-NBR is used only in one of the tooth rubber portion or the back rubber portion. -NBR or a mixture of H-NBR and EPM may be used as the raw rubber. The material of the core wire 20 is not particularly limited, but high-strength glass fiber is preferably used.
[0021]
【Example】
Hereinafter, the present invention will be described with reference to examples along with comparative examples, but the present invention is not limited to these examples.
[0022]
Column A in the table shown in FIG. 3 shows the polymer blend of the raw rubber used for the power transmission belts of Examples 1 to 7 and Comparative Examples 1 and 2. The first column of column A is the hydrogenation rate of H-NBR, the second column of column A is the amount of acrylonitrile contained in H-NBR, and the third column of column A is 100 parts by weight of H-NBR. Parts by weight of the EPM. Although not shown in the table, the raw rubbers of Examples 1 to 7 and Comparative Examples 1 and 2 were mixed with H-NBR or H-NBR and EPM with respect to 100 parts by weight, and zinc oxide 10 parts by weight, 12. zinc dimethacrylate 5 parts by weight, carbon black 20 parts by weight, trimellitate isonolyl 8 parts by weight, substituted diphenylamine 1. 5 parts by weight, zinc benzimidazole 5 parts by weight and 6 parts by weight of a peroxide vulcanizing agent are blended.
[0023]
Columns B and C in FIG. 3 show the results of an oil immersion test in which the raw rubber used in the power transmission belts of Examples 1 to 7 and Comparative Examples 1 and 2 was immersed in oil. ing. In the oil immersion test, a change in volume and a change in hardness of the raw rubber were measured. Column B shows the volume change and hardness change of each raw rubber after immersing the raw rubbers of Examples 1 to 7 and Comparative Examples 1 and 2 in oil at 150 ° C. for 168 hours. The first column of column B shows the percentage change in volume when the volume before immersing the raw rubber in oil is 100. The second row in column B shows the percentage change in hardness when the hardness before immersing the raw rubber in oil is 100, and the hardness was measured in accordance with the DURO-A standard. Column C shows the volume change and hardness change of each raw rubber after immersing the raw rubbers of Examples 1 to 7 and Comparative Examples 1 and 2 in oil at 150 ° C. for 672 hours. The first and second columns in column C correspond to the first and second columns in column B. The first column in column C shows the volume change, and the second column shows the hardness change in numerical values.
[0024]
Column D shows the results of running tests in oil on the power transmission belts of Examples 1 to 7 and Comparative Examples 1 and 2. The running test in oil was performed in the running test device 22 in oil shown in FIG. 5. The shape of each power transmission belt 23 of Examples 1 to 7 and Comparative Examples 1 and 2 is HU tooth shape, The pitch was 35 mm, the number of belt teeth was 84, and the belt width was 7 mm. Each of the power transmission belts 23 was hung around a 19-tooth drive pulley 24 and a 38-tooth driven pulley 25, and was rotated at 3600 rpm. At this time, the atmospheric temperature in the in-oil running test device 22 was set to 140 ° C., and a part of the belt was immersed in the oil 27 heated by the heater 26. Each numerical value is obtained by measuring a time required for the power transmission belt to reach a hardness of 95 as a guide to breakage. However, the time shown in Example 7 indicates the time until the belt breaks because the power transmission belt was destroyed due to poor meshing between the belt teeth and the pulley before the raw rubber reached the hardness of 95. I have.
[0025]
[Raw material rubber of Examples and Comparative Examples]
The raw rubbers of Examples 1, 2, and 3 used H-NBR having a hydrogenation rate of 95% and an acrylonitrile amount of 23% or less, and did not contain EPM. The raw rubbers of Comparative Examples 1 and 2 are H-NBRs having an acrylonitrile content of 25% or more and are generally used as raw rubbers of power transmission belts in recent years. In Examples 4, 5, and 7, the same rubber as in Example 3 in which the hydrogenation rate was 95% and the amount of acrylonitrile was 23%, and EPM was blended, was used as a raw rubber. The amount of each EPM is 20 parts by weight, Example 5 is 10 parts by weight, and Example 7 is 30 parts by weight when the amount of E-NBR is 100 parts by weight. The raw rubber of Example 6 used was a mixture of H-NBR having a hydrogenation rate of 95% and an acrylonitrile amount of 17% and the same amount of EPM as in Example 5.
[0026]
[Oil immersion test and running test in oil]
Examples 1 to 3 and Comparative Examples 1 and 2 will be compared. In column B of Table 1 showing the results of an oil immersion test in which the raw rubber was immersed in oil at 150 ° C. for 168 hours, the volume of the raw rubber in Comparative Examples 1 and 2 was 5. In Examples 1 to 3, the increase was less than 0%. 8-12. It increased to 4%. That is, in raw rubbers having the same hydrogenation rate, the smaller the amount of acrylonitrile, the greater the swelling due to oil and the larger the volume. On the other hand, the hardness changes of Examples 1 to 3 showed negative values. That is, Examples 1 to 3 are all softer than before oil immersion. On the other hand, the changes in hardness in Comparative Examples 1 and 2 were both +2, indicating that they were harder than before oil immersion.
[0027]
In column C showing the results after the oil immersion test in which the raw rubber was immersed in oil at 150 ° C. for 672 hours, the volumes of Examples 1 to 3 were 7. 4-13. The volume of Comparative Examples 1 and 2 was 3%. 7-6. Increased to 2%. In any case, the volume has not been increased by 15%, which is a measure for causing poor engagement with the pulley. The hardness changes are +1, +3, and +4 in Examples 1, 2, and 3, respectively, and +11 and +7 in Comparative Examples 1 and 2, respectively. That is, similarly to the results in column B, it is shown that, under an in-oil environment, the smaller the amount of acrylonitrile, the larger the volume increase due to swelling but the smaller the degree of curing.
[0028]
According to the column D showing the results of running tests in oil of belts using these as raw rubber, the time required for Examples 1 to 3 to reach a hardness of 95 exceeded 950 hours, whereas Comparative Examples 1 and 2 Less than 800 hours. As described above, in the oil environment, the volume of the power transmission belt using H-NBR having a small amount of acrylonitrile as the raw rubber increases due to swelling of the oil, but the hardness thereof decreases. In other words, it can be seen that the time required for the raw rubber to reach a certain hardness is extended, so that the time required for the belt to break is delayed, and the life of the belt in oil is extended.
[0029]
Next, Examples 3, 4, 5, and 7 will be compared. Comparing the results in columns B and C of Examples 3, 4, 5, and 7, the greater the blending amount of EPM, the greater the swelling of the raw rubber by oil and the greater the volume, while the more the curing was suppressed. However, in Example 7, the increase in volume had already exceeded 15% in the 168-hour oil immersion test in Column B. Also, in the running test of the belt in column D in oil, before the hardness reached 95, the belt was broken in 800 hours due to poor meshing with the pulley. Therefore, it is considered that Example 7 in which 30 parts by weight of EPM is blended with respect to 100 parts by weight of H-NBR, the swelling due to oil is too large. On the other hand, in Examples 3, 4, and 5, in which the blending amount of EPM was 20 parts by weight or less with respect to 100 parts by weight of H-NBR, as a result of the oil immersion test, the raw material rubber swelled moderately and the curing of the rubber was suppressed. The results of the in-oil running test are as long as 900 hours or more. Therefore, from the comparison of Examples 3, 4, 5, and 7, it is considered that the proportion of EPM to H-NBR is not more than 20 parts by weight based on 100 parts by weight of H-NBR.
[0030]
Next, by comparing Examples 5 and 6, the effect of the amount of acrylonitrile on a belt using a material obtained by blending H-NBR and EPM as a raw rubber will be considered. As a result of the oil immersion test using the raw rubbers in columns B and C, the raw rubbers of Examples 5 and 6 had the same amount of EPM, but Example 6 in which the acrylonitrile amount of H-NBR was small was more. It can be seen that the volume increases due to the absorption of oil, and the rubber hardens less. In the in-oil running test using the belt shown in column D, the hardening of the raw rubber was suppressed, so that the time for reaching a hardness of 95 in Example 6 was longer. As described above, even when the raw material rubber of the power transmission belt is a mixture of H-NBR and EPM, as in the case of using H-NBR as the raw material rubber, the smaller the amount of acrylonitrile of H-NBR, the harder the rubber is. It can be seen that the time until the belt breaks is extended.
[0031]
【The invention's effect】
According to the present invention, it is possible to extend the time to break a belt and extend the running life of a power transmission belt by utilizing the fact that rubber absorbs oil and suppresses hardening in an oily environment without lowering the initial hardness of rubber. Can be.
[Brief description of the drawings]
FIG. 1 is a sectional view of an internal combustion engine provided with a power transmission belt according to an embodiment of the present invention.
FIG. 2 is an enlarged perspective view showing a part of the power transmission belt shown in FIG.
FIG. 3 shows the compounding of the raw rubber polymers of Examples 1 to 7 and Comparative Examples 1 and 2, the results of an oil immersion test, and the results of Examples 1 to 7 and Comparative Examples 1 and 2 in an oil running test. It is a table.
FIG. 4 is a cross-sectional view of a power transmission belt in-oil traveling test device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Internal combustion engine 12 Lubricating oil 13 Camshaft pulley 14 Power transmission belt 15 Crankshaft pulley 16 Impeller 17 Oil guide plate 18 Belt body (belt back)
Reference Signs List 19 tooth portion 20 canvas 21 core wire 22 running test device in oil 23 power transmission belt 24 drive pulley 25 driven pulley 26 heater 27 oil

Claims (7)

水素添加率95%以上かつアクリロニトリル量が15〜17%のポリマーである水素添加ニトリルゴムを原料として成型され、油に接する状態で使用されることを特徴とする動力伝達ベルト。A power transmission belt molded from a hydrogenated nitrile rubber, which is a polymer having a hydrogenation rate of 95% or more and an acrylonitrile amount of 15 to 17 %, and used in contact with oil. 前記水素添加ニトリルゴムにジメタクリル酸亜鉛を配合することを特徴とする請求項1に記載の動力伝達ベルト。The power transmission belt according to claim 1, wherein zinc dimethacrylate is blended with the hydrogenated nitrile rubber. 前記水素添加ニトリルゴム100重量部に対しエチレンプロピレンコポリマーを20重量部以下配合したものを原料ゴムとして成型されることを特徴とする請求項1に記載の動力伝達ベルト。2. The power transmission belt according to claim 1, wherein a mixture obtained by mixing 20 parts by weight or less of ethylene propylene copolymer with 100 parts by weight of the hydrogenated nitrile rubber is molded as a raw material rubber. 前記水素添加ニトリルゴムの加硫に過酸化物系加硫剤を用いることを特徴とする請求項1に記載の動力伝達ベルト。The power transmission belt according to claim 1, wherein a peroxide-based vulcanizing agent is used for vulcanizing the hydrogenated nitrile rubber. ベルト背ゴム部にのみ前記水素添加ニトリルゴムを原料ゴムとして使用することを特徴とする請求項1に記載の動力伝達ベルト。The power transmission belt according to claim 1, wherein the hydrogenated nitrile rubber is used as a raw rubber only in a belt back rubber portion. ベルト歯ゴム部にのみ前記水素添加ニトリルゴムを原料ゴムとして使用することを特徴とする請求項1に記載の動力伝達ベルト。The power transmission belt according to claim 1, wherein the hydrogenated nitrile rubber is used as a raw rubber only in a belt tooth rubber portion. ベルト背ゴム部及び歯ゴム部の両方に前記水素添加ニトリルゴムを原料ゴムとして使用することを特徴とする請求項1に記載の動力伝達ベルト。The power transmission belt according to claim 1, wherein the hydrogenated nitrile rubber is used as a raw rubber for both a belt back rubber portion and a tooth rubber portion.
JP2000093444A 2000-03-30 2000-03-30 Belt in high temperature oil Expired - Fee Related JP3568451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093444A JP3568451B2 (en) 2000-03-30 2000-03-30 Belt in high temperature oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093444A JP3568451B2 (en) 2000-03-30 2000-03-30 Belt in high temperature oil

Publications (2)

Publication Number Publication Date
JP2001280424A JP2001280424A (en) 2001-10-10
JP3568451B2 true JP3568451B2 (en) 2004-09-22

Family

ID=18608628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093444A Expired - Fee Related JP3568451B2 (en) 2000-03-30 2000-03-30 Belt in high temperature oil

Country Status (1)

Country Link
JP (1) JP3568451B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051873A1 (en) * 2004-11-11 2006-05-18 Nippon Sheet Glass Company, Limited Rubber-reinforcing cord, method for manufacturing same, and rubber article using same
JP5315838B2 (en) * 2008-07-31 2013-10-16 日本ゼオン株式会社 Adhesive composition, composite, and automotive member
JP2010071333A (en) * 2008-09-16 2010-04-02 Gates Unitta Asia Co Belt, core thereof, and core treating liquid
JP5991274B2 (en) * 2013-07-08 2016-09-14 株式会社デンソー Valve timing adjustment device

Also Published As

Publication number Publication date
JP2001280424A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
ES2402421T3 (en) Power transmission belt and manufacturing procedure
JP4672603B2 (en) Friction transmission belt
JP5704752B2 (en) Friction transmission belt
US20050043486A1 (en) Rubber composition for high-load transmission belt and high-load transmission belt from the rubber composition
WO2010047029A1 (en) Rubber composition for transmission belt and transmission belt using the rubber composition
JPWO2007110974A1 (en) Transmission belt
TW200407511A (en) Transmission belt
JP6923315B2 (en) Tortional damper
KR20070099605A (en) Friction transmission belt
JP3568451B2 (en) Belt in high temperature oil
WO2009150803A1 (en) Friction transmission belt and belt transmission device using the same
CN101099053B (en) Friction transmission belt
JP2007270917A (en) Friction transmission belt
JP2009036302A (en) Transmission belt and its manufacturing method
JP4668677B2 (en) Transmission belt
JP2004125012A (en) Power transmission belt
JP2008304053A (en) Friction transmission belt
JP2006234089A (en) Rubber composition for friction transmission belt and friction transmission belt
JP2006138355A (en) Transmission belt
JP2006266356A (en) Transmission belt
JP2007120759A (en) Transmission belt
JP7406050B1 (en) toothed belt
JPH09317831A (en) Motive power transmission v belt
JP2006258201A (en) Transmission belt
JP5710192B2 (en) Friction transmission belt

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3568451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees