JP3568097B2 - Light emitting display and driving method thereof - Google Patents

Light emitting display and driving method thereof Download PDF

Info

Publication number
JP3568097B2
JP3568097B2 JP12832798A JP12832798A JP3568097B2 JP 3568097 B2 JP3568097 B2 JP 3568097B2 JP 12832798 A JP12832798 A JP 12832798A JP 12832798 A JP12832798 A JP 12832798A JP 3568097 B2 JP3568097 B2 JP 3568097B2
Authority
JP
Japan
Prior art keywords
scanning
light
light emitting
line
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12832798A
Other languages
Japanese (ja)
Other versions
JPH11305730A (en
Inventor
真一 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP12832798A priority Critical patent/JP3568097B2/en
Priority to US09/296,545 priority patent/US6339415B2/en
Publication of JPH11305730A publication Critical patent/JPH11305730A/en
Application granted granted Critical
Publication of JP3568097B2 publication Critical patent/JP3568097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3216Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using a passive matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3283Details of drivers for data electrodes in which the data driver supplies a variable data current for setting the current through, or the voltage across, the light-emitting elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機EL素子等を用いてカラー表示を行う発光ディスプレイ及びその駆動方法に関する。
【0002】
【従来の技術】
従来より有機ELなどの発光素子を用いたマトリクス表示ディスプレイが知られている。これは複数の陽極線と複数の陰極線をマトリクス(格子)状に配置
し、このマトリクス状に配置した陽極線と陰極線の各交点位置に発光素子を接続したものである。フルカラー表示を行う場合には、R(赤)、G(緑)、B(
青)の発光素子を並べて配置し、これら3つの発光素子を1組として1画素を形成するようにしている。
【0003】
なお、各交点位置に接続される発光素子は、図12にその等価回路を示すように、ダイオード特性からなる発光エレメントEと、これに並列接続された寄生容量Cとで表すことができるものである。
【0004】
この種のフルカラーマトリクス表示ディスプレイについて、図9〜図11を基にして説明する。A1 〜A768 は陽極線、B1 〜B64は陰極線であり、互いに交差するように配されている。そして陽極線と陰極線の交点位置には各々赤、緑、青の何れかに発光する発光素子R、G、Bが接続されており、それぞれ規則正しく配列されている。すなわち、陽極線A1 には64個の発光素子Rが接続され、陽極線A2 には発光素子Gが接続され、陽極線A3 には発光素子Bが接続されるといった具合に、陽極線には同色の発光素子だけが接続されるとともに陰極線には発光素子R、G、Bがこの順を繰り返すように並んで接続されている。そし
て、隣接する発光素子R、G、Bを3個1組として単位画素Eが形成される。図示されるように、画素はE1,1 〜E256,64の16384個がマトリクス状に配列されることとなる。
【0005】
1は陰極線走査回路であり、各陰極線B1 〜B64を順次走査するための走査スイッチ51 〜564を備えている。各走査スイッチ51 〜564の一方の端子は定電源電圧からなる逆バイアス電圧Vccに接続されているとともに、他方の端子はアース電位(0v)に接続されている。この逆バイアス電圧Vccは走査されていない陰極線B1 〜B64が接続されるものであり、走査されていない陰極線に接続される発光素子の誤発光を防止するものである。
【0006】
2は陽極ドライブ回路であり、駆動源である定電流源21 〜2768 と、各陽極線A1 〜A768 のうち定電流源21 〜2768 に接続されるものを選択するためのドライブスイッチ61 〜6768 とを備えており、任意のドライブスイッチをオンすることにより、当該陽極線に対して定電流源21 〜2768 を接続する。
【0007】
3は陰極リセット回路であり、陽極線A1 〜A768 をアース電位(0v)へ接続するためのシャントスイッチ71 〜7768 を備えている。
【0008】
4は発光制御回路であり、入力された発光データに応じて陰極走査回路1、陽極ドライブ回路2及び陽極リセット回路3を制御するものである。
【0009】
次に、図9〜図11を用いて、このフルカラーマトリクス表示ディスプレイの動作について説明する。なお、以下に述べる動作は、陰極線B1 を走査して画素E1,1 を発光させた後、陰極線B2 に走査を移行して画素E2,2 を発光させる場合を例として説明する。なお、説明をわかりやすくするために、発光している発光素子についてはダイオード記号で示し、発光していない発光素子についてはコンデンサ記号で示した。
【0010】
図9は画素E1,1 を発光させた状態を示す。この状態においては、走査スイッチ51 はアース電位に側に切り換えられ、陰極線B1 が走査されている。また走査スイッチ52 〜564は定電圧源側に切り換えられ、陰極線B2 〜B64には逆バイアス電圧Vccが印加されている。一方、陽極線A1 〜A3 はドライブスイッチ61 〜63 によって定電流源21 〜23 に接続されシャントスイッチ71 〜73 は開放されている。また、他の陽極線A4 〜A768 はシャントスイッチ74 〜7768 によってアース電位に接続されドライブスイッチ64 〜6768 は開放されている。
【0011】
従って、図9の場合、画素E1,1 のみが順方向にバイアスされ、定電流源2 1 から矢印の方向に駆動電流が流れ込み、画素E1,1 のみが発光している。画素E1,1 の寄生容量には、順方向の電荷が充電されている。
【0012】
なおこのとき、画素E1,2 〜画素E1,64の発光素子R、G、Bは定電流源2 1 〜2に接続されるが、陰極線が定電圧源に接続され逆バイアス電圧Vccとされていることにより、発光素子の両端電圧がほぼ0vとなり発光しない。また、画素E2,1 〜E256,1 は両端がアース電位に接続されるため発光しない。また、画素E2,2 〜画素E256,64は逆方向にバイアスされるため発光せず、発光素子の寄生容量には図示されるように逆方向の電荷(コンデンサにハッチングして示
す。)が充電される。
【0013】
陰極線B1 の走査が終了すると陰極線B2 の走査に移行するが、その前に、すべての陽極線A1 〜A768 と陰極線B1 〜B64を一旦アース電位にシャントし、0vによるオールリセットを行う。すなわち、図10に示されるように、すべてのドライブスイッチ61 〜6768 をオフするとともにすべての走査スイッチ5 1 〜564とすべてのシャントスイッチ71 〜7768 をアース電位側に切り換える。これにより、陽極線と陰極線のすべてが0vの同電位になるので、各発光素子に充電されていた電荷はすべて放電する。
【0014】
その後、図11に示すように陰極線B2 の走査に移行する。すなわち、陰極線B2 に対応する走査スイッチ52 のみをアース電位側に切り換えるとともに他の走査スイッチ51 、53 〜564を逆バイアス電圧Vccに接続し、ドライブスイッチ64 〜66 を定電流源24 〜26 に切り換えて陽極線A4 〜A6 をドライブし、シャントスイッチ71 〜73 、77 〜7768 をオンして陽極線A1 〜A3 、A7 〜A768 の電位を0vにする。
【0015】
このようにスイッチを切り換えた瞬間において、上述したようにすべての発光素子の充電電荷は0とされているので陽極線A4 〜A6 の電位は約Vcc(正確には63/64Vcc)となる。すると次に発光させる画素E2,2 の発光素子には、図11中に矢印で示す複数のルートから充電電流が一気に流れ込み、それぞれの発光素子の寄生容量は瞬時に充電され、所望の瞬時輝度で発光する。
【0016】
このリセット動作は本出願人が特願平8−38393にて既に発表しているものであり、陰極線B1 の走査時に充電された画素E2,2 〜画素E2,64の逆方向の電荷が、陰極線B2 を走査する際の発光素子の発光立ち上がりを遅らせてしま
う、という問題を解決したものである。
【0017】
すなわち、発光素子を所望の瞬時輝度で発光させるためにはその両端の電圧をある規定値まで立ち上げる必要があり、そのため、発光素子の寄生容量に所定の電荷を充電しなければならないが、画素E2,2 〜画素E2,64に充電された逆方向の電荷をキャンセルすることにより、陰極線B2 の走査の際にドライブされる陽極線A4 〜A6 の電位を瞬時にVccにすることができ(つまり、画素E2,2 の発光素子の両端電圧を瞬時にほぼVccとできる)、画素E2,2 の発光素子の寄生容量の急速充電を可能としているのである。
【0018】
【発明が解決しようとする課題】
上述した従来のリセット駆動法によると、走査が陰極線B2 に移行した瞬間において発光される画素E2,2 の発光素子の両端電圧は各々約Vccとなる。
【0019】
ところが、R、G、Bそれぞれの発光素子は発光材料など素子構造がそれぞれ異なっており、輝度−電圧特性も各々異なっている場合がほとんどである。そうすると、従来のリセット駆動法の場合は、R、G、Bの発光素子のうち、両端電圧の規定値がVccに近いものは素早く所望の瞬時輝度で発光することができるが、両端電圧の規定値がVccよりも相当大きいものは、所望の瞬時輝度で発光するために定電流源から流れ込む駆動電流による更なる充電が必要となり、発光立ち上がりが遅れてしまうという問題がある。また、パルス幅変調駆動などの走査期間内における発光時間の長短によって輝度階調を表現する駆動法を行う場合は、階調のリニアリティが悪くなってしまう。
【0020】
【課題を解決するための手段】
本発明は上述した問題点を解決することを目的とするものであって、請求項1に記載の発明は、マトリクス状に配置した陽極線と陰極線のいずれか一方を走査線とするとともに他方をドライブ線とし、前記ドライブ線の各々に対して赤、緑及び青の発光素子のいずれか一の発光素子だけが接続されるように前記走査線と前記ドライブ線の各交点位置に前記発光素子を接続し、走査線を走査しながら、該走査に応じて所望のドライブ線に駆動源を接続することにより前記交点位置に接続された発光素子を発光させるようにした発光ディスプレイであって、任意の走査線の走査が終了し次に走査が行われる次の走査線の走査に切り換わるまでの間において、少なくとも前記赤、緑及び青の発光素子のいずれか一に電荷を充電する充電手段を備え、前記充電手段が前記赤、緑及び青の発光素子に充電する電荷量はそれぞれ異なることを特徴としている。
【0021】
請求項2に記載の発明は、請求項1に記載の発明において、前記充電手段は前記発光素子のすべてに対して充電を行うことを特徴としている。
【0022】
請求項3に記載の発明は、請求項1または2に記載の発明において、前記赤、緑及び青の発光素子は、定常発光状態における両端電圧である発光規定電圧がそれぞれ異なっていることを特徴としている。
【0023】
請求項4に記載の発明は、請求項1に記載の発明において、前記充電手段は、前記赤、緑及び青の発光素子のうち前記発光規定電圧が最も高いものには正の電荷を充電し、次に高いものには電荷の充電を行わず、前記発光規定電圧の最も低いものには負の電荷を充電するようにしたことを特徴としている。
【0024】
請求項5に記載の発明は、マトリクス状に配置した陽極線と陰極線のいずれか一方を走査線とするとともに他方をドライブ線とし、前記ドライブ線の各々に対して前記赤、緑及び青の発光素子のいずれか一の発光素子だけが接続されるように前記走査線と前記ドライブ線の各交点位置に前記発光素子を接続し、走査線を走査しながら、該走査に応じて所望のドライブ線に駆動源を接続することにより前記交点位置に接続された発光素子を発光させるようにした発光ディスプレイであって、前記走査線は第1の定電圧源とアース手段とのいずれか一方に接続可能とされ、前記ドライブ線は前記駆動源とアース手段と前記発光素子に電荷を充電するための第2の定電圧源のいずれか一つに接続可能とされ、任意の走査線の走査が終了し次に走査が行われる走査線の走査に切り換わるまでの間において、前記走査線は前記アース手段に接続されるとともに前記ドライブ線は前記第2の定電圧源に接続され、前記第2の定電圧源は、接続される前記発光素子が前記赤、緑及び青のいずれであるかに応じてその印加電圧が異なることを特徴としてい
る。
【0025】
請求項6に記載の発明は、請求項5に記載の発明において、前記赤、緑及び青の発光素子は、定常発光状態における両端電圧である発光規定電圧がそれぞれ異なっていることを特徴としている。
【0026】
請求項7に記載の発明は、請求項5または6に記載の発明において、前記第2の定電圧源は、前記赤、緑及び青の発光素子のうち前記発光規定電圧が最も高い発光素子が接続されるドライブ線と前記発光電圧が最も低い発光素子が接続されるドライブ線にのみ対応して設けられ、前記発光規定電圧が最も高い発光素子には順方向電圧を印加し、前記発光規定電圧が最も低い発光素子には逆方向電圧を印加することを特徴としている。
【0027】
請求項8に記載の発明は、請求項5ないしは7のいずれかに記載の発明において、任意の走査線が走査されている走査期間においては、走査がなされている走査線は前記アース手段が接続されるとともに走査がなされていない走査線は前記第1の定電圧源に接続され、発光がなされる発光素子が接続されるドライブ線は前記駆動源が接続されるとともに発光がなされない発光素子が接続されるドライブ線は前記アース手段に接続されことを特徴としている。
【0028】
請求項9に記載の発明は、請求項1ないしは8に記載の発明において、前記発光素子は有機エレクトロルミネッセンス材料を含んで構成されることを特徴としている。
【0029】
請求項10に記載の発明は、マトリクス状に配置した陽極線と陰極線のいずれか一方を走査線とするとともに他方をドライブ線とし、前記ドライブ線の各々に対して前記赤、緑及び青の発光素子のいずれか一の発光素子だけが接続されるように前記走査線と前記ドライブ線の各交点位置に前記発光素子を接続し、走査線を走査しながら、該走査に応じて所望のドライブ線に駆動源を接続することにより前記交点位置に接続された発光素子を発光させるようにした発光ディスプレイの駆動方法であって、任意の走査線の走査が終了し次の走査線の走査が行われるまでの間において、前記赤、緑及び青の発光素子にそれぞれ異なる電荷を充電するようにしたことを特徴としている。
【0030】
請求項11に記載の発明は、請求項10に記載の発明において、任意の走査線の走査が終了し次の走査線の走査が行われるまでの間において、前記赤、緑及び青の発光素子のうち定常発光状態時の両端電圧である発光規定電圧が最も高いものには正の電荷を充電し、次に高いものには電荷の充電を行わず、前記発光規定電圧の最も低いものには負の電荷を充電するようにしたことを特徴としている。
【0031】
請求項12に記載の発明は、マトリクス状に配置した陽極線と陰極線のいずれか一方を走査線とするとともに他方をドライブ線とし、前記ドライブ線の各々に対して前記赤、緑及び青の発光素子のいずれか一の発光素子だけが接続されるように前記走査線と前記ドライブ線の各交点位置に前記発光素子を接続し、走査線を走査しながら、該走査に応じて所望のドライブ線に駆動源を接続することにより前記交点位置に接続された発光素子を発光させるようにした発光ディスプレイの駆動方法であって、前記走査線は第1の定電圧源とアース手段とのいずれか一方に接続可能とされ、前記ドライブ線は前記駆動源とアース手段と前記発光素子に電荷を充電するための第2の定電圧源のいずれか一つに接続可能とされ、任意の走査線が走査されている間においては、走査がなされている走査線は前記アース手段が接続されるとともに走査がなされていない走査線は前記第1の定電圧源に接続され、発光がなされる発光素子が接続されるドライブ線は前記駆動源が接続されるとともに発光がなされない発光素子が接続されるドライブ線は前記アース手段に接続され、任意の走査線の走査が終了し次に走査が行われる走査線の走査に切り換わるまでの間においては、前記走査線は前記アース手段に接続されるとともに前記ドライブ線は前記第2の定電圧源に接続され、前記第2の定電圧源は、接続される前記発光素子が前記赤、緑及び青のいずれであるかに応じてその印加電圧が異なることを特徴としている。
【0032】
請求項13に記載の発明は、請求項12に記載の発明において、前記第2の定電圧源は、前記赤、緑及び青の発光素子のうち定常発光状態時の両端電圧である発光規定電圧が最も高い発光素子が接続されるドライブ線と前記発光規定電圧が最も低い発光素子が接続されるドライブ線とにのみ対応して設けられ、前記発光規定電圧が最も高い発光素子には順方向電圧を印加し、前記発光規定電圧が最も低い発光素子には逆方向電圧を印加することを特徴としている。
【0033】
請求項14に記載の発明は、請求項10ないしは13に記載の発明において、前記発光素子は有機エレクトロルミネッセンス材料を含んでなることを特徴としている。
【0034】
【作用】
任意の陰極線の走査から次の走査に移行した際に、R、G、Bの発光素子毎
に、それぞれに応じた電荷を充電するようにしたので、R、G、Bの各発光素子が所望の瞬時輝度で発光する立ち上がりタイミングを一致させることができ、パルス幅変調駆動を行う際の階調表現の再現性が向上する。
【0035】
【発明の実施の形態】
以下、図面を基にして本発明の実施の形態について説明する。図1〜図4は本発明の第1実施形態について示すものである。なお、従来との構成上の違い
は、陰極ドライブ回路2にR、G、Bの各発光素子に対応して接続される定電圧源VR 、VG 、VB を設けたことである。
【0036】
A1 〜A768 は陽極線、B1 〜B64は陰極線であり、互いに交差するように配されている。そして陽極線と陰極線の交点位置には各々赤、緑、青の何れかに発光する発光素子R、G、Bが接続されており、それぞれ規則正しく配列されている。すなわち、陽極線A1 には64個の発光素子Rが接続され、陽極線A2 には発光素子Gが接続され、陽極線A3 には発光素子Bが接続されるといった具合
に、陽極線には同色の発光素子だけが接続されるとともに陰極線には発光素子
R、G、Bがこの順を繰り返すように並んで接続されている。そして、隣接する発光素子R、G、Bを3個1組として単位画素Eが形成される。(例えば、画素E1,1 は発光素子R1,1 、G1,1 、B1,1 からなる。)そして図示されるよう
に、16384個の画素E1,1 〜E256,64がマトリクス状に配列される。
【0037】
1は陰極線走査回路であり、各陰極線B1 〜B64を順次走査するための走査スイッチ51 〜564を備えている。各走査スイッチ51 〜564の一方の端子は定電源電圧(第1の定電圧源)からなる逆バイアス電圧Vccに接続されているとともに、他方の端子はアース電位(0v)に接続されている。
【0038】
2は陽極ドライブ回路であり、駆動源である定電流源21 〜2768 と、定電圧源VR 、VG 、VB (第2の定電圧源)と、各陽極線A1 〜A768 のうち定電流源21 〜2768 または定電圧源VR 、VG 、VB に接続されるものを選択するためのドライブスイッチ61 〜6768 とを備えており、任意のドライブスイッチをオンすることにより、当該陽極線に対して定電流源21 〜2768 又は定電圧源VR 、VG 、VB を接続するようになっている。ここで定電圧源VR 、VG 、V B はそれぞれ、発光素子Rが接続される陽極線、発光素子Gが接続される陽極線、発光素子Bが接続される陽極線に対応して設けられており、図示されるように、陽極線A1 、A4 、A7 …には定電圧源VR 、陽極線A2 、A5 、A8 …には定電圧源VG 、陽極線A3 、A6 、A9 …には定電圧源VB がそれぞれ接続可能に設けられている。
【0039】
なお、定電圧源VR 、VG 、VB の印加電圧は次のように設定されるのが望ましい。すなわち、R、G、Bの発光素子が所望の瞬時輝度で発光しているときの両端電圧(発光規定電圧)をそれぞれVr 、Vg 、Vb とすると、
VR =Vr −Vcc (1)
VG =Vg −Vcc (2)
VB =Vb −Vcc (3)
VR =Vr −Vcc (1)
VG =Vg −Vcc (2)
VB =Vb −Vcc (3)
【0040】
定電圧源VR 、VG 、VB の印加電圧をこのように設定することによって、走査が切り換った際に発光素子R、G、Bの両端電圧を瞬時に規定電圧にすることができる。これについては後述する。
【0041】
3は陰極リセット回路であり、陽極線A1 〜A768 をアース電位(0v)へ接続するためのシャントスイッチ71 〜7768 を備えている。
【0042】
4は発光制御回路であり、入力された発光データに応じて陰極走査回路1、陽極ドライブ回路2及び陽極リセット回路3を制御するものである。
【0043】
次に、図1〜図4を用いて、本実施形態の動作について説明する。なお、以下の動作は陰極線B1 を走査して画素E1,1 の発光素子R1,1 、G1,1 、B1,1 を発光させた後、陰極線B2 に走査を移行して画素E2,2 の発光素子R2,2 、G 2,2 、B2,2 を発光させる場合を説明したものである。なお、説明をわかりやすくするために、発光している発光素子についてはダイオード記号で示し、発光していない発光素子についてはコンデンサ記号で示した。
【0044】
図1は画素E1,1 を発光させた状態を示す。この状態においては、走査スイッチ51 はアース電位に側に切り換えられ、陰極線B1 が走査されている。また走査スイッチ52 〜564は定電圧源側に切り換えられ、陰極線B2 〜B64には逆バイアス電圧Vccが印加されている。一方、陽極線A1 〜A3 はドライブスイッチ61 〜63 によって定電流源21 〜23 に接続されシャントスイッチ71 〜73 は開放されている。また、他の陽極線A4 〜A768 はシャントスイッチ74 〜7768 によってアース電位に接続されドライブスイッチ64 〜6768 は開放されている。
【0045】
従って、図1の場合、画素E1,1 のみが順方向にバイアスされ、定電流源
21 〜23 から矢印の方向に駆動電流が流れ込み、画素E1,1 のみが発光している。画素E1,1 の発光素子の寄生容量には、発光素子の両端電圧を順方向とする電荷が充電されている。
【0046】
陰極線B1 の走査が終了すると陰極線B2 の走査に移行するが、その前に、すべての発光素子に所定の電荷を充電するリセット動作を行う。すなわち、図2に示されるように、すべての走査スイッチ51 〜564はアース電位に接続され、すべてのシャントスイッチ71 〜7768 をオフするとともにすべてのドライブスイッチ61 〜6768 を定電圧源VR 、VG 、VB 側に切り換える。
【0047】
このようにスイッチを切り換えると、すべての陰極線の電位が0vになるとともに、陽極線A1 、A4 、A7 …の電位はVR 、陽極線A2 、A5 、A8 …の電位はVG 、陽極線A3 、A6 、A9 …の電位はVB となるので、図2に示されるように、陽極線A1 、A4 、A7 …に接続された発光素子の寄生容量にはその両端電圧が順方向にVR となる電荷eR が充電され、同様に、陽極線A2 、A5 、A8 …に接続された発光素子にはその両端電圧が順方向にVG となる電荷eG が充電され、陽極線A3 、A6 、A9 …に接続された発光素子にはその両端電圧が順方向にVB となる電荷eB が充電される。
【0048】
この状態において、発光素子R、G、Bのすべてには順方向の電圧VR 、
VG 、VB が印加された状態となっているが、VR 、VG 、VB は各発光素子の発光閾値電圧(発光できる最小の電圧)をよりも小とされているので、発光素子R、G、Bは発光しない。
【0049】
その後、図3に示すように陰極線B2 の走査に移行する。すなわち、陰極線
B2 に対応する走査スイッチ52 のみをアース電位側に切り換えるとともに他の走査スイッチ51 、53 〜564を定電圧源Vcc側に切り換え、ドライブスイッチ64 〜66 のみを定電流源24 〜26 に切り換えて陽極線A4 〜A6 をドライブするとともに、シャントスイッチ71 〜73 、77 〜7768 をオンして陽極線A1 〜A3 、A7 〜A768 の電位を0vにする。
【0050】
このようにスイッチを切り換えた瞬間においては、陽極線A4 に接続されたすべての発光素子には両端電圧が順方向にVR となる電荷が充電されていること
で、陽極線A4 の電位はほぼVcc+VR となる。つまり、画素E2,2 の発光素子R2,2 の両端電圧は瞬間的にVcc+VR となる。これにより画素E2,2 の発光素子Rには、定電流源24 →ドライブスイッチ64 →陽極線A4 →発光素子R2,2 →走査スイッチ52 →のルートで充電電流が流れ込むとともに、図3に矢印で示すように、走査スイッチ51 →陰極線B1 →発光素子R2,1 →発光素子R
2,2 →走査スイッチ52 、…、走査スイッチ564→陰極線B64→発光素子R 2,64 →発光素子R2,2 →走査スイッチ52 のルートからも同時に充電電流が流れ込み、発光素子R2,2 はこれら複数の充電電流によって瞬時に充電されて、所望の瞬時輝度で発光する状態に立ち上がる。
【0051】
同様に、発光素子G2,2 の両端電圧は瞬間的にVcc+VG となり、これにより画素E2,2 の発光素子G2,2 は、定電流源25 →ドライブスイッチ65 →陽極線A5 →発光素子G2,2 →走査スイッチ52 →のルートの他に、図3中矢印で示されるように、走査スイッチ51 →陰極線B1 →発光素子G2,1 →発光素子G
2,2 →走査スイッチ52 、…、走査スイッチ564→陰極線B64→発光素子G 2,64→発光素子G2,2 →走査スイッチ52 のルートから充電電流が流れ込み、瞬時に充電される。
【0052】
また同様に、画素2,2 の発光素子B2,2 の両端電圧は瞬間的にVcc+VB となり、これにより発光素子B2,2 は、定電流源26 →ドライブスイッチ66 →陽極線A6 →発光素子B2,2 →走査スイッチ52 →のルートのほかに、図3中矢印で示されるように、走査スイッチ51 →陰極線B1 →発光素子B2,1 →発光素子B2,2 →走査スイッチ52 、…、走査スイッチ564→陰極線B64→発光素子B
2,64→発光素子B2,2 →走査スイッチ52 のルートから充電電流が流れ込み、瞬時に充電される。
【0053】
以上を経て画素E2,2 の発光素子R2,2 、G2,2 、B2,2 は、図4に示すように所望の瞬時輝度で発光する定常発光状態となり、その後、陰極線B2 の走査期間中は定電流源24 、25 、26 からの駆動電流によって発光を持続する。
【0054】
このとき、画素E2,1 、E2,3 〜E2,64の発光素子R、G、Bの両端電圧は、それぞれ順方向にVR 、VG 、VB となっているが、これらは発光素子R、G、Bそれぞれの発光閾値電圧よりも小とされているので、発光素子R、G、Bは発光しない。
【0055】
また、画素E1,1 、E1,3 〜E1,64等の発光されない画素の発光素子についても、図3に矢印で示したルートでそれぞれ充電が行われるが、これらの充電方向は逆バイアス方向であるので、これらの画素の発光素子R、G、Bが誤発光するおそれはない。
【0056】
以上述べたように、本発明の第1実施形態においては、任意の走査が終了し次の走査に切り換わるまでの間に、発光素子R、G、Bの寄生容量にそれぞれ異なる電荷を充電するようにしたので、次の走査に切り換えられた際に、切り換えられた走査線の発光素子を瞬時に所望の瞬時輝度で発光させることができるとともに、各々規定電圧の異なる発光素子R、G、Bが所望の瞬時輝度で発光する立ち上がりタイミングを一致させることができ、パルス幅変調駆動を行う際の階調表現の重みづけの精度が向上する。
【0057】
なお、以上の説明においては、3色の発光素子R、G、Bに充電する電荷量がそれぞれ異なる場合において説明したが、これに限られることはなく、例えば、所望の瞬時輝度で発光する際の両端電圧が発光素子RとGが等しく発光素子Bのみが異なるといった場合においては、少なくとも1種類の発光素子に印加する充電電圧を他の2色の発光素子に印加する充電電圧とは異ならせるようにしても良い。
【0058】
また、定電圧源VR 、VG 、VB の印加電圧は上述した式(1)〜(3)のように設定するのが最適であるが、これに限られることはなく、走査が切り換った瞬間において発光素子に印加される電圧が、発光素子が所望の瞬時輝度で発光しているときの両端電圧に極力近づくように、定電圧源VR 、VG 、VB の印加電圧を設定すれば良い。
【0059】
次に本発明の第2実施形態について図5〜図8をもとに説明する。本発明の第2実施形態は、リセット動作時に発光素子R、G、Bに印加する電圧値を工夫したものであり、これにより、第1実施形態に比べて陽極ドライブ回路2の定電圧源を個数を少なくし、コストダウンを図ったものである。
【0060】
この第2実施形態においては、定電圧源VR 、VG 、VB の印加電圧及び逆バイアス電圧Vccは次のように設定される。すなわち、R、G、Bの発光素子が定常発光状態で発光しているときの両端電圧(発光規定電圧)をそれぞれVr 、Vg 、Vb (Vr >Vg >Vb )とすると、
Vg =Vcc (4)
VR =Vr −Vcc (5)
VG =0 (6)
VB =Vb −Vcc (7)
【0061】
すなわち、定電圧源VG は省略することができ、定電圧源VB の印加電圧は負となる。この式(4)〜(7)からもわかるとおり、第2実施形態は、第1実施形態の構成から陽極線A2 、A5 、A8 …に接続される定電圧源VG を省いた構成となっており、他の構成は第1実施形態と同一である。
【0062】
以下に、第2実施形態の動作について説明する。なお、以下の動作は陰極線B1 を走査して画素E1,1 の発光素子R1,1 、G1,1 、B1,1 を発光させた後、陰極線B2 に走査を移行して画素E2,2 の発光素子R2,2 、G2,2 、B2,2 を発光させる場合を説明したものである。
【0063】
図5は画素E1,1 を発光させた状態を示す。この状態は、上述した図1と同一状態であるためその説明は省略する。
【0064】
陰極線B1 の走査が終了すると陰極線B2 の走査に移行するが、その前に、発光素子に所定の電荷を充電するリセット動作を行う。すなわち、図6に示されるように、すべての走査スイッチ51 〜564をアース電位に接続し、ドライブスイッチ61 、64 、67 …及び63 、66 、69 …を定電圧源VR 、VB 側に切り換えるとともにドライブスイッチ62 、65 、68 …を開放し、シャントスイッチ71 、74 、77 …及び73 、76 、79 …を開放するとともにシャントスイッチ72 、75 、78 …をオンする。
【0065】
このようにスイッチを切り換えると、すべての陰極線の電位が0vになるとともに、陽極線A1 、A4 、A7 …の電位はVR 、陽極線A2 、A5 、A8 …の電位は0、陽極線A3 、A6 、A9 …の電位はVB となる。よって、図2に示されるように、陽極線A1 、A4 、A7 …に接続された発光素子の寄生容量にはその両端電圧が順方向にVR となる電荷が充電され、同様に、陽極線A2 、A5 、A8 …に接続された発光素子には0の電荷が充電され、陽極線A3 、A6 、A9 …に接続された発光素子にはその両端電圧が逆方向にVB となる電荷が充電され
る。
【0066】
その後、図7に示すように陰極線B2 の走査に移行する。すなわち、陰極線B2 に対応する走査スイッチ52 のみをアース電位側に切り換えるとともに他の走査スイッチ51 、53 〜564を定電圧源Vcc側に切り換え、ドライブスイッチ64 〜66 のみを定電流源24 〜26 に切り換えて陽極線A4 〜A6 をドライブするとともに、シャントスイッチ71 〜73 、77 〜7768 をオンして陽極線A1 〜A3 、A7 〜A768 の電位を0vにする。
【0067】
このようにスイッチを切り換えた瞬間において陽極線A4 の電位はほぼVcc+VR (=Vr )となるから、画素E2,2 の発光素子R2,2 の両端電圧は瞬間的にVcc+VR となる。これにより画素E2,2 の発光素子R2,2 には、定電流源24 →ドライブスイッチ64 →陽極線A4 →発光素子R2,2 →走査スイッチ5 2 →のルートのほかに、図7に矢印で示すように、走査スイッチ51 →陰極線B1 →発光素子R2,1 →発光素子R2,2 →走査スイッチ52 、…、走査スイッチ564→陰極線B64→発光素子R2,64→発光素子R2,2 →走査スイッチ52 のルートからも同時に充電電流が流れ込み、発光素子R2,2 はこれら複数の充電電流によって瞬時に充電されて、所望の瞬時輝度で発光する状態に立ち上がる。
【0068】
同様に、陽極線A5 の電位は瞬間的にVccとなり、発光素子G2,2 の両端電圧は瞬間的にVcc(=Vg )となるから、これにより発光素子G2,2 は、定電流源25 →ドライブスイッチ65 →陽極線A5 →発光素子G2,2 →走査スイッチ52 →のルートのほかに、図7に矢印で示すように、走査スイッチ51 →陰極線B1 →発光素子G2,1 →発光素子G2,2 →走査スイッチ52 、…、走査スイッチ564→陰極線B64→発光素子G2,64 →発光素子G2,2 →走査スイッチ52 のルートから充電電流が流れ込み、瞬時に充電される。
【0069】
また同様に、陽極線A6 の電位は瞬間的にVcc+VB となり、発光素子B
2,2 の両端電圧は瞬間的にVcc+VB (=Vb )となるから、これにより発光素子B2,2 は、定電流源26 →ドライブスイッチ66 →陽極線A6 →発光素子B2,2 →走査スイッチ52 →のルートのほかに、図7に矢印で示すように、走査スイッチ51 →陰極線B1 →発光素子B2,1 →発光素子B2,2 →走査スイッチ
52 、…、走査スイッチ564→陰極線B64→発光素子B2,64 →発光素子B 2,2 →走査スイッチ52 のルートから充電電流が流れ込み、瞬時に充電される。
【0070】
以上を経て画素E2,2 の発光素子R2,2 、G2,2 、B2,2 は、それぞれ順方向の両端電圧がVcc+VR 、Vcc、Vcc+VB となる電荷が瞬時に充電さ
れ、その後、図8に示されるように、陰極線B2 の走査期間中は定電流源24 、25 、26 からの駆動電流によって発光を持続する。
【0071】
以上述べたように、本発明の第2実施形態においては、3色の発光素子のうち何れかの発光素子が所望の瞬時輝度で発光しているときの両端電圧(規定電圧)と逆バイアス電圧Vccを等しく設定したことにより、第1実施形態に比べて充電用の定電圧源の設置個数を少なくすることができ、装置のコストダウンをよりすすめることができる。
【0072】
【発明の効果】
上述したように本発明の発光ディスプレイ及びその駆動方法によれば、任意の陰極線の走査から次の陰極線の走査に移行した際に、R、G、Bの発光素子毎
に、それぞれに応じた電荷を充電するようにしたので、各発光素子R、G、Bが所望の瞬時輝度で発光するタイミングを一致させることができ、パルス幅変調駆動等を行う際の階調表現の重み付け精度を向上させるうことができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の説明図
【図2】本発明の第1実施形態の説明図
【図3】本発明の第1実施形態の説明図
【図4】本発明の第1実施形態の説明図
【図5】本発明の第2実施形態の説明図
【図6】本発明の第2実施形態の説明図
【図7】本発明の第2実施形態の説明図
【図8】本発明の第2実施形態の説明図
【図9】従来の発光ディスプレイの説明図
【図10】従来の発光ディスプレイの説明図
【図11】従来の発光ディスプレイの説明図
【図12】発光素子の等価回路を示す図
【符号の説明】
1 陰極線走査回路
2 陽極線ドライブ回路
21 〜2768 駆動源(定電流源)
3 陰極リセット回路
4 発光制御回路
51 〜564 走査スイッチ
61 〜6768 ドライブスイッチ
71 〜7768 シャントスイッチ
A1 〜A768 陽極線(ドライブ線)
B1 〜B64 陰極線(走査線)
E1,1 〜E256,64 画素
R1,1 〜R256,64 赤の発光素子
G1,1 〜G256,64 緑の発光素子
B1,1 〜B256,64 青の発光素子
Vcc 定電圧源
VR 定電圧源
VG 定電圧源
VB 定電圧源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting display for performing color display using an organic EL element or the like and a driving method thereof.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a matrix display using a light emitting element such as an organic EL has been known. This arranges multiple anode lines and multiple cathode lines in a matrix (lattice)
A light emitting element is connected to each intersection of the anode line and the cathode line arranged in a matrix. For full color display, R (red), G (green), B (
The blue) light emitting elements are arranged side by side, and one pixel is formed by combining these three light emitting elements.
[0003]
The light-emitting elements connected at each intersection can be represented by a light-emitting element E having diode characteristics and a parasitic capacitance C connected in parallel to the light-emitting element E, as shown in an equivalent circuit of FIG. is there.
[0004]
This type of full-color matrix display will be described with reference to FIGS. A1 to A768 are anode wires, and B1 to B64 are cathode wires, which are arranged to cross each other. Light emitting elements R, G, and B that emit red, green, and blue light are connected to intersections of the anode line and the cathode line, respectively, and are regularly arranged. That is, the anode line A1 is connected to 64 light emitting elements R, the anode line A2 is connected to the light emitting element G, the anode line A3 is connected to the light emitting element B, and so on. And the light emitting elements R, G, and B are connected to the cathode line side by side so as to repeat this order. Soshi
As a result, a unit pixel E is formed with a set of three adjacent light emitting elements R, G, and B. As shown in the figure, 16384 pixels E1,1 to E256,64 are arranged in a matrix.
[0005]
Reference numeral 1 denotes a cathode line scanning circuit, which includes scanning switches 51 to 564 for sequentially scanning the cathode lines B1 to B64. One terminal of each of the scanning switches 51 to 564 is connected to a reverse bias voltage Vcc composed of a constant power supply voltage, and the other terminal is connected to a ground potential (0 V). The reverse bias voltage Vcc connects the unscanned cathode lines B1 to B64 and prevents erroneous light emission of the light emitting elements connected to the unscanned cathode lines.
[0006]
Reference numeral 2 denotes an anode drive circuit, which includes constant current sources 21 to 2768 as drive sources, and drive switches 61 to 6768 for selecting one of the anode lines A1 to A768 to be connected to the constant current sources 21 to 2768. By turning on any drive switch, the constant current sources 21 to 2768 are connected to the anode line.
[0007]
Reference numeral 3 denotes a cathode reset circuit, which includes shunt switches 71 to 7768 for connecting the anode lines A1 to A768 to the ground potential (0 V).
[0008]
Reference numeral 4 denotes a light emission control circuit that controls the cathode scanning circuit 1, the anode drive circuit 2, and the anode reset circuit 3 in accordance with the input light emission data.
[0009]
Next, the operation of the full-color matrix display will be described with reference to FIGS. The operation described below will be described as an example in which the pixel E1,1 emits light by scanning the cathode line B1 and then the pixel E2,2 emits light by shifting the scanning to the cathode line B2. For easy understanding, a light emitting element that emits light is indicated by a diode symbol, and a light emitting element that does not emit light is indicated by a capacitor symbol.
[0010]
FIG. 9 shows a state in which the pixel E1,1 emits light. In this state, the scanning switch 51 is switched to the ground potential, and the cathode line B1 is scanned. The scanning switches 52 to 564 are switched to the constant voltage source side, and the reverse bias voltage Vcc is applied to the cathode lines B2 to B64. On the other hand, the anode wires A1 to A3 are connected to the constant current sources 21 to 23 by the drive switches 61 to 63, and the shunt switches 71 to 73 are open. The other anode lines A4 to A768 are connected to ground potential by shunt switches 74 to 7768, and drive switches 64 to 6768 are open.
[0011]
Therefore, in the case of FIG. 9, only the pixel E1,1 is biased in the forward direction, the drive current flows from the constant current source 21 in the direction of the arrow, and only the pixel E1,1 emits light. The parasitic capacitance of the pixel E1,1 is charged with a forward charge.
[0012]
At this time, the light emitting elements R, G, and B of the pixels E1,2 to E1,64 are connected to the constant current sources 21 to 2, but the cathode lines are connected to the constant voltage source and set to the reverse bias voltage Vcc. As a result, the voltage between both ends of the light emitting element becomes almost 0 V, and no light is emitted. The pixels E2,1 to E256,1 do not emit light because both ends are connected to the ground potential. In addition, the pixels E2,2 to E256, 64 do not emit light because they are biased in the reverse direction, and the parasitic capacitance of the light emitting element has charges in the opposite direction (indicated by hatching on the capacitor) as shown in the figure.
You. ) Is charged.
[0013]
When the scanning of the cathode line B1 is completed, the scanning shifts to the scanning of the cathode line B2. Before that, all the anode lines A1 to A768 and the cathode lines B1 to B64 are temporarily shunted to the ground potential, and all reset by 0V is performed. That is, as shown in FIG. 10, all the drive switches 61 to 6768 are turned off, and all the scan switches 51 to 564 and all the shunt switches 71 to 7768 are switched to the ground potential side. As a result, all of the anode line and the cathode line have the same potential of 0 V, so that all the charges charged in each light emitting element are discharged.
[0014]
Thereafter, as shown in FIG. 11, the process shifts to scanning with the cathode ray B2. That is, only the scan switch 52 corresponding to the cathode line B2 is switched to the ground potential side, the other scan switches 51, 53 to 564 are connected to the reverse bias voltage Vcc, and the drive switches 64 to 66 are switched to the constant current sources 24 to 26. Then, the anode lines A4 to A6 are driven to turn on the shunt switches 71 to 73 and 77 to 7768 to set the potentials of the anode lines A1 to A3 and A7 to A768 to 0V.
[0015]
At the moment when the switches are switched in this manner, the charges of all the light emitting elements are set to 0 as described above, so that the potentials of the anode lines A4 to A6 become approximately Vcc (63/64 Vcc to be exact). Then, the charging current flows into the light emitting element of the pixel E2, 2 to be emitted next from a plurality of routes indicated by arrows in FIG. 11 at a stretch, and the parasitic capacitance of each light emitting element is instantaneously charged, and the desired instantaneous luminance is obtained. It emits light.
[0016]
This reset operation has already been announced by the present applicant in Japanese Patent Application No. 8-38393, and the charges in the opposite direction of the pixels E2,2 to E2,64 charged during the scanning of the cathode line B1 are converted to the cathode line. Delayed light emission rise of light emitting element when scanning B2
The problem was solved.
[0017]
That is, in order to cause a light emitting element to emit light at a desired instantaneous luminance, it is necessary to raise the voltage across the light emitting element to a certain specified value. Therefore, it is necessary to charge a predetermined charge to the parasitic capacitance of the light emitting element. The potentials of the anode lines A4 to A6 driven during the scanning of the cathode line B2 can be instantaneously set to Vcc by canceling the electric charge in the opposite direction charged in the pixels E2,2 to the pixels E2,64 (that is, , The voltage across the light emitting element of the pixel E2,2 can be instantaneously set to almost Vcc), thereby enabling the rapid charging of the parasitic capacitance of the light emitting element of the pixel E2,2.
[0018]
[Problems to be solved by the invention]
According to the above-described conventional reset driving method, the voltage across the light emitting elements of the pixels E2, 2 which emits light at the moment when the scanning shifts to the cathode ray B2 is about Vcc.
[0019]
However, the R, G, and B light emitting elements each have a different element structure, such as a light emitting material, and often have different luminance-voltage characteristics. Then, in the case of the conventional reset driving method, among the R, G, and B light emitting elements, those whose specified value of the voltage at both ends is close to Vcc can emit light with desired instantaneous luminance quickly. If the value is much larger than Vcc, light emission at a desired instantaneous luminance requires further charging with a drive current flowing from a constant current source, and the light emission rise is delayed. Further, in the case of performing a driving method of expressing a luminance gradation according to the length of a light emission time in a scanning period such as pulse width modulation driving, the linearity of the gradation deteriorates.
[0020]
[Means for Solving the Problems]
An object of the present invention is to solve the above-mentioned problems, and the invention according to claim 1 uses one of an anode line and a cathode line arranged in a matrix as a scanning line and sets the other as a scanning line. The drive line, the light emitting element at each intersection of the scan line and the drive line such that only one of the red, green and blue light emitting elements is connected to each of the drive lines. A light-emitting display that is connected and scans a scanning line while connecting a driving source to a desired drive line in accordance with the scanning to cause the light-emitting element connected at the intersection position to emit light. Charging means for charging at least one of the red, green and blue light-emitting elements until the scanning of the next scanning line is completed after the scanning of the scanning line is completed. , Wherein the serial charging means red, the charge amount to be charged to the light-emitting element of green and blue are being different from each.
[0021]
According to a second aspect of the present invention, in the first aspect, the charging means charges all of the light emitting elements.
[0022]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the red, green, and blue light-emitting elements are different from each other in a light-emission specified voltage that is a voltage between both ends in a steady light-emission state. And
[0023]
According to a fourth aspect of the present invention, in the first aspect of the present invention, the charging means charges a positive charge to the red, green and blue light emitting elements having the highest light emission specified voltage. The next highest charge is not charged, and the lowest light emission specified voltage is charged with a negative charge.
[0024]
The invention according to claim 5, wherein one of the anode line and the cathode line arranged in a matrix is used as a scanning line and the other is used as a drive line, and the red, green, and blue light emission is performed for each of the drive lines. The light emitting element is connected to each intersection of the scanning line and the drive line so that only one of the light emitting elements is connected, and while scanning the scanning line, a desired drive line is provided in accordance with the scanning. A light emitting element connected to the intersection position to emit light by connecting a driving source to the scanning line, wherein the scanning line can be connected to one of a first constant voltage source and a grounding means. The drive line is connectable to any one of the drive source, the grounding means, and a second constant voltage source for charging the light emitting element, and the scanning of an arbitrary scanning line is completed. Then the scan Until switching to the scanning of the scanning line to be performed, the scanning line is connected to the ground means, the drive line is connected to the second constant voltage source, and the second constant voltage source is connected to the second constant voltage source. The applied voltage is different depending on whether the light emitting element to be used is red, green or blue.
You.
[0025]
According to a sixth aspect of the present invention, in the invention of the fifth aspect, the red, green, and blue light-emitting elements have different light emission specified voltages, which are voltages at both ends in a steady light emission state. .
[0026]
In the invention according to claim 7, in the invention according to claim 5 or 6, the second constant voltage source is a light emitting element having the highest light emission regulation voltage among the red, green, and blue light emitting elements. A drive voltage to be connected is provided only corresponding to a drive line to which the light emitting element with the lowest emission voltage is connected, and a forward voltage is applied to the light emitting element with the highest emission regulation voltage, and the light emission regulation voltage is applied. Is characterized by applying a reverse voltage to the light emitting element having the lowest value.
[0027]
According to an eighth aspect of the present invention, in the invention according to any one of the fifth to seventh aspects, during the scanning period in which an arbitrary scanning line is being scanned, the scanning line being scanned is connected to the ground means. The scanning line that is not scanned and is not connected is connected to the first constant voltage source, and the drive line to which the light emitting element that emits light is connected is connected to the driving source and the light emitting element that does not emit light is connected. The drive line to be connected is connected to the grounding means.
[0028]
According to a ninth aspect of the present invention, in the first to eighth aspects, the light emitting element is configured to include an organic electroluminescent material.
[0029]
According to a tenth aspect of the present invention, one of the anode lines and the cathode lines arranged in a matrix is used as a scanning line and the other is used as a drive line, and the red, green, and blue light emission is performed for each of the drive lines. The light emitting element is connected to each intersection of the scanning line and the drive line so that only one of the light emitting elements is connected, and while scanning the scanning line, a desired drive line is provided in accordance with the scanning. A light-emitting element connected at the intersection position to emit light by connecting a driving source to the light-emitting element, wherein scanning of an arbitrary scanning line is completed and scanning of the next scanning line is performed. In the meantime, the red, green, and blue light emitting elements are charged with different electric charges, respectively.
[0030]
According to an eleventh aspect of the present invention, in the invention according to the tenth aspect, the red, green, and blue light emitting elements are provided between the end of scanning of an arbitrary scanning line and the scanning of the next scanning line. Of the light emission specified voltage that is the both-end voltage in the steady light emission state, the highest one is charged with a positive charge, the next highest one is not charged, and the light emission specified voltage is the lowest. It is characterized by charging a negative charge.
[0031]
According to a twelfth aspect of the present invention, one of the anode lines and the cathode lines arranged in a matrix is used as a scanning line and the other is used as a drive line, and the red, green, and blue light emission is performed for each of the drive lines. The light emitting element is connected to each intersection of the scanning line and the drive line so that only one of the light emitting elements is connected, and while scanning the scanning line, a desired drive line is provided in accordance with the scanning. A driving source connected to the light emitting element connected to the intersection position to emit light, wherein the scanning line is one of a first constant voltage source and a grounding means. The drive line is connectable to any one of the drive source, the grounding means, and a second constant voltage source for charging the light emitting element, and an arbitrary scan line scans. Been In the meantime, the scanning line that is being scanned is connected to the grounding means, and the scanning line that is not being scanned is connected to the first constant voltage source, and a light emitting element that emits light is connected. The drive line is connected to the drive source and the light emitting element that does not emit light is connected to the drive line. The drive line is connected to the grounding means, and the scanning of an arbitrary scanning line is completed and the next scanning is performed. Until switching, the scan line is connected to the grounding means, the drive line is connected to the second constant voltage source, and the second constant voltage source is connected to the light emitting device. The applied voltage is different depending on whether the element is red, green or blue.
[0032]
According to a thirteenth aspect of the present invention, in the twelfth aspect of the present invention, the second constant voltage source is a light emission regulation voltage which is a voltage between both ends of the red, green and blue light emitting elements in a steady light emission state. Are provided only corresponding to the drive line to which the light emitting element with the highest light emission is connected and the drive line to which the light emitting element with the lowest light emission regulation voltage is connected, and the light emitting element with the highest light emission regulation voltage has a forward voltage. And applying a reverse voltage to the light emitting element having the lowest light emission specified voltage.
[0033]
According to a fourteenth aspect, in the tenth to thirteenth aspects, the light emitting device includes an organic electroluminescent material.
[0034]
[Action]
When shifting from the scanning of an arbitrary cathode ray to the next scanning, each R, G, B light emitting element
In addition, since the corresponding charges are charged, the rising timings at which the R, G, and B light emitting elements emit light at a desired instantaneous luminance can be matched, and the pulse width at the time of performing the pulse width modulation drive can be adjusted. The reproducibility of the tone expression is improved.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 4 show a first embodiment of the present invention. In addition, the difference in configuration from the conventional
Means that the constant voltage sources VR, VG, VB connected to the R, G, B light emitting elements are provided in the cathode drive circuit 2.
[0036]
A1 to A768 are anode wires, and B1 to B64 are cathode wires, which are arranged to cross each other. Light emitting elements R, G, and B that emit red, green, and blue light are connected to intersections of the anode line and the cathode line, respectively, and are regularly arranged. That is, 64 light emitting elements R are connected to the anode line A1, light emitting elements G are connected to the anode line A2, and light emitting elements B are connected to the anode line A3.
Only the same color light emitting element is connected to the anode line, and the light emitting element is connected to the cathode line.
R, G, and B are connected side by side so as to repeat this order. Then, a unit pixel E is formed with a set of three adjacent light emitting elements R, G, and B. (For example, pixel E1,1 comprises light emitting elements R1,1, G1,1 and B1,1) and as shown.
The 16384 pixels E1,1 to E256,64 are arranged in a matrix.
[0037]
Reference numeral 1 denotes a cathode line scanning circuit, which includes scanning switches 51 to 564 for sequentially scanning the cathode lines B1 to B64. One terminal of each of the scanning switches 51 to 564 is connected to a reverse bias voltage Vcc composed of a constant power supply voltage (first constant voltage source), and the other terminal is connected to a ground potential (0 V).
[0038]
Reference numeral 2 denotes an anode drive circuit, which is a constant current source 21 to 2768 as a driving source, constant voltage sources VR, VG, VB (second constant voltage source), and a constant current source 21 of the anode lines A1 to A768. Drive switches 61 to 6768 for selecting one connected to the constant voltage sources VR, VG, and VB, and by turning on any drive switch, a constant current is supplied to the anode line. Sources 21 to 2768 or constant voltage sources VR, VG, VB are connected. Here, the constant voltage sources VR, VG, and VB are provided corresponding to the anode line to which the light emitting element R is connected, the anode line to which the light emitting element G is connected, and the anode line to which the light emitting element B is connected. As shown in the figure, the anode lines A1, A4, A7,..., The constant voltage source VR, the anode lines A2, A5, A8, etc., the constant voltage source VG, and the anode lines A3, A6, A9,. Sources VB are provided so as to be connectable.
[0039]
It is desirable that the applied voltages of the constant voltage sources VR, VG, VB are set as follows. That is, when the R, G, and B light-emitting elements emit light at the desired instantaneous luminance, the voltages at both ends (light emission specified voltages) are Vr, Vg, and Vb, respectively.
VR = Vr-Vcc (1)
VG = Vg-Vcc (2)
VB = Vb-Vcc (3)
VR = Vr-Vcc (1)
VG = Vg-Vcc (2)
VB = Vb-Vcc (3)
[0040]
By setting the applied voltages of the constant voltage sources VR, VG, and VB in this manner, the voltages across the light emitting elements R, G, and B can be instantaneously set to the specified voltages when the scanning is switched. This will be described later.
[0041]
Reference numeral 3 denotes a cathode reset circuit, which includes shunt switches 71 to 7768 for connecting the anode lines A1 to A768 to the ground potential (0 V).
[0042]
Reference numeral 4 denotes a light emission control circuit that controls the cathode scanning circuit 1, the anode drive circuit 2, and the anode reset circuit 3 in accordance with the input light emission data.
[0043]
Next, the operation of this embodiment will be described with reference to FIGS. The following operation scans the cathode line B1 to emit light from the light emitting elements R1,1, G1,1 and B1,1 of the pixel E1,1 and then shifts the scanning to the cathode line B2 to emit light from the pixels E2,2. The case where the elements R2,2, G2,2, B2,2 emit light is described. For easy understanding, a light emitting element that emits light is indicated by a diode symbol, and a light emitting element that does not emit light is indicated by a capacitor symbol.
[0044]
FIG. 1 shows a state in which the pixel E1,1 emits light. In this state, the scanning switch 51 is switched to the ground potential, and the cathode line B1 is scanned. The scanning switches 52 to 564 are switched to the constant voltage source side, and the reverse bias voltage Vcc is applied to the cathode lines B2 to B64. On the other hand, the anode wires A1 to A3 are connected to the constant current sources 21 to 23 by the drive switches 61 to 63, and the shunt switches 71 to 73 are open. The other anode lines A4 to A768 are connected to ground potential by shunt switches 74 to 7768, and drive switches 64 to 6768 are open.
[0045]
Therefore, in the case of FIG. 1, only the pixel E1,1 is biased in the forward direction, and the constant current source
Drive current flows in the direction of the arrow from 21 to 23, and only the pixel E1,1 emits light. The parasitic capacitance of the light emitting element of the pixel E1,1 is charged with a charge whose forward voltage is the voltage across the light emitting element.
[0046]
When the scanning of the cathode line B1 is completed, the scanning is shifted to the scanning of the cathode line B2, but before that, a reset operation for charging all the light emitting elements with a predetermined charge is performed. That is, as shown in FIG. 2, all the scan switches 51 to 564 are connected to the ground potential, all the shunt switches 71 to 7768 are turned off, and all the drive switches 61 to 6768 are connected to the constant voltage sources VR, VG, Switch to VB side.
[0047]
When the switches are switched in this manner, the potentials of all the cathode lines become 0 V, the potentials of the anode lines A1, A4, A7... Are VR, the potentials of the anode lines A2, A5, A8... Are VG, and the anode lines A3, A6. , A9... Become VB, and as shown in FIG. 2, the parasitic capacitances of the light emitting elements connected to the anode lines A1, A4, A7. Are charged, and similarly, the light-emitting elements connected to the anode lines A2, A5, A8,... Are charged with the electric charge eG whose voltage is VG in the forward direction, and connected to the anode lines A3, A6, A9,. The light-emitting element is charged with electric charge eB whose voltage is VB in the forward direction.
[0048]
In this state, all of the light emitting elements R, G, and B have forward voltages VR,
Although VG and VB are applied, VR, VG and VB are smaller than the light emission threshold voltage (the minimum voltage at which light can be emitted) of each light emitting element. B does not emit light.
[0049]
Thereafter, as shown in FIG. 3, the process shifts to scanning with the cathode ray B2. That is, the cathode ray
Only the scanning switch 52 corresponding to B2 is switched to the ground potential side, the other scanning switches 51, 53 to 564 are switched to the constant voltage source Vcc side, and only the drive switches 64 to 66 are switched to the constant current sources 24 to 26 to switch the anodes. The lines A4 to A6 are driven, and the shunt switches 71 to 73 and 77 to 7768 are turned on to set the potentials of the anode lines A1 to A3 and A7 to A768 to 0V.
[0050]
At the moment when the switch is switched in this way, all the light-emitting elements connected to the anode line A4 are charged with electric charges whose voltage is VR in the forward direction.
Thus, the potential of the anode line A4 becomes approximately Vcc + VR. That is, the voltage across the light emitting element R2,2 of the pixel E2,2 instantaneously becomes Vcc + VR. As a result, the charging current flows into the light emitting element R of the pixel E2,2 through the route of the constant current source 24, the drive switch 64, the anode line A4, the light emitting element R2,2, and the scanning switch 52. As shown, scanning switch 51 → cathode ray B1 → light emitting element R2,1 → light emitting element R
, 2 → scanning switch 52,..., Scanning switch 564 → cathode ray B64 → light emitting element R2,64 → light emitting element R2,2 → scanning switch 52 simultaneously, charging current flows through the route, and light emitting elements R2,2 The battery is instantaneously charged by a plurality of charging currents and rises to emit light at a desired instantaneous luminance.
[0051]
Similarly, the voltage between both ends of the light emitting element G2,2 instantaneously becomes Vcc + VG, whereby the light emitting element G2,2 of the pixel E2,2 is changed from the constant current source 25, the drive switch 65, the anode line A5, and the light emitting element G2,2. 3, in addition to the route of the scanning switch 52, as shown by the arrow in FIG. 3, the scanning switch 51 → the cathode ray B1 → the light emitting element G2,1 → the light emitting element G
, 2 → scanning switch 52,..., Scanning switch 564 → cathode ray B64 → light emitting element G2,64 → light emitting element G2,2 → scanning switch 52 A charging current flows from the route and is instantaneously charged.
[0052]
Similarly, the voltage across the light emitting elements B2,2 of the pixels 2,2 instantaneously becomes Vcc + VB, whereby the light emitting elements B2,2 are switched from the constant current source 26, the drive switch 66, the anode line A6, and the light emitting element B2. In addition to the route of 2 → scanning switch 52 →, as shown by the arrow in FIG. 3, the scanning switch 51 → cathode ray B1 → light emitting element B2,1 → light emitting element B2,2 → scanning switch 52,. → Cathode ray B64 → Light emitting element B
The charging current flows from the route of 2, 64 → light emitting element B2,2 → scanning switch 52 and is charged instantaneously.
[0053]
Through the above, the light emitting elements R2,2, G2,2, B2,2 of the pixel E2,2 enter a steady light emitting state in which light is emitted at a desired instantaneous luminance as shown in FIG. 4, and thereafter, during the scanning period of the cathode ray B2. Light emission is continued by the drive current from the constant current sources 24, 25, 26.
[0054]
At this time, the voltages across the light-emitting elements R, G, and B of the pixels E2,1 and E2,3 to E2,64 are VR, VG, and VB in the forward direction, respectively. , B are smaller than the respective light emission threshold voltages, so that the light emitting elements R, G, B do not emit light.
[0055]
The light-emitting elements of pixels that do not emit light, such as the pixels E1,1 and E1,3 to E1,64, are also charged according to the route indicated by the arrow in FIG. 3, but their charging directions are reverse bias directions. Therefore, there is no possibility that the light emitting elements R, G, and B of these pixels emit light erroneously.
[0056]
As described above, in the first embodiment of the present invention, different charges are respectively charged in the parasitic capacitances of the light emitting elements R, G, and B before an arbitrary scan is completed and before switching to the next scan. As a result, when switching to the next scan is performed, the light-emitting elements of the switched scanning line can be made to emit light instantaneously at a desired instantaneous luminance, and the light-emitting elements R, G, and B having different specified voltages, respectively. Can coincide with the rising timing at which light is emitted at a desired instantaneous luminance, and the accuracy of weighting of gradation expression when performing pulse width modulation driving is improved.
[0057]
In the above description, the case has been described where the amounts of charge for the three color light emitting elements R, G, and B are different from each other. However, the present invention is not limited to this case. In the case where the light-emitting elements R and G are equal and only the light-emitting element B is different, the charging voltage applied to at least one type of light-emitting element is different from the charging voltage applied to the other two color light-emitting elements. You may do it.
[0058]
The applied voltages of the constant voltage sources VR, VG, and VB are optimally set as in the above-described equations (1) to (3), but the present invention is not limited to this, and the scanning is switched. The applied voltages of the constant voltage sources VR, VG, and VB may be set so that the voltage applied to the light emitting element at an instant approaches the voltage between both ends when the light emitting element emits light at a desired instantaneous luminance as much as possible.
[0059]
Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment of the present invention, the voltage values applied to the light emitting elements R, G, and B at the time of the reset operation are devised. As a result, the constant voltage source of the anode drive circuit 2 is different from that of the first embodiment. The number is reduced and cost is reduced.
[0060]
In the second embodiment, the applied voltages of the constant voltage sources VR, VG, VB and the reverse bias voltage Vcc are set as follows. That is, assuming that the voltages at both ends (light emission regulation voltages) when the R, G, and B light emitting elements emit light in a steady light emission state are Vr, Vg, and Vb (Vr>Vg> Vb), respectively.
Vg = Vcc (4)
VR = Vr-Vcc (5)
VG = 0 (6)
VB = Vb-Vcc (7)
[0061]
That is, the constant voltage source VG can be omitted, and the applied voltage of the constant voltage source VB becomes negative. As can be seen from the equations (4) to (7), the second embodiment has a configuration in which the constant voltage source VG connected to the anode lines A2, A5, A8... Is omitted from the configuration of the first embodiment. The other configuration is the same as that of the first embodiment.
[0062]
Hereinafter, the operation of the second embodiment will be described. The following operation scans the cathode line B1 to cause the light emitting elements R1,1, G1,1 and B1,1 of the pixel E1,1 to emit light, and then shifts the scanning to the cathode line B2 to emit light of the pixel E2,2. The case where the elements R2,2, G2,2 and B2,2 emit light is described.
[0063]
FIG. 5 shows a state in which the pixel E1,1 emits light. This state is the same as that in FIG. 1 described above, and a description thereof will be omitted.
[0064]
When the scanning of the cathode line B1 is completed, the scanning is shifted to the scanning of the cathode line B2. Before that, a reset operation for charging the light emitting element with a predetermined charge is performed. That is, as shown in FIG. 6, all the scanning switches 51 to 564 are connected to the ground potential, and the drive switches 61, 64, 67... And 63, 66, 69 are switched to the constant voltage sources VR and VB. The drive switches 62, 65, 68,... Are opened, the shunt switches 71, 74, 77, and 73, 76, 79,.
[0065]
When the switches are switched in this manner, the potentials of all the cathode lines become 0 V, the potentials of the anode lines A1, A4, A7... Are VR, the potentials of the anode lines A2, A5, A8. , A9... Become VB. Therefore, as shown in FIG. 2, the parasitic capacitance of the light emitting element connected to the anode lines A1, A4, A7,... , A5, A8,... Are charged with 0 electric charges, and the light emitting elements connected to the anode lines A3, A6, A9,.
You.
[0066]
Thereafter, the process shifts to scanning with the cathode ray B2 as shown in FIG. That is, only the scan switch 52 corresponding to the cathode line B2 is switched to the ground potential side, the other scan switches 51, 53 to 564 are switched to the constant voltage source Vcc side, and only the drive switches 64 to 66 are switched to the constant current sources 24 to 26. The anode lines A4 to A6 are switched to drive, and the shunt switches 71 to 73 and 77 to 7768 are turned on to set the potentials of the anode lines A1 to A3 and A7 to A768 to 0V.
[0067]
Since the potential of the anode line A4 becomes almost Vcc + VR (= Vr) at the moment when the switch is switched in this manner, the voltage between both ends of the light emitting element R2,2 of the pixel E2,2 becomes Vcc + VR instantaneously. Thus, in addition to the route of the constant current source 24, the drive switch 64, the anode line A4, the light emitting element R2.2, and the scanning switch 52, the light emitting element R2,2 of the pixel E2,2 is indicated by an arrow in FIG. As shown, scanning switch 51 → cathode ray B1 → light emitting element R2,1 → light emitting element R2,2 → scanning switch 52,..., Scanning switch 564 → cathode ray B64 → light emitting element R2,64 → light emitting element R2,2 → scanning switch The charging current simultaneously flows from the route 52, and the light-emitting elements R2, 2 are instantaneously charged by the plurality of charging currents, and rise to a state of emitting light with desired instantaneous luminance.
[0068]
Similarly, the potential of the anode line A5 instantaneously becomes Vcc, and the voltage between both ends of the light emitting element G2, 2 instantaneously becomes Vcc (= Vg). In addition to the route of the drive switch 65 → the anode line A5 → the light emitting element G2,2 → the scanning switch 52 →, as shown by the arrow in FIG. 7, the scanning switch 51 → the cathode line B1 → the light emitting element G2,1 → the light emitting element G2. .., Scanning switch 52,..., Scanning switch 564 → cathode ray B64 → light emitting element G2,64 → light emitting element G2,2 → scanning switch 52.
[0069]
Similarly, the potential of the anode line A6 instantaneously becomes Vcc + VB, and the light emitting element B
Since the voltage across the terminals 2,2 instantaneously becomes Vcc + VB (= Vb), the light emitting element B2,2 is driven by the constant current source 26, the drive switch 66, the anode line A6, the light emitting element B2,2, and the scanning switch 52. In addition to the route of →, as shown by the arrow in FIG. 7, the scanning switch 51 → the cathode ray B1 → the light emitting element B2,1 → the light emitting element B2,2 → the scanning switch
,..., Scanning switch 564 → cathode ray B64 → light emitting element B2,64 → light emitting element B2.2, → scanning switch 52 A charging current flows through the route, and charging is instantaneous.
[0070]
Through the above, the light-emitting elements R2,2, G2,2, and B2,2 of the pixel E2,2 are instantaneously charged with electric charges having forward-direction voltages of Vcc + VR, Vcc, and Vcc + VB, respectively.
Thereafter, as shown in FIG. 8, light emission is continued by the drive current from the constant current sources 24, 25, and 26 during the scanning period of the cathode ray B2.
[0071]
As described above, in the second embodiment of the present invention, the voltage between both ends (prescribed voltage) and the reverse bias voltage when one of the three color light emitting elements emits light at the desired instantaneous luminance. By setting Vcc equal, the number of the constant voltage sources for charging can be reduced as compared with the first embodiment, and the cost of the apparatus can be further reduced.
[0072]
【The invention's effect】
As described above, according to the light emitting display and the method of driving the same of the present invention, when shifting from scanning of an arbitrary cathode line to scanning of the next cathode line, each of the R, G, B light emitting elements
In addition, since the corresponding charges are charged, the timings at which the light-emitting elements R, G, and B emit light at the desired instantaneous luminance can be matched, and the gradation at the time of performing pulse width modulation drive or the like can be adjusted. The expression weighting accuracy can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of the first embodiment of the present invention.
FIG. 3 is an explanatory diagram of the first embodiment of the present invention.
FIG. 4 is an explanatory diagram of the first embodiment of the present invention.
FIG. 5 is an explanatory view of a second embodiment of the present invention.
FIG. 6 is an explanatory view of a second embodiment of the present invention.
FIG. 7 is an explanatory view of a second embodiment of the present invention.
FIG. 8 is an explanatory diagram of a second embodiment of the present invention.
FIG. 9 is an explanatory diagram of a conventional light emitting display.
FIG. 10 is an explanatory view of a conventional light emitting display.
FIG. 11 is an explanatory diagram of a conventional light emitting display.
FIG. 12 illustrates an equivalent circuit of a light-emitting element.
[Explanation of symbols]
1. Cathode ray scanning circuit
2 Anode wire drive circuit
21 to 2768 Drive source (constant current source)
3 Cathode reset circuit
4 Light emission control circuit
51 to 564 scanning switch
61 to 6768 drive switch
71 to 7768 Shunt switch
A1 to A768 Anode wire (drive wire)
B1 to B64 Cathode ray (scanning line)
E1,1 to E256,64 pixels
R1,1 to R256,64 Red light emitting element
G1,1 to G256,64 Green light emitting element
B1,1 to B256,64 Blue light emitting element
Vcc constant voltage source
VR constant voltage source
VG constant voltage source
VB constant voltage source

Claims (14)

マトリクス状に配置した陽極線と陰極線のいずれか一方を走査線とするとともに他方をドライブ線とし、前記ドライブ線の各々に対して赤、緑及び青の発光素子のいずれか一の発光素子だけが接続されるように前記走査線と前記ドライブ線の各交点位置に前記発光素子を接続し、走査線を走査しながら、該走査に応じて所望のドライブ線に駆動源を接続することにより前記交点位置に接続された発光素子を発光させるようにした発光ディスプレイであって、
任意の走査線の走査が終了し次に走査が行われる次の走査線の走査に切り換わるまでの間において全ての走査線を同一電位に接続し、少なくとも前記赤、緑、青の発光素子のいずれか一に電荷を充電する充電手段を備え、前記充電手段が前記赤、緑及び青の発光素子に充電する電荷量のうち少なくとも2つは互いに異なることを特徴とする発光ディスプレイ。
One of the anode line and the cathode line arranged in a matrix is used as a scanning line and the other is used as a drive line, and only one of the red, green and blue light-emitting elements is used for each of the drive lines. The light-emitting element is connected to each intersection position of the scanning line and the drive line so as to be connected, and while scanning the scanning line, a drive source is connected to a desired drive line according to the scanning, thereby forming the intersection. A light emitting display configured to emit light from a light emitting element connected to a position,
All scanning lines are connected to the same potential until the scanning of an arbitrary scanning line is completed and the next scanning is performed, and at least the red, green, and blue light emitting elements are connected. A light-emitting display, comprising: a charging unit for charging an electric charge, wherein at least two of the charge amounts charged by the charging unit to the red, green, and blue light-emitting elements are different from each other.
前記充電手段は、前記発光素子のすべてに対して充電を行うことを特徴とする請求項1に記載の発光ディスプレイ。The light emitting display according to claim 1, wherein the charging means charges all of the light emitting elements. 前記赤、緑及び青の発光素子定常発光状態における両端電圧である発光規定電圧のうち少なくとも2つは互いに異なっていることを特徴とする請求項1または2に記載の発光ディスプレイ。The light-emitting display according to claim 1, wherein at least two of the specified emission voltages , which are voltages across the red, green, and blue light-emitting elements in a steady light-emitting state, are different from each other . 前記充電手段は、前記赤、緑及び青の発光素子のうち前記発光規定電圧が最も高いものには正の電荷を充電し、次に高いものには電荷の充電を行わず、前記発光規定電圧の最も低いものには負の電荷を充電するようにしたことを特徴とする請求項1乃至3のいずれか1に記載の発光ディスプレイ。The charging unit charges a positive charge to the red, green, and blue light emitting elements having the highest light emission specified voltage, and does not charge the next highest light emission element. 4. The light emitting display according to claim 1, wherein the lowest one is charged with a negative charge. マトリクス状に配置した陽極線と陰極線のいずれか一方を走査線とするとともに他方をドライブ線とし、前記ドライブ線の各々に対して前記赤、緑及び青の発光素子のいずれか一の発光素子だけが接続されるように前記走査線と前記ドライブ線の各交点位置に前記発光素子を接続し、走査線を走査しながら、該走査に応じて所望のドライブ線に駆動源を接続することにより前記交点位置に接続された発光素子を発光させるようにした発光ディスプレイであって、前記走査線は第1の定電圧源とアース手段とのいずれか一方に接続可能とさ
れ、
前記ドライブ線は前記駆動源とアース手段と前記発光素子に電荷を充電するための第2の定電圧源のいずれか一つに接続可能とされ、
任意の走査線の走査が終了し次に走査が行われる走査線の走査に切り換わるまでの間において、前記走査線は前記アース手段に接続されるとともに前記ドライブ線は前記第2の定電圧源に接続され、
前記第2の定電圧源は、接続される前記発光素子が前記赤、緑及び青のいずれであるかに応じてその印加電圧が異なることを特徴とする発光ディスプレイ。
One of the anode line and the cathode line arranged in a matrix is used as a scanning line and the other is used as a drive line, and only one of the red, green and blue light-emitting elements is used for each of the drive lines. The light emitting element is connected to each intersection of the scanning line and the drive line so that the scanning line is connected, and while scanning the scanning line, a driving source is connected to a desired drive line in accordance with the scanning. A light-emitting display adapted to emit light from a light-emitting element connected at an intersection, wherein the scanning line is connectable to one of a first constant voltage source and a grounding means,
The drive line is connectable to any one of the drive source, ground means, and a second constant voltage source for charging the light emitting element with an electric charge,
The scanning line is connected to the grounding means and the drive line is connected to the second constant voltage source until the scanning of an arbitrary scanning line is completed and is switched to the scanning of the next scanning line. Connected to
The light emitting display according to claim 1, wherein the applied voltage of the second constant voltage source is different depending on whether the connected light emitting element is red, green, or blue.
前記赤、緑及び青の発光素子は、定常発光状態における両端電圧である発光規定電圧がそれぞれ異なっていることを特徴とする請求項5に記載の発光ディスプレイ。The light-emitting display according to claim 5, wherein the red, green, and blue light-emitting elements have different light emission specified voltages, which are voltages at both ends in a steady light emission state. 前記第2の定電圧源は、前記赤、緑及び青の発光素子のうち前記発光規定電圧が最も高い発光素子が接続されるドライブ線と前記発光電圧が最も低い発光素子が接続されるドライブ線にのみ対応して設けられ、前記発光規定電圧が最も高い発光素子には順方向電圧を印加し、前記発光規定電圧が最も低い発光素子には逆方向電圧を印加することを特徴とする請求項5または6に記載の発光ディスプレイ。The second constant voltage source is a drive line to which a light emitting element having the highest light emission specified voltage among the red, green and blue light emitting elements is connected, and a drive line to which a light emitting element having the lowest light emitting voltage is connected. Wherein a forward voltage is applied to the light-emitting element having the highest emission regulation voltage, and a reverse voltage is applied to the light-emitting element having the lowest emission regulation voltage. 7. The light-emitting display according to 5 or 6. 任意の走査線が走査されている走査期間においては、走査がなされている走査線は前記アース手段が接続されるとともに走査がなされていない走査線は前記第1の定電圧源に接続され、発光がなされる発光素子が接続されるドライブ線は前記駆動源が接続されるとともに発光がなされない発光素子が接続されるドライブ線は前記アース手段に接続されことを特徴とする請求項5ないしは7に記載の発光ディスプレイ。During a scanning period in which an arbitrary scanning line is being scanned, the scanning line being scanned is connected to the grounding means, and the scanning line not being scanned is connected to the first constant voltage source to emit light. The drive line to which the light emitting element is connected is connected to the drive source, and the drive line to which the light emitting element which does not emit light is connected is connected to the grounding means. A light emitting display as described. 前記発光素子は有機エレクトロルミネッセンス材料を含んで構成されることを特徴とする請求項1ないしは8に記載の発光ディスプレイ。9. The light emitting display according to claim 1, wherein the light emitting element includes an organic electroluminescent material. マトリクス状に配置した陽極線と陰極線のいずれか一方を走査線とするとともに他方をドライブ線とし、前記ドライブ線の各々に対して前記赤、緑及び青の発光素子のいずれか一の発光素子だけが接続されるように前記走査線と前記ドライブ線の各交点位置に前記発光素子を接続し、走査線を走査しながら、該走査に応じて所望のドライブ線に駆動源を接続することにより前記交点位置に接続された発光素子を発光させるようにした発光ディスプレイの駆動方法であって、
任意の走査線の走査が終了し次の走査線の走査が行われるまでの間において全ての走査線を同一電位に接続し、前記赤、緑及び青の発光素子のうち少なくとも2つに互いに異なる電荷量を充電するようにしたことを特徴とする発光ディスプレイの駆動方法。
One of the anode line and the cathode line arranged in a matrix is used as a scanning line and the other is used as a drive line, and only one of the red, green and blue light-emitting elements is used for each of the drive lines. The light emitting element is connected to each intersection of the scanning line and the drive line so that the scanning line is connected, and while scanning the scanning line, a driving source is connected to a desired drive line in accordance with the scanning. A driving method of a light-emitting display that emits light from a light-emitting element connected to an intersection,
All the scanning lines are connected to the same potential until the scanning of an arbitrary scanning line is completed and the scanning of the next scanning line is performed, and at least two of the red, green and blue light emitting elements are different from each other. A method for driving a light-emitting display, wherein a charge amount is charged.
任意の走査線の走査が終了し次の走査線の走査が行われるまでの間において、前記赤、緑及び青の発光素子のうち定常発光状態時の両端電圧である発光規定電圧が最も高いものには正の電荷を充電し、次に高いものには電荷の充電を行わず、前記発光規定電圧の最も低いものには負の電荷を充電するようにしたことを特徴とする請求項10に記載の発光ディスプレイの駆動方法。Until the scanning of an arbitrary scanning line is completed and the scanning of the next scanning line is performed, the red, green, and blue light emitting elements having the highest light emission specified voltage that is a voltage between both ends in a steady light emitting state. The battery according to claim 10, wherein a positive charge is charged, a next highest charge is not charged, and a lowest charge of the specified light emission voltage is charged with a negative charge. The driving method of the light emitting display according to the above. マトリクス状に配置した陽極線と陰極線のいずれか一方を走査線とするとともに他方をドライブ線とし、前記ドライブ線の各々に対して前記赤、緑及び青の発光素子のいずれか一の発光素子だけが接続されるように前記走査線と前記ドライブ線の各交点位置に前記発光素子を接続し、走査線を走査しながら、該走査に応じて所望のドライブ線に駆動源を接続することにより前記交点位置に接続された発光素子を発光させるようにした発光ディスプレイの駆動方法であって、
前記走査線は第1の定電圧源とアース手段とのいずれか一方に接続可能とさ
れ、
前記ドライブ線は前記駆動源とアース手段と前記発光素子に電荷を充電するための第2の定電圧源のいずれか一つに接続可能とされ、
任意の走査線が走査されている間においては、走査がなされている走査線は前記アース手段が接続されるとともに走査がなされていない走査線は前記第1の定電圧源に接続され、発光がなされる発光素子が接続されるドライブ線は前記駆動源が接続されるとともに発光がなされない発光素子が接続されるドライブ線は前記アース手段に接続され、
任意の走査線の走査が終了し次に走査が行われる走査線の走査に切り換わるまでの間においては、前記走査線は前記アース手段に接続されるとともに前記ドライブ線は前記第2の定電圧源に接続され、
前記第2の定電圧源は、接続される前記発光素子が前記赤、緑及び青のいずれであるかに応じてその印加電圧が異なることを特徴とする発光ディスプレイの駆動方法。
One of the anode line and the cathode line arranged in a matrix is used as a scanning line and the other is used as a drive line, and only one of the red, green and blue light-emitting elements is used for each of the drive lines. The light emitting element is connected to each intersection of the scanning line and the drive line so that the scanning line is connected, and while scanning the scanning line, a driving source is connected to a desired drive line in accordance with the scanning. A driving method of a light-emitting display that emits light from a light-emitting element connected to an intersection,
The scanning line is connectable to one of a first constant voltage source and a grounding means;
The drive line is connectable to any one of the drive source, ground means, and a second constant voltage source for charging the light emitting element with an electric charge,
While any scanning line is being scanned, the scanning line being scanned is connected to the grounding means, and the scanning line not being scanned is connected to the first constant voltage source to emit light. The drive line to which the light emitting element is connected is connected to the drive source, and the drive line to which the light emitting element which does not emit light is connected is connected to the grounding means.
Until the scanning of an arbitrary scanning line is completed and the scanning is switched to the scanning of the next scanning line, the scanning line is connected to the grounding means and the drive line is connected to the second constant voltage. Connected to the source
The method of driving a light emitting display, wherein the applied voltage of the second constant voltage source is different depending on whether the connected light emitting element is red, green or blue.
前記第2の定電圧源は、前記赤、緑及び青の発光素子のうち定常発光状態時の両端電圧である発光規定電圧が最も高い発光素子が接続されるドライブ線と前記発光規定電圧が最も低い発光素子が接続されるドライブ線とにのみ対応して設けられ、前記発光規定電圧が最も高い発光素子には順方向電圧を印加し、前記発光規定電圧が最も低い発光素子には逆方向電圧を印加することを特徴とする請求項12に記載の発光ディスプレイ。The second constant voltage source is a drive line to which a light emitting element having the highest light emission specified voltage, which is a voltage across the red, green and blue light emitting elements in a steady light emission state, is connected, and the light emission specified voltage is the highest. A low voltage is provided only in correspondence with a drive line to which a light emitting element is connected, and a forward voltage is applied to a light emitting element having the highest light emission regulation voltage, and a reverse voltage is applied to a light emitting element having the lowest light emission regulation voltage 13. The light emitting display according to claim 12, wherein the voltage is applied. 前記発光素子は有機エレクトロルミネッセンス材料を含んでなることを特徴とする請求項10ないしは13に記載の発光ディスプレイの駆動方法。14. The method according to claim 10, wherein the light emitting device includes an organic electroluminescent material.
JP12832798A 1998-04-22 1998-04-22 Light emitting display and driving method thereof Expired - Fee Related JP3568097B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12832798A JP3568097B2 (en) 1998-04-22 1998-04-22 Light emitting display and driving method thereof
US09/296,545 US6339415B2 (en) 1998-04-22 1999-04-22 Electroluminescent display and drive method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12832798A JP3568097B2 (en) 1998-04-22 1998-04-22 Light emitting display and driving method thereof

Publications (2)

Publication Number Publication Date
JPH11305730A JPH11305730A (en) 1999-11-05
JP3568097B2 true JP3568097B2 (en) 2004-09-22

Family

ID=14982053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12832798A Expired - Fee Related JP3568097B2 (en) 1998-04-22 1998-04-22 Light emitting display and driving method thereof

Country Status (2)

Country Link
US (1) US6339415B2 (en)
JP (1) JP3568097B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231834A (en) * 1998-02-13 1999-08-27 Pioneer Electron Corp Luminescent display device and its driving method
JP3737889B2 (en) * 1998-08-21 2006-01-25 パイオニア株式会社 Light emitting display device and driving method
SG98413A1 (en) 1999-07-08 2003-09-19 Nichia Corp Image display apparatus and its method of operation
JP3613451B2 (en) * 1999-07-27 2005-01-26 パイオニア株式会社 Driving device and driving method for multicolor light emitting display panel
KR20020019545A (en) * 2000-05-22 2002-03-12 요트.게.아. 롤페즈 Active matrix display device
US6838819B2 (en) 2000-06-19 2005-01-04 Lg Electronics Inc. Full color organic EL display panel, manufacturing method thereof and driving circuit thereof
JP3875470B2 (en) * 2000-08-29 2007-01-31 三星エスディアイ株式会社 Display drive circuit and display device
JP2002091378A (en) * 2000-09-19 2002-03-27 Tohoku Pioneer Corp Method and device for driving capacitive light emitting display panel
JP2002140037A (en) * 2000-11-01 2002-05-17 Pioneer Electronic Corp Device and method for driving light emitting panel
US6961150B2 (en) * 2001-09-19 2005-11-01 Kabushiki Kaisha Toshiba Image processing apparatus and image forming apparatus
KR100831228B1 (en) * 2002-01-30 2008-05-21 삼성전자주식회사 An organic electroluminescent display and a driving method thereof
KR100517467B1 (en) * 2002-03-25 2005-09-28 엘지전자 주식회사 Method and apparatus for driving electro-luminescence display device
KR100717334B1 (en) * 2002-03-25 2007-05-15 엘지전자 주식회사 Method and apparatus for driving electro-luminescence display device
JP3498745B1 (en) * 2002-05-17 2004-02-16 日亜化学工業株式会社 Light emitting device and driving method thereof
TWI252448B (en) * 2002-10-07 2006-04-01 Rohm Co Ltd Organic EL element drive circuit and organic el display device using the same drive circuit
FR2846454A1 (en) * 2002-10-28 2004-04-30 Thomson Licensing Sa VISUALIZATION DEVICE FOR IMAGES WITH CAPACITIVE ENERGY RECOVERY
JP4690665B2 (en) * 2003-06-06 2011-06-01 ローム株式会社 Organic EL drive circuit and organic EL display device using the same
JP2005161713A (en) * 2003-12-03 2005-06-23 Fuji Photo Film Co Ltd Method of driving light emitting element array
JP3862271B2 (en) * 2004-05-14 2006-12-27 パイオニア株式会社 Active matrix display device
KR100615301B1 (en) 2005-01-18 2006-08-25 삼성에스디아이 주식회사 Method and apparatus of driving electro-luminescence display panel for efficient scan operation
US8619007B2 (en) * 2005-03-31 2013-12-31 Lg Display Co., Ltd. Electro-luminescence display device for implementing compact panel and driving method thereof
TW200710801A (en) * 2005-09-02 2007-03-16 Richtek Techohnology Corp Driving circuit and method of electroluminescence display
KR20070091851A (en) * 2006-03-07 2007-09-12 엘지전자 주식회사 Driving method for light emitting diode
KR100852349B1 (en) 2006-07-07 2008-08-18 삼성에스디아이 주식회사 organic luminescence display device and driving method thereof
US8120261B2 (en) * 2007-12-04 2012-02-21 Samsung Mobile Display Co., Ltd. Organic electroluminescence display and driving method thereof
KR101015332B1 (en) * 2009-07-14 2011-02-15 삼성모바일디스플레이주식회사 Pixel Array for Organic Light Emitting Display Device
US9047810B2 (en) 2011-02-16 2015-06-02 Sct Technology, Ltd. Circuits for eliminating ghosting phenomena in display panel having light emitters
US20110163941A1 (en) * 2011-03-06 2011-07-07 Eric Li Led panel
US8963810B2 (en) 2011-06-27 2015-02-24 Sct Technology, Ltd. LED display systems
US8963811B2 (en) 2011-06-27 2015-02-24 Sct Technology, Ltd. LED display systems
US9485827B2 (en) 2012-11-22 2016-11-01 Sct Technology, Ltd. Apparatus and method for driving LED display panel
CN108877711B (en) * 2018-07-06 2021-11-09 京东方科技集团股份有限公司 Pixel circuit, display panel and display
US10769985B1 (en) * 2019-04-01 2020-09-08 Mikro Mesa Technology Co., Ltd. Light-emitting device display

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330070A (en) * 1995-05-29 1996-12-13 Pioneer Electron Corp Drive method for luminescent element
US5748160A (en) * 1995-08-21 1998-05-05 Mororola, Inc. Active driven LED matrices
US5812105A (en) * 1996-06-10 1998-09-22 Cree Research, Inc. Led dot matrix drive method and apparatus
JP3077579B2 (en) * 1996-01-30 2000-08-14 株式会社デンソー EL display device
JP3507239B2 (en) * 1996-02-26 2004-03-15 パイオニア株式会社 Method and apparatus for driving light emitting element
US5877695A (en) * 1997-10-07 1999-03-02 Ericsson, Inc. Visual alarm for a communication module

Also Published As

Publication number Publication date
JPH11305730A (en) 1999-11-05
US6339415B2 (en) 2002-01-15
US20010028334A1 (en) 2001-10-11

Similar Documents

Publication Publication Date Title
JP3568097B2 (en) Light emitting display and driving method thereof
JP3613451B2 (en) Driving device and driving method for multicolor light emitting display panel
US6714177B1 (en) Light-emitting display device and driving method therefor
JP3874390B2 (en) Capacitive light emitting device display device and driving method thereof
JP3656805B2 (en) Organic EL element driving device having temperature compensation function
JPH11143429A (en) Luminous display and its driving method
JP2002108284A (en) Organic el display device and its drive method
JP3642463B2 (en) Capacitive light emitting device display device and driving method thereof
JP4670183B2 (en) Driving method of light emitting element
US20040189558A1 (en) Drive method and drive device for light emitting display panel
US7038393B2 (en) Drive device for light-emitting display panel
JP3552150B2 (en) Color display
US6229267B1 (en) Display apparatus with capacitive light-emitting devices and method of driving the same
US6803729B2 (en) Drive circuit for organic EL device
JP3646917B2 (en) Multicolor light emitting display panel drive device
JP3609300B2 (en) Driving device for light emitting display panel
JP2004078255A (en) Method and device for driving light emitting element
JP3646916B2 (en) Multicolor light emitting display panel drive device
JP3587355B2 (en) Light emitting display device and driving method thereof
JP3609299B2 (en) Driving device for light emitting display panel
JP2001109431A (en) Device for driving light emitting display panel
JP4033002B2 (en) Display device and display panel driving method
JP2000148086A (en) Light emitting display device and driving method therefor
JPH11327507A (en) Light emitting display and driving circuit therefor
JPH11305728A (en) Light emission display and driving method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20031212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees