JP3567939B2 - How to build a tunnel - Google Patents

How to build a tunnel Download PDF

Info

Publication number
JP3567939B2
JP3567939B2 JP11744794A JP11744794A JP3567939B2 JP 3567939 B2 JP3567939 B2 JP 3567939B2 JP 11744794 A JP11744794 A JP 11744794A JP 11744794 A JP11744794 A JP 11744794A JP 3567939 B2 JP3567939 B2 JP 3567939B2
Authority
JP
Japan
Prior art keywords
pipe
buried
buried pipe
underpass
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11744794A
Other languages
Japanese (ja)
Other versions
JPH07301095A (en
Inventor
山 忠 小
笠 原 正 一 小
谷 太 郎 粕
下 正 行 山
Original Assignee
鉄建建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鉄建建設株式会社 filed Critical 鉄建建設株式会社
Priority to JP11744794A priority Critical patent/JP3567939B2/en
Publication of JPH07301095A publication Critical patent/JPH07301095A/en
Application granted granted Critical
Publication of JP3567939B2 publication Critical patent/JP3567939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【産業上の利用分野】
本発明は施工の合理化と工期の短縮化および工費の低減を図れる堅固なトンネルの築造方法に関する。
【0002】
【従来の技術】
例えば都市トンネルの掘削に際して、地表面の沈下防止や切羽安定対策として、従来よりパイプルーフ工法が知られている。
このパイプルーフ工法は、トンネルの掘削に先立ち、掘削断面の天端側に直管状の鋼管を一般に水平ボーリングにより挿入して、トンネル形状に合わせたルーフを形成し、トンネルの掘削に伴ない上記ルーフを支保工で直接支持して、掘削による地山の緩みを抑え、安全にトンネルを施工するようにしている。
【0003】
しかし、この従来のパイプルーフ工法は、ボーリングの精度によって鋼管の配置状況が左右され、鋼管の長さに比例して誤差が大きくなるため、鋼管の配置設計が難しく、施工長さが制約される、という問題があった。
【0004】
そして、このようなパイプルーフ工法を用いてアンダーパスを施工する場合、図24のようにアンダーパス1の出入口の天端部直上を長さ方向に水平にボーリングし、その掘削孔に直管状のパイプ2を挿入して埋設し、該パイプ2をトンネルの掘削に伴なって支保工(図示略)で支持し、掘削による地山の緩みを抑えるとともに、アンダーパス1の天端側と鞍部とで区画する区域を掘削していた。
【0005】
したがって、この場合は実質的なアンダーパス1の掘削の他に、地表から地盤支持用の地山3を残して、図24の斜線で示す周辺部を余計に掘削しなければならず、その分掘削に時間を要して、工期の延長と工費の高騰を助長するという問題があった。
一方、アンダーパス1の施工に際しては、地表や地中の構造物4への接近を回避し、また民地部通過を極力回避する必要があるが、都市や住宅密集地においては用地買収難とも相俟って、そのような施工環境の確保が難しく、縦坑を駆使した深掘りを余儀無くされて、施工が大掛かり、かつ複雑になり、工期の長期化と工費の高騰を助長するとともに、地上からアンダーパスへ連絡する取付通路5,6が長くなって、上述した問題が増大する。
【0006】
ところで、このような水平ボーリングないしパイプルーフ工法の問題を解決するものとして、近時、地中を曲線状に掘削する、いわゆる曲線ボーリングの技術が開発され、該ボーリングを利用したトンネルの拡幅工法が提案されている。
例えば特開平4ー281990号公報では、シールドトンネルを曲線ボーリングの発進基地として利用し、該トンネル内に架設フレームを設置し、該フレームに上記ボーリングの推進装置を組付け、該装置より拡幅部分に掘削装置を推進させて、地中を曲線状にボーリングし、この掘削孔に曲管を推進させて埋設するとともに、該管内に凍結管を挿入し、拡幅部分の周囲に凍土壁を造成し、周辺の地盤を改良後、拡幅部分を掘削するようにしている。
【0007】
しかし、この拡幅工法は、既設のシールドトンネルの利用を前提にしているため、該トンネルを当初から利用し得ないアンダーパスや山岳トンネルの築造には実用的ではなく、また曲管と覆工壁との間に地盤が介在しているため、曲管と覆工壁との結合力が弱く、十分な強度を得られないばかりか、凍土壁の凍結と掘削中の凍結維持に多大の時間を要する上に、冷凍設備と冷媒配管とを要して、工期の長期化と工費の高騰を助長する等の問題があった。
【0008】
【発明が解決しようとする課題】
本発明はこのような問題を解決し、曲線ボーリング装置を利用して掘削量を必要最小限に留め、工期の短縮化と工費の低減を図れる堅牢なトンネルの築造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明のトンネルの構造は、トンネル出入口予定位置から、トンネル予定空間の長さ方向の全域に亘って曲線状の掘削孔を複数掘削し、該掘削孔に曲管状の埋設管を埋設後、該埋設管で包囲した地山を掘削し、その掘削内面に覆工壁を形成するトンネルの築造方法において、前記トンネル予空間の外周の全域複数の曲管状の埋設管近接してリング状に配置し、かつ互いに連結するとともに、前記掘削内面に臨む埋設管の全域に一様な厚さの覆工壁を形成し、埋設管を互いに連結することで、簡単な構成で地山の安定化を図るとともに、埋設管と覆工壁の密着力を強化し、堅牢なトンネルの施工を実現し、更に工期の短縮化と工費の低減を図るようにしている。
【0010】
【作用】
請求項1の発明は、トンネル予空間の外周の全域複数の曲管状の埋設管近接してリング状に配置し、かつ互いに連結するとともに、前記掘削内面に臨む埋設管の全域に一様な厚さの覆工壁を形成し、埋設管を互いに連結することで、簡単な構成で地山の安定化を図る。
また、埋設管と覆工壁の密着力を強化し、堅牢なトンネルの施工を実現するとともに工期の短縮化と工費の低減を図る。
【0011】
【実施例】
以下、本発明を土被りが比較的浅いアンダーパスに適用した図示実施例について説明すると、図1乃至図16において7は都市部または山岳部のトンネル掘削地盤である地山で、該地山7上に家屋、工場、変電所等の既設構造物8が設置され、該地山7の内部に地下トンネルであるアンダーパス9が設けられている。
【0012】
アンダーパス9は、下方に緩やかに湾曲する縦断面形状に形成され、その内空断面は円形に形成されていて、これは中間部の鞍部9aを最低位置にして、その出入口部10,11方向に上向きに緩やかに湾曲しており、該出入口部10,11の外側に、地上へ連絡する取付通路12,13が設けられている。
この場合、アンダーパス9の内空断面は円形に限らず、楕円や矩形、その他の形状でもよい。
【0013】
取付通路12,13の内空断面は、実施例の場合、アンダーパス9と同形の円形に形成され、該通路12,13が地上に開口する水平面形状は、図4のようにアンダーパス9方向に長い楕円若しくは長円形状に形成されている。
アンダーパス9の内面には、コンクリート壁等の覆工壁14が形成され、また取付通路12,13の周面には、コンクリートまたは道路壁等の覆工壁15,16が形成され、これら覆工壁14と路面側の覆工壁15,16の縦断面形状は、図1のようにアンダーパス9と略相似形状に湾曲形成され、その外側に複数の埋設管17がリング状に埋設されている。
この場合、アンダーパス9が車両を除く通行人専用であるときは、取付通路12,13の覆工壁15,16上に、所定勾配の路面または階段を設けることも可能である。
【0014】
埋設管17は複数の埋設短管(図示略)からなり、これを軸方向に連結して曲管状に構成され、その縦断面形状は図1のようにアンダーパス9と略相似形状に湾曲形成されていて、これをアンダーパス9および取付通路12,13に沿って平行に配置し、その管端部をアンダーパス9および取付通路12,13の開口部周縁に配置している。
【0015】
埋設管17の管端部は図4のように、アンダーパス9の中心に対称に配置され、したがって各管17の位置と長さおよび曲率半径は、対称に位置する1対の埋設管17を除いてすべて相違しており、それらの外周に管継手18,18を接続している。
例えば、出入口10の開口部周縁には、図1のように短小で曲率半径が小さな埋設管17が使用され、一方、出入口10から離間する取付通路12の開口部周縁には、図1のように上述の埋設管17に比べて、長尺で曲率半径が大きな埋設管17が使用される。
上記管継手18,18は、埋設管17と同様に湾曲形成した小径の曲管からなり、それらの周面に形成したスリット19,19を上向きまたは下向きに配置し、これらに隣接の管継手18,18を係入して、隣接する埋設管17,17を接続している。
【0016】
この場合、埋設管17の強度を増強する手段として、図11のように埋設管17の内部に、コンクリ−トまたはモルタル等の充填部材20を充填したり、図12のように充填部材20内部に、Iビ−ム等の補強部材21を埋め込んでもよい。
【0017】
取付通路12,13を含むアンダーパス9の地上への開口部平面形状は、図4のように略楕円ないし長円形をなし、該開口部の予定地上に基枠22がアースアンカー23を介して不動に設置されている。
基枠22は上記開口形状よりも大形の楕円ないし長円形状に形成され、その内側には、位置合わせ手段として上記開口形状と略同形の開口窓22aを有し、該開口窓22aを上記開口部予定位置周縁に位置合わせし、該枠22上に一対のガイドレール24を敷設している。
ガイドレール24は、上記開口部の形状と相似形状の楕円または長円形のリング状に配置され、該レール24上に走行車輪25,25を介して、作業架台26を移動可能に設置している。
【0018】
作業架台26はロック機構(図示略)を介して、ガイドレール24の適宜位置に固定可能にされ、該台26上に架枠27が立設されている。
架枠27には推進架台28がボルト・ナットを介して、上下左右位置および角度調整可能に据え付けられ、該架台28に、例えば特開平4ー281990号公報と同様な、公知の曲線ボーリング装置29を構成する推進装置30が取付けられている。
【0019】
曲線ボーリング装置29は、後述する掘削装置と推進装置30とを備え、このうち推進装置30は、油圧シリンダーからなる推進シリンダー(図示略)を有している。
推進シリンダーは、元押ケース31を介して埋設管17に連結され、そのシリンダーロッド(図示略)の伸長作動を介して、埋設管17を地山7側、つまり下方へ送出可能にしている。
【0020】
埋設管17は弓形に湾曲形成され、その内部に曲管状の内管(図示略)が挿入され、該内管は元押ケース31の近接位置に設置した推進シリンダー(図示略)に連係され、そのシリンダーロッド(図示略)の伸長作動を介して、埋設管17と同方向へ送出可能にされている。
【0021】
内管の先端部には前述の掘削装置(図示略)が連結され、該装置は油圧モータと首振り装置と減速機と掘削ビット(共に図示略)とを備え、油圧モータの回転駆動力を減速機を介して掘削ビットに伝え、その際首振り装置によって掘削ビットの一定の揺動を可能にしている。
図中、32は埋設管17の周面を挟持可能な曲管ホルダー、33は埋設管17の埋設開始位置に対応して基枠22の所定位置に配置した口元管で、それらは斜め上向きに開口している。
【0022】
この他、図中34は埋設管17を支持するリング状の支保工で、鋼アーチ支保工をリング状に連結して構成している。
この場合、支保工34は支持すべき埋設管17の配置状況、換言すればアンダーパス9の断面形状に応じて、これと相似形状に配置され、例えば楕円形断面の場合は楕円形に、矩形断面の場合は矩形に配置される。
なお、この実施例では基枠22にガイドレール24を敷設して、作業架台26を移動可能にしているが、ガイドレール24を省略し、各埋設管17の埋設毎に作業架台26を人手で基枠22の所定位置に移動し、これをネジ止め等適宜手段で固定してもよい。
【0023】
図17乃至図23は本発明の応用形態を示し、前述の構成と対応する部分には同一の符号を用いている。
このうち、図17乃至図22に示す第1の応用形態は、土被りが深い、したがって深掘りを要するアンダーパス9の築造例を示している。
すなわち、この場合はアンダーパス9の出入口10,11の対応位置に立坑35,36を掘削し、この一方の立坑35の内周に複数の縦枠37を立設し、該枠37,37の間に、基枠22をアンダーパス9方向へ水平に架設し、かつその上下位置を調整可能にされている。
基枠22上には、ガイドレール24がアンダーパス9と直角方向へ平行に敷設され、該レール24上に走行車輪25,25を介して、作業架台26が移動可能に設置されている
【0024】
作業架台26には、ボルト・ナットを介して推進架台28が据え付け位置および角度を調整可能に取付けられ、該台28に曲線ボーリング装置29の推進装置30が取付けられている。
作業架台26の上端にはプーリ38,38が回転自在に取付けられ、また中央に設置した縦枠37,37の上部には、巻上ウインチ39,39が設置されていて、プーリ38,38に巻き掛けた長尺のワイヤロープ41,41を所定長さ巻上ドラム40,40に捲回し、作業架台26を施工位置に応じて上下動させ高さ位置を調整可能にしている。
すなわち、作業架台26は後述のように、巻上ウインチ39,39を逆転し、ワイヤーロープ41,41を十分巻き戻して、施工位置に応じて予め高さ調整して置いたガイドレール2上に戴架し、移動の自由度を十分与えることで、押し動かし移動が可能になる。
【0025】
この場合、基枠22とガイドレ−ル24とは、作業架台26の前記高さ位置に応じて上下位置を調整され、基枠22の調整位置を例えばボルト・ナットを介して、縦枠37,37に固定している。
図中、42,43は作業架台26の上下位置に設けたサイドジャッキで、アンダ−パス9と同軸方向へ伸縮可能にされ、その先端の着地部42a,43aを立坑35の内面の反力受(図示略)に当接可能にしている。
【0026】
すなわち、この第1の応用形態はアンダーパスの築造に際して、先ず図18のようにアンダーパス9の出入口10,11の相当位置に立坑35,36を掘削し、その深さをアンダーパス9の鞍部9aよりも深く、またアンダーパス9方向の幅は埋設管17の短管長さよりも幅広に掘削し、この一方の立坑35に基枠22と縦枠37とを図19のように設置し、基枠22上にガイドレール24をアンダーパス9と直交方向に敷設する。
【0027】
基枠22は、曲線ボーリング装置29による最初のボーリング開始位置に対応して、縦枠37,37にボルト締めして固定する。
次に立坑35内に作業架台26を搬入し、その走行車輪25,25をガイドレール24上に載せ、その移動を可能にする一方、作業架台26に推進架台28を角度および位置調整して据え付け、該台28に推進装置30を取付ける。
この後、縦枠37の所定位置に口元管33を接続し、該管33に埋設管17を挿入し、これを曲管ホルダー32で保持するとともに、サイドジャキ42,43を伸縮させ、その着地部42a,43aを反力受に当接させて、作業架台26を定位置に固定する。
【0028】
この状況の下で掘削装置を駆動し、掘削ビットを回転してボーリングを開始するとともに、推進装置30を駆動して、内管を収容した埋設管17を掘削孔へ送り出し、該管17が所定距離推進したところで、予め坑外で内管を組み込んで置いた継ぎ足し用の埋設管17を坑内に搬入し、これを先行の埋設管17の後端部に接続する。
そして、掘削装置の駆動を再開し、掘削ビットを回転してボーリングを開始するとともに、推進装置30を駆動して、内管を収容した埋設管17を掘削孔へ送り出し、該管17が所定距離推進したところで、その後端部に継ぎ足し用の埋設管17を接続する。
【0029】
以下、上記作業を繰り返して埋設管17を増設し、これを順次地山7へ送り込み、その先端部が他方の立坑36に到達したところで、該埋設管17の推進を完了し、この後、内管を引き抜いて埋設管17を地山7に取り残し、該管17を埋設する。
【0030】
こうして、アンダーパス9の長さ分の埋設管17を埋設後、サイドジャッキ42,43を縮小し、作業架台26の拘束を解除して、作業架台26を埋設管17に隣接する次期ボーリング位置へ移動する。
この移動に際しては、例えば巻上ウインチ38,39を駆動し、ワイヤーロープ41,41を適宜長さ巻上ドラム40,40に巻き取り、作業架台26を一旦引き上げ後、基枠22を縦枠37,37から取り外し、これを次期取付け位置に固定する。
【0031】
次に巻上ウインチ38,39を逆転駆動し、ワイヤーロープ41,41を十分巻き戻して、作業架台26をガイドレール25上に載架し、かつ該架台26に左右方向への移動の自由度を十分与えたところで、巻上ウインチ38,39の駆動を停止し、当該位置を保持させる。
この後、作業架台26を押し動かし、これをガイドレール25に沿ってアンダーパス9と直交方向へ移動し、推進装置30が次期口元管33の対応位置に移動したところで、サイドジャッキ42,43を伸長し、当該移動位置に作業架台26を固定する。
【0032】
そして、再び埋設管17をセットし、掘削装置を駆動してボーリングを開始し、その掘削孔へ埋設管17を送り出し、該管17が所定距離推進したところで、継ぎ足し用の埋設管17を先行の埋設管17の後端部に接続し、これらの作業を繰り返して埋設管17を増設し、該管17の推進完了後、内管を引き抜き、埋設管17を地山7に取り残して埋設する。
【0033】
こうして、複数の埋設管17を図21のように地山7に埋設し、これらをアンダーパス9の円周方向へリング状に配置後、作業架台26と基枠22と縦枠37とを立坑35から撤去し、埋設管17で区画した内側の地山7を掘削する。
この場合の掘削は、埋設管17で囲んだ地山7だけを掘削すればよく、その掘削量はアンダーパス9の内空断面の容積よりも多いが、従来のパイプルーフ工法を利用した図22の仮想線で区画する掘削量に比べて、遥かに少量で余計な掘削を要しないから、最小限の掘削量で足り、この種の掘削作業の合理化を図れるとともに、掘削時間を大幅に短縮し、工期の短縮化と工費の低減を図れ、しかも掘削作業の小規模化を促せる。
【0034】
また、アンダーパス9の周囲に埋設管17が配置され、これらが周囲の地山7を支持するから、掘削に伴う地山7の崩落を強力に防止する。
しかも、埋設管17は曲線状を呈しているから、これが直管状の従来のものに比べて、地山7との接触面積が増大し、その分地山7を強固に支持する。
【0035】
次に地山7の掘削に伴って、当該掘削部に支保工34をリング状に組み付け、これを所定間隔に配置して埋設管17を支持する。
この状況は図22のようで、これにより埋設管17の変形や地山7の崩落が防止され、この後支保工34,34間に所定形状の型枠を組み立て、または既設の型枠を搬入して、該枠と埋設管17との間にコンクリートを打ち込み、アンダーパス9の内面に覆工壁14を形成する。
【0036】
また、上記覆工と前後して立坑35,36の底部を埋め込み、かつ該坑35,36を利用して取付通路12,13を掘削し、その周面にコンクリートを打ち込んで、覆工壁15,16を形成するとともに、路面側に舗装コンクリート(図示略)を打設し、その周辺を造成すれば一連の作業が終了する。
【0037】
こうして築造したアンダーパス9は図17のようで、埋設管17がアンダーパス9の長さ方向に沿って、アンダーパス9の縦断面形状と同様に下方へ緩やかに湾曲して配置されている。
したがって、アンダーパス9の円周方向の全域が埋設管17で支持され、当該部を補強するから、従来のパイプルーフ工法のように天端部のみを支持して補強する構造に比べ、アンダーパス9ないしトンネル周辺の強度が一様になる。
更に、埋設管17を曲管状にしているから、従来のパイプルーフ工法のように直管状のパイプを埋設する構造に比べて、埋設管17と地山7との接触面積が増大し、その分堅牢な構造が得られる。
【0038】
一方、この第1の応用形態に用いたトンネル築造装置は、図20のように曲線ボーリング装置29を据え付け可能な作業架台26をアンダーパス9の一方の出入口10に設置し、該架台26をアンダーパス9と直交方向に移動可能に設けるとともに、上下位置調整可能に設けたから、ボーリング位置ないし埋設管17の埋設位置に応じて、推進装置30を所定位置に正確に設置でき、それらの施工精度が向上する。
また、作業架台26にサイドジャッキ42,43とを設け、該架台26を所定位置で固定して、ボーリング時の反力に堪えられるようにしたから、該ボーリングを安全かつ正確に行なえる。
【0039】
図23は第2の応用形態を示し、この応用形態はアンダーパス9の代わりに、山岳部の小さな山や都市部の丘や堤防に築造する小規模トンネル44に適用したもので、該トンネル44の縦断面形状は上向きに緩やかに湾曲しており、その内面に覆工壁14が形成され、該壁14の外周に複数の埋設管17がリング状に埋設されている。
埋設管17はトンネル44の縦断面形状と同様に上向きに緩やかに湾曲しており、これは複数の埋設短管を軸方向に連結して曲管状に構成され、該管17を一方の出入口10に設置した作業架台(図示略)から、地山7に対し上向きに推進して埋設している。
【0040】
したがって、トンネル44の掘削に際しては、埋設管17で区画された内側の地盤のみを掘削すればよく、従来のパイプルーフ工法のように図23の仮想線で区画する周辺の地山7の余計な掘削から解消され、これを合理的かつ速やかに行なえる。
しかも、上記トンネル44は上向きのアーチ形状を呈する複数の埋設管17によって支持され、該管17には土圧等の外力が管軸方向に作用して軸圧縮力を形成し、該圧縮力が上記外力による曲げモーメントや曲げ応力に対抗して、それらを低減するから、総体的に強度が増強する。
【0041】
このように構成した図1乃至図16に示すトンネルの築造方法によって、トンネルの一形態である円形内空断面のアンダーパス9を築造する場合、その一方の地上開口予定位置に、アースアンカー23を介して基枠22を設置する。
アンダーパス9の平面上の開口形状は、図4のようにアンダーパス9側に長い楕円若しくは長円形をなし、また基枠22は上記開口形状と略同形の開口窓22aを有していて、該開口窓22aを前記開口予定位置に合わせて、基枠22を設置する。
【0042】
そして、基枠22上に一対のガイドレール24,24を、前記開口形状と相似形状にリング状に敷設し、該レール24上に走行車輪25を載せ、作業架台26をガイドレール24に沿って移動可能に設置する。
そして、作業架台26の架枠27に曲線ボーリング装置29の推進架台28を所定位置に据え付け、該台28に推進装置30と、これに付属する構成部を組み付ける。
【0043】
この場合、この実施例では地上に直接基枠22を設置し、立坑の掘削を要しないから、その分施工の簡素化と工期の短縮化並びに工費の低減を図れ、また作業架台26の設置作業や、後述する埋設管17の継ぎ足し作業を地上で行なえるから、これらの作業を容易かつ能率良く行なえる。
【0044】
次に作業架台26を押し動かし、これをボーリング施工開始位置に移動して、ロック機構(図示略)を操作し、作業架台26を基枠22に固定したところで、推進架台28を位置調整する。
推進架台28の位置調整は、ボーリング施工位置と、当該位置に使用する埋設管17の長さと、その曲率半径とに基いて、架枠27上の位置を上下左右に調整するとともに、水平面に対する傾斜角度、つまりボーリング施工角度を調整することで行なう。
【0045】
例えば、出入口10の開口周縁からボーリングを施工する場合は、図1のように短小で曲率半径が小さな埋設管17が使用されるため、推進架台28は口元管33との関係位置を維持した上で、図6のように水平面に対し略起立状態で据え付けられる。
一方、出入口10から離間する取付通路12の開口周縁からボーリングを施工する場合は、図1のように上述の埋設管17に比べて、長尺で曲率半径が大きな埋設管17が使用されるため、推進架台28は口元管33との関係位置を維持した上で、図6の状態より外側に転倒した鋭角状態で据え付けらる。
【0046】
この後、基枠22の内側端部に口元管33を連結し、該管33に上記埋設管17を挿入し、これを曲管ホルダー32で保持する。
埋設管17の内部には、内管(図示略)が予め挿入されており、該管17の後端部にバキューマーとウオータスイベル(共に図示略)とを取り付け、該ウオータスイベルに給水ポンプに連通する給水ホース(共に図示略)を接続する。
【0047】
このような準備作業後、掘削装置を駆動し、掘削ビットを駆動回転して掘削を開始するとともに、推進装置30を駆動して、内管を収容した埋設管17を掘削孔へ送り出す。
掘削時には掘削装置の先端から多量の水が噴射され、掘削ビットを冷却するとともに、噴射水と掘削土砂とがバキューマーに吸引され、これらが埋設管17と内管との間隙に導かれて、埋設管17の後端部から排出される。
【0048】
この場合、周面に管継手18を接続した埋設管17を使用するときは、掘削ビットを拡大させ、埋設管17の外径よりも大径の掘削孔を形成する。
その際、埋設管17の埋設ピッチの2ピッチ相当分、作業架台26を移動し、当該位置で埋設管17を埋設後、作業架台26を埋設終了後の埋設管17,17の間に移動し、隣接の管継手18,18を連結して、当該埋設管17を推進し埋設する。
【0049】
こうして、最初の埋設管17を所定距離推進したところで、該管17に取り付けたウオータースイベルを取り外し、予め内管を組み込んで置いた継ぎ足し用の埋設管17を推進装置30の後部側にセットし、その油圧ホース類を接続後、内管を接続する。
上記セットした埋設管17は、その管端部を先行の埋設管17の管端部に位置合わせ後、溶接されて接続される。
この場合、作業架台26は地上に設置されているから、これを立坑内に設置した場合に比べて、埋設管17の継ぎ足し作業を容易かつ能率良く行なえる。
【0050】
以下、上記作業を繰り返して埋設管17を次第に増設し、これを順次地山7へ送り込むと、埋設管17の先端部が他方の出入口11ないし取付通路13の開口予定地に到達し、これが地上に突出したところで、当該埋設管17に対する推進が完了する。
この後、上記突出側から先導管を取り外して回収し、内管は推進装置30の油圧ホルダーを介して引き抜くと、図7のように地山7内に埋設管17が取り残されて埋設され、それらの両端が前記開口予定位置に位置付けられる。
【0051】
こうして、所定長さの埋設管17を埋設後、ロック機構のロック作用を解除し、作業架台26と基枠22との拘束を解除して、作業架台26を次期ボーリング施工位置、つまり上記先行施工位置に隣接する施工位置に移動し、再度ロック機構を操作して、作業架台26を基枠22に拘束する。
また、上記ボーリング施工位置と、使用する埋設管17の長さと、その曲率半径とに基いて、推進架台28の据え付け位置と角度を調整するとともに、基枠22の内側端部に口元管33を連結し、該管33に上記埋設管17を挿入し、これを曲管ホルダー32で保持する。
【0052】
以後、作業架台26をガイドレール24に沿って順次移動し、推進架台28を介し推進装置30の位置と角度を逐次調整して、所定数の埋設管17を図8のようにアンダーパス9の円周方向にリング状に埋設する。
このようにすると、各埋設管17がアンダーパス9の長さ方向に沿って地山7に埋設され、それらの縦断面は各曲率半径に基いて下方へ緩やかに湾曲し、かつそれらの管端部が図4のように、アンダーパス9の出入口10,11の開口予定地にリング状に配置される。
【0053】
この場合、埋設管17は周辺の地盤に圧入状態にあるから、埋設管17に地山荷重や上載荷重、土圧等が作用しても、地山7との間に辷りを生ずることはなく、埋設管17によって地山7が強化される。
その際、埋設管17の埋設後、コンクリートやモルタル等の填充部材20を注入し、或いは填充部材20の内部に補強部材21を埋め込んで、図11および図12のように中実構造にすれば、埋設管17の強度が更に増強され、地山7が一層強化される。
【0054】
こうして、所定数の埋設管17を埋設し終えたところで、基枠22と作業架台26を撤去し、アンダーパス9の出入口10,11ないし取付通路12,13の一方または両側から、地山7を掘削する。
この場合の掘削は、埋設管17に沿って該管17で囲まれた地山7だけを掘削すればよく、その掘削量はアンダーパス9の内空断面の容積よりも多いが、従来のパイプルーフ工法を利用した図14の仮想線で区画する掘削量に比べて、遥かに少量で余計な掘削を要しないから、最小限の掘削で足り、この種の掘削作業の合理化を図れるとともに、掘削時間を大幅に短縮し、工期の短縮化と工費の低減を図れ、しかも掘削作業の小規模化を促せる。
【0055】
また、アンダーパス9および取付通路12,13の周囲に曲管状の埋設管17をリング状に配置しているから、従来のパイプルーフ工法のように天端部に直管状のパイプを埋設する構造に比べて、埋設管17と地山7との接触面積が増大し、地山7の支持強度が強化されて、その崩落を防止するとともに、アンダーパス9と取付通路12,13の掘削を同時に行なえるから、立坑を駆使した深掘構造のものに比べて、掘削作業を容易かつ迅速に行なえる。
【0056】
そして、上記地山7の掘削に伴って、当該掘削部に支保工34をリング状に組み付け、これを所定間隔に配置して埋設管17を支持する。
この状況は図14,15のようで、これにより埋設管17の変形や地山7の崩落が防止される。
【0057】
次に支保工34,34間に所定形状の型枠を組み立て、または既設の型枠を搬入して、該枠と埋設管17との間にコンクリートを打ち込み、アンダーパス9の内面と取付通路12,13の周面に覆工壁14,15,16を形成する。
この場合、アンダーパス9と取付通路12,13の覆工を略同時期に行なえるから、これらの覆工作業を合理的に行なえる。
【0058】
この後、アンダーパス9の底部と取付通路12,13の路面側に舗装コンクリート(図示略)を打設し、またアンダーパス9が車両除く通行人専用であるときは、適宜勾配の階段を設ける等すれば、一連の作業が終了する。
【0059】
こうして築造したアンダーパス9は図1,2のようで、アンダーパス9および取付通路12,13の覆工壁14,15,16の外側に埋設管17がリング状に配置され、該埋設管17がアンダーパス9の長さ方向に沿って、下方へ緩やかに湾曲して配置されている。
したがって、アンダーパス9と取付通路12,13の周囲が埋設管17で支持され、当該部を補強しているから、従来のパイプルーフ工法のように天端部のみを補強する構造に比べて、アンダーパス9全域の強度を強化するとともに、取付通路12,13の強度を強化する。
【0060】
また、埋設管17を曲管状にしているから、従来のパイプルーフ工法のように直管状のパイプを埋設する構造に比べ、埋設管17と地山7との接触面積が増大し、その分堅牢な構造が得られる。
しかも、アンダーパス9の土被り量が少ない分、その出入口10,11から地上に連絡する取付通路12,13の長さを短縮できるから、該通路12,13の用地買収が困難な都市部や住宅密集地での施工に有利で、その工期および工費の低減を図れる。
【0061】
一方、この実施例に用いたトンネル築造装置は、曲線ボーリング装置29を据え付け可能な作業架台26を、地上のアンダーパス9の開口予定地に設置し、かつその位置を開口部周縁に沿って調整可能にしたから、作業架台26の設置と撤去を容易に行なえるとともに、ボーリング施工位置に正確に設置できる。
【0062】
【発明の効果】
本発明のトンネルの築造方法は以上のように、トンネル予空間の外周の全域複数の曲管状の埋設管近接してリング状に配置し、かつ互いに連結するとともに、前記掘削内面に臨む埋設管の全域に一様な厚さの覆工壁を形成するから、埋設管を互いに連結することで、簡単な構成で地山の安定化を図ることができる。
また、埋設管と覆工壁の密着力を強化し、堅牢なトンネルの施工を実現できるとともに工期の短縮化と工費の低減を図ることができる。
【図面の簡単な説明】
【図1】本発明を土被りの浅いトンネル(アンダーパス)に適用した実施例を示す断面図である
【図2】図1のA−A線に沿う断面図で、若干拡大して示している。
【図3】図1の平面図である。
【図4】図3の一部を拡大して示す平面図で、アンダーパスの片側の出入口と取付通路を示している。
【図5】本発明方法を使用してトンネルを築造する過程を示す縦断面図で、アンダーパスの出入口と取付通路の地上開口予定位置に作業架台を設置した状況を示している。
【図6】本発明に使用したトンネルの築造装置の一例を示す正面図で、トンネルの出入口とその取付通路の地上開口予定位置に設置した状況を示している。
【図7】本発明方法を適用してトンネルを築造する過程を示す縦断面図で、地上に設置した作業架台から地山へ埋設管を埋設した状況を示している。
【図8】図7のB−B線に沿う断面図で、若干拡大して示している。
【図9】図8の要部を拡大して示す断面図である。
【図10】本発明に適用した埋設管の一実施例を示す正面図である。
【図11】本発明に適用した埋設管の他の形態を示す断面図である。
【図12】本発明に適用した埋設管の別の実施例を示す断面図である。
【図13】本発明方法を適用してトンネルを築造する過程を示す縦断面図で、トンネルと取付通路の地山を掘削した状況を示している。
【図14】本発明方法を適用してトンネルを築造する過程を示す縦断面図で、トンネルと取付通路の地山掘削後、坑内に支保工を施工した状況を示している。
【図15】図14のC−C線に沿う断面図で、若干拡大して示している。
【図16】本発明方法を適用してトンネルを築造する過程を示す縦断面図で、トンネル内面に覆工壁を形成した状況を示している。
【図17】本発明の第1応用形態を示す断面図で、土被りの深いトンネル(アンダーパス)に適用した断面図である。
【図18】上記第1応用形態を適用したトンネルを築造する過程を示す縦断面図で、トンネルの出入口に立坑を掘削した状況を示している。
【図19】上記第1応用形態を適用しトンネルを築造する過程を示す縦断面図で、片側の立坑内に作業架台を設置した状況を示している。
【図20】上記第1応用形態を適用しトンネルの築造装置の一例を示す正面図である。
【図21】上記第1応用形態を適用しトンネルを築造する過程を示す縦断面図で、立坑内の作業架台から地山へ埋設管を埋設した状況を示している。
【図22】上記第1応用形態を適用しトンネルを築造する過程を示す縦断面図で、トンネル内の地山を掘削後、坑内に支保工した状況を示している。
【図23】本発明の第2応用形態を示す断面図で、上方に湾曲する小規模トンネルに適用している。
【図24】従来のパイプルーフ工法を示すトンネルの縦断面図である。
【符号の説明】
7 地山
9 トンネル(アンダーパス)
10,11 出入口
14 覆工壁
17 埋設管
[0001]
[Industrial applications]
The present invention is a solid tunnel that can streamline construction, shorten the construction period, and reduce construction costs.Construction ofRecipeTo the lawRelated.
[0002]
[Prior art]
For example, when excavating an urban tunnel, a pipe roof construction method has been conventionally known as a countermeasure for preventing settlement of the ground surface and stabilizing the face.
In this pipe roof construction method, prior to tunnel excavation, a straight tubular steel pipe is generally inserted into the top end of the excavation cross section by horizontal boring to form a roof conforming to the tunnel shape. Is supported directly by the shoring to prevent loosening of the ground due to excavation and to construct the tunnel safely.
[0003]
However, in this conventional pipe roof method, the arrangement of the steel pipe is affected by the accuracy of the boring, and the error increases in proportion to the length of the steel pipe. Therefore, the layout design of the steel pipe is difficult, and the construction length is restricted. There was a problem.
[0004]
When an underpass is constructed using such a pipe roof method, as shown in FIG. 24, a hole is bored horizontally just above the top end of the entrance of the underpass 1 in the longitudinal direction, and a straight tubular hole is formed in the excavation hole. The pipe 2 is inserted and buried, and the pipe 2 is supported by a shoring (not shown) in association with the excavation of the tunnel to prevent loosening of the ground due to the excavation. Was excavating the area defined by
[0005]
Therefore, in this case, in addition to the substantial underpass 1 excavation, the surrounding area shown by the diagonal lines in FIG. There is a problem that it takes time for excavation, which increases the construction period and increases the construction cost.
On the other hand, when constructing the underpass 1, it is necessary to avoid access to the ground surface and the underground structure 4 and to avoid passing through private areas as much as possible. Together, it is difficult to secure such a construction environment, and it is necessary to dig deep using a vertical shaft, the construction becomes large and complicated, and the construction period is prolonged and the construction cost rises, The length of the attachment passages 5 and 6 that communicate from the ground to the underpass increases, and the above-described problem increases.
[0006]
By the way, recently, as a solution to such a problem of the horizontal boring or pipe roof method, a so-called curved boring technique of excavating the underground in a curved shape has been developed, and a tunnel widening method using the boring has been developed. Proposed.
For example, in Japanese Unexamined Patent Publication No. Hei 4-281990, a shield tunnel is used as a starting point for curved boring, an erection frame is installed in the tunnel, and a propulsion device for boring is assembled to the frame, and a portion wider than the device is used. Propelling the drilling rig, boring the underground in a curved shape, propelling a curved pipe into this drilling hole and burying it, inserting a freezing pipe into the pipe, creating a frozen soil wall around the widened part, After improving the surrounding ground, the widened part is excavated.
[0007]
However, this widening method is premised on the use of existing shield tunnels, so it is not practical for constructing underpasses or mountain tunnels where the tunnels cannot be used from the beginning. Because the ground is interposed between the curved pipe and the lining wall, the joint strength between the curved pipe and the lining wall is weak, and not only is it not possible to obtain sufficient strength, but also a great deal of time is required to freeze the frozen soil wall and maintain the freezing during excavation. In addition, there is a problem that a refrigeration facility and a refrigerant pipe are required, and the construction period is lengthened and the construction cost is increased.
[0008]
[Problems to be solved by the invention]
The present invention solves such a problem, and uses a curved boring device to minimize the amount of excavation, thereby shortening the construction period and reducing the construction cost.Construction ofRecipeThe lawThe purpose is to provide.
[0009]
[Means for Solving the Problems]
The structure of the tunnel according to the present invention is as follows:Planned tunnel spaceA plurality of curved excavation holes are excavated over the entire area in the length direction of the excavation, and a curved tubular buried pipe is buried in the excavation hole, and then the ground surrounded by the buried pipe is excavated, and a lining is formed on the inner surface of the excavation. In the method of constructing a tunnel for forming a wall, the tunnelLeSetspaceThe whole area aroundofMultiple curved buried pipesIsPlace them in a ring close to each otherOne anotherIn addition to forming a lining wall of uniform thickness over the entire area of the buried pipe facing the inner surface of the excavation, and connecting the buried pipes together, By strengthening the adhesion between the buried pipe and the lining wall, a robust tunnel can be constructed, and the construction period is shortened and the construction cost is reduced.
[0010]
[Action]
The invention of claim 1 is characterized byLeSetspaceThe whole area aroundofMultiple curved buried pipesIsPlace them in a ring close to each otherOne anotherIn addition, the buried pipe facing the inner surface of the excavation is formed with a uniform thickness lining wall, and the buried pipes are connected to each other to stabilize the ground with a simple configuration.
In addition, it will strengthen the adhesion between the buried pipe and the lining wall, realize a robust tunnel construction, and shorten the construction period and reduce construction costs.
[0011]
【Example】
In the following, a description will be given of an embodiment in which the present invention is applied to an underpass with a relatively shallow earth cover. In FIGS. 1 to 16, reference numeral 7 denotes a ground which is a tunnel excavation ground in an urban area or a mountainous area. An existing structure 8 such as a house, a factory, and a substation is installed on the upper side, and an underpass 9 as an underground tunnel is provided inside the ground 7.
[0012]
The underpass 9 is formed in a vertical cross section that curves gently downward, and its inner cross section is formed in a circular shape. The mounting passages 12 and 13 are formed outside the entrances 10 and 11 to connect to the ground.
In this case, the inner cross section of the underpass 9 is not limited to a circle, but may be an ellipse, a rectangle, or another shape.
[0013]
In the case of the embodiment, the inner cross section of the mounting passages 12 and 13 is formed in the same circular shape as the underpass 9, and the horizontal plane shape of the passages 12 and 13 opening to the ground is as shown in FIG. It is formed in a long elliptical or elliptical shape.
A lining wall 14 such as a concrete wall is formed on the inner surface of the underpass 9, and lining walls 15 and 16 such as concrete or road walls are formed on the peripheral surfaces of the mounting passages 12 and 13. As shown in FIG. 1, the vertical cross-sectional shape of the engineered wall 14 and the lining walls 15 and 16 on the road surface side are formed in a curved shape substantially similar to the underpass 9, and a plurality of embedded pipes 17 are embedded outside in a ring shape. ing.
In this case, when the underpass 9 is dedicated to a pedestrian other than a vehicle, a road surface or stairs having a predetermined slope can be provided on the lining walls 15 and 16 of the attachment passages 12 and 13.
[0014]
The buried pipe 17 is composed of a plurality of buried short pipes (not shown), which are connected to each other in the axial direction to form a curved tube, and has a longitudinal cross-sectional shape that is substantially similar to the underpass 9 as shown in FIG. This is arranged in parallel along the underpass 9 and the attachment passages 12 and 13, and the pipe end is arranged on the periphery of the opening of the underpass 9 and the attachment passages 12 and 13.
[0015]
As shown in FIG. 4, the pipe ends of the buried pipes 17 are symmetrically arranged at the center of the underpass 9, so that the position, length and radius of curvature of each pipe 17 are different from those of the symmetrically positioned pair of buried pipes 17. Except for the difference, the pipe joints 18 are connected to their outer circumferences.
For example, as shown in FIG. 1, a short and small buried pipe 17 having a small radius of curvature is used at the periphery of the opening of the entrance 10, while the periphery of the opening of the mounting passage 12 separated from the entrance 10 is provided as shown in FIG. A buried pipe 17 that is longer and has a larger radius of curvature than the above-described buried pipe 17 is used.
The pipe joints 18, 18 are formed of small-diameter curved pipes which are curved in the same manner as the buried pipe 17, and the slits 19, 19 formed on the peripheral surface thereof are arranged upward or downward, and the pipe joints 18 adjacent thereto are arranged. , 18 are connected to connect adjacent buried pipes 17, 17.
[0016]
In this case, as a means for increasing the strength of the buried pipe 17, as shown in FIG.fillingFilling the member 20 or as shown in FIG.fillingA reinforcing member 21 such as an I-beam may be embedded in the member 20.
[0017]
The underpass 9 including the mounting passages 12 and 13 has a substantially elliptical or oblong planar shape as shown in FIG. 4, and a base frame 22 is provided on the planned ground of the underpass 9 via an earth anchor 23. It is installed immovably.
The base frame 22 is formed in an elliptical or elliptical shape larger than the above-mentioned opening shape, and has an opening window 22a having substantially the same shape as the above-mentioned opening shape as a positioning means inside the base frame 22. A pair of guide rails 24 is laid on the frame 22 so as to be aligned with the periphery of the opening expected position.
The guide rail 24 is arranged in an elliptical or elliptical ring shape having a shape similar to the shape of the opening, and a work platform 26 is movably installed on the rail 24 via traveling wheels 25, 25. .
[0018]
The work platform 26 can be fixed at an appropriate position on the guide rail 24 via a lock mechanism (not shown), and a frame 27 is erected on the platform 26.
A propulsion gantry 28 is mounted on the gantry 27 via bolts and nuts so that the vertical and horizontal positions and the angle can be adjusted. The gantry 28 is provided with a well-known curved boring device 29, for example, as disclosed in Japanese Patent Application Laid-Open No. 4-281990. Is mounted.
[0019]
The curved boring device 29 includes an excavating device and a propulsion device 30, which will be described later. The propulsion device 30 has a propulsion cylinder (not shown) including a hydraulic cylinder.
The propulsion cylinder is connected to the buried pipe 17 via the main push case 31, and the buried pipe 17 can be sent out toward the ground 7, that is, downward through an extension operation of the cylinder rod (not shown).
[0020]
The buried pipe 17 is formed in an arcuate shape, and a curved inner pipe (not shown) is inserted therein. The inner pipe is linked to a propulsion cylinder (not shown) installed at a position close to the main push case 31. The cylinder rod (not shown) can be sent out in the same direction as the buried pipe 17 through an extension operation.
[0021]
The above-mentioned excavating device (not shown) is connected to the distal end of the inner pipe. The excavating device includes a hydraulic motor, a oscillating device, a speed reducer, and an excavating bit (both not shown). The drill bit is transmitted to the drill bit via a speed reducer, and the swinging device enables a constant swing of the drill bit.
In the figure, reference numeral 32 denotes a curved tube holder capable of holding the peripheral surface of the buried pipe 17, 33 denotes a mouth pipe arranged at a predetermined position on the base frame 22 corresponding to the burying start position of the buried pipe 17, and they are inclined obliquely upward. It is open.
[0022]
In addition, reference numeral 34 in the drawing denotes a ring-shaped support for supporting the buried pipe 17, which is formed by connecting steel arch supports in a ring shape.
In this case, the shoring 34 is arranged in a similar shape to the buried pipe 17 to be supported, in other words, according to the cross-sectional shape of the underpass 9. In the case of a cross section, they are arranged in a rectangle.
In this embodiment, the guide rails 24 are laid on the base frame 22 to make the work platform 26 movable. However, the guide rails 24 are omitted, and the work platform 26 is manually placed every time each buried pipe 17 is buried. It may be moved to a predetermined position of the base frame 22 and fixed by appropriate means such as screwing.
[0023]
FIGS. 17 to 23 show an application of the present invention, and the same reference numerals are used for the portions corresponding to the above-described configuration.
Among them, the first applied form shown in FIGS. 17 to 22 shows an example of building the underpass 9 having a deep earth covering and therefore requiring deep excavation.
That is, in this case, the shafts 35 and 36 are excavated at the positions corresponding to the entrances 10 and 11 of the underpass 9, and a plurality of vertical frames 37 are erected on the inner periphery of one of the shafts 35. In between, the base frame 22 is installed horizontally in the direction of the underpass 9, And its vertical position can be adjusted.
A guide rail 24 is laid on the base frame 22 in a direction perpendicular to the underpass 9, and a work platform 26 is movably mounted on the rail 24 via traveling wheels 25, 25.
[0024]
A propulsion gantry 28 is mounted on the work gantry 26 via bolts and nuts so that the installation position and the angle can be adjusted, and a propulsion device 30 of a curved boring device 29 is mounted on the gantry 28.
Pulleys 38, 38 are rotatably attached to the upper end of the work platform 26, and hoisting winches 39, 39 are installed above the vertical frames 37, 37 installed at the center. The wound long wire ropes 41, 41 are wound around winding drums 40, 40 of a predetermined length, and the work platform 26 isAccording to construction positionVertical movementAnd adjust the height positionMaking it possible.
That is, the work platform 26 reverses the hoisting winches 39, 39 and fully unwinds the wire ropes 41, 41, as described later., Height adjusted in advance according to the construction positionGuide rail 24It can be pushed and moved by mounting it on top and giving enough freedom of movement.
[0025]
In this case, the base frame 22 and the guide rail 24 areAccording to the height positionThe vertical position is adjusted,TheThe adjustment position of the base frame 22 is fixed to the vertical frames 37, 37 via, for example, bolts and nuts.
In the figure, reference numerals 42 and 43 denote side jacks provided at the upper and lower positions of the work stand 26, which can be extended and contracted in the coaxial direction with the underpass 9, and receive the landing portions 42a and 43a at the tips thereof to receive the reaction force of the inner surface of the shaft 35. (Not shown).
[0026]
That is, thisFirst application formAt the time of construction of the underpass, first, as shown in FIG. 18, the shafts 35 and 36 are excavated at positions corresponding to the entrances 10 and 11 of the underpass 9, and the depth thereof is deeper than the saddle portion 9 a of the underpass 9. The width in the nine directions is excavated wider than the short pipe length of the buried pipe 17, the base frame 22 and the vertical frame 37 are installed in one of the shafts 35 as shown in FIG. 19, and the guide rail 24 is mounted on the base frame 22. It is laid in a direction orthogonal to the underpass 9.
[0027]
The base frame 22 is fixed to the vertical frames 37, 37 by bolting, corresponding to the initial boring start position by the curved boring device 29.
Next, the work platform 26 is carried into the shaft 35, and its traveling wheels 25, 25 are mounted on the guide rails 24 to enable its movement, and the propulsion platform 28 is installed on the work platform 26 by adjusting the angle and position. The propulsion device 30 is mounted on the base 28.
Thereafter, the mouth pipe 33 is connected to a predetermined position of the vertical frame 37, the buried pipe 17 is inserted into the pipe 33, and this is held by the bent pipe holder 32, and the side jacks 42, 43 are expanded and contracted, and the landing is performed. The work platform 26 is fixed at a fixed position by bringing the portions 42a and 43a into contact with the reaction force receiver.
[0028]
Under this condition, the drilling device is driven, the drilling bit is rotated to start boring, and the propulsion device 30 is driven to send out the buried pipe 17 containing the inner pipe to the drilling hole. After the distance has been propelled, a buried pipe 17 for replenishment, in which an inner pipe has been incorporated and placed outside the mine in advance, is carried into the pit and connected to the rear end of the preceding buried pipe 17.
Then, the driving of the drilling machine is resumed, the drilling bit is rotated to start boring, and the propulsion device 30 is driven to send out the buried pipe 17 containing the inner pipe to the drilling hole, and the pipe 17 is moved for a predetermined distance. After the propulsion, the buried pipe 17 for extension is connected to the rear end.
[0029]
Hereinafter, the above operation is repeated to increase the buried pipes 17, which are sequentially sent to the ground 7, and when the tip reaches the other shaft 36, the propulsion of the buried pipes 17 is completed. The pipe is pulled out and the buried pipe 17 is left on the ground 7, and the pipe 17 is buried.
[0030]
After burying the buried pipe 17 for the length of the underpass 9 in this way, the side jacks 42 and 43 are reduced, the restraint of the work stand 26 is released, and the work stand 26 is moved to the next boring position adjacent to the buried pipe 17. Moving.
In this movement, for example, the hoisting winches 38, 39 are driven, the wire ropes 41, 41 are wound on the hoisting drums 40, 40 as appropriate, and the work frame 26 is once pulled up. , 37 and secure it in the next mounting position.
[0031]
Next, the hoisting winches 38, 39 are driven to rotate in the reverse direction, the wire ropes 41, 41 are fully rewound, the work platform 26 is mounted on the guide rail 25, and the degree of freedom of the lateral movement of the platform 26 is provided. , The driving of the hoisting winches 38, 39 is stopped, and the position is maintained.
Thereafter, the work base 26 is pushed and moved, and the work base 26 is moved in the direction orthogonal to the underpass 9 along the guide rail 25. When the propulsion device 30 moves to the position corresponding to the next opening pipe 33, the side jacks 42 and 43 are moved. The work base 26 is extended and fixed to the moving position.
[0032]
Then, the buried pipe 17 is set again, the drilling apparatus is driven to start boring, the buried pipe 17 is sent out to the digging hole, and when the pipe 17 has been propelled a predetermined distance, the buried pipe 17 for replenishment is replaced with the preceding one. By connecting to the rear end of the buried pipe 17, these operations are repeated to increase the buried pipe 17. After the completion of the propulsion of the pipe 17, the inner pipe is pulled out, and the buried pipe 17 is left in the ground 7 and buried.
[0033]
In this way, the plurality of buried pipes 17 are buried in the ground 7 as shown in FIG. 21, these are arranged in a ring shape in the circumferential direction of the underpass 9, and then the work stand 26, the base frame 22, and the vertical frame 37 are erected. It is removed from 35 and the ground 7 inside the area partitioned by the buried pipe 17 is excavated.
In this case, the excavation only needs to be excavated in the ground 7 surrounded by the buried pipe 17, and the excavation amount is larger than the volume of the inner space section of the underpass 9, but the conventional pipe roof method shown in FIG. The amount of excavation is much smaller than the amount of excavation defined by the imaginary line, so no extra excavation is required.Therefore, the minimum amount of excavation is sufficient, and this type of excavation work can be streamlined and the time required for excavation can be significantly reduced. In addition, the construction period can be shortened and the construction cost can be reduced, and the excavation work can be downsized.
[0034]
In addition, since the buried pipes 17 are arranged around the underpass 9 and support the surrounding ground 7, the collapse of the ground 7 due to excavation is strongly prevented.
Moreover, since the buried pipe 17 has a curved shape, the buried pipe 17 has a larger contact area with the ground 7 as compared with a conventional straight pipe, and thus the ground 7 is firmly supported.
[0035]
Next, as the ground 7 is excavated, the support 34 is assembled in a ring shape at the excavated portion, and the support 34 is arranged at a predetermined interval to support the buried pipe 17.
This situation is as shown in FIG. 22. This prevents deformation of the buried pipe 17 and collapse of the ground 7, and after that, a formwork of a predetermined shape is assembled between the supports 34, 34, or an existing formwork is carried in. Then, concrete is poured between the frame and the buried pipe 17 to form a lining wall 14 on the inner surface of the underpass 9.
[0036]
Before and after the lining, the bottoms of the shafts 35 and 36 are buried, and the mounting passages 12 and 13 are excavated by using the shafts 35 and 36, and concrete is poured into the peripheral surface of the mounting passages 12 and 13 to form the lining wall 15. , 16 are formed, and pavement concrete (not shown) is cast on the road surface side, and the surrounding area is completed to complete a series of operations.
[0037]
The underpass 9 constructed in this manner is as shown in FIG. 17, in which the buried pipe 17 is gently curved downward along the longitudinal direction of the underpass 9 in the same manner as the longitudinal cross-sectional shape of the underpass 9.
Therefore, the entire area of the underpass 9 in the circumferential direction is supported by the buried pipe 17 and reinforces the portion, so that the underpass 9 is supported and reinforced only at the top end as in the conventional pipe roof construction method. 9 or the strength around the tunnel becomes uniform.
Furthermore, since the buried pipe 17 is formed into a curved pipe, the contact area between the buried pipe 17 and the ground 7 is increased as compared with a structure in which a straight pipe is buried as in the conventional pipe roof construction method. A robust structure is obtained.
[0038]
Meanwhile, thisFirst application formAs shown in FIG. 20, the tunnel construction apparatus used in the first embodiment has a work platform 26 on which a curved boring apparatus 29 can be installed at one of the entrances 10 of the underpass 9 and can move the platform 26 in a direction orthogonal to the underpass 9. The propulsion device 30 can be accurately installed at a predetermined position in accordance with the boring position or the buried position of the buried pipe 17, and the construction accuracy thereof is improved.
In addition, since the work stand 26 is provided with the side jacks 42 and 43 and the stand 26 is fixed at a predetermined position so as to withstand the reaction force during boring, the boring can be performed safely and accurately.
[0039]
FIG.Shows a second application, which isInstead of the underpass 9, the present invention is applied to a small tunnel 44 built on a small mountain in a mountain area, a hill or an embankment in an urban area, and the vertical cross-sectional shape of the tunnel 44 is gently curved upward. A lining wall 14 is formed on the inner surface, and a plurality of buried pipes 17 are buried in a ring shape on the outer periphery of the wall 14.
The buried pipe 17 is gently curved upward in the same manner as the longitudinal section of the tunnel 44. The buried pipe 17 is formed into a curved pipe by connecting a plurality of buried short pipes in the axial direction. And is buried in the ground 7 by being propelled upward from a work stand (not shown) installed in the ground.
[0040]
Therefore, when the tunnel 44 is excavated, only the inner ground sectioned by the buried pipe 17 needs to be excavated, and unnecessary extra ground 7 which is divided by the imaginary line in FIG. 23 as in the conventional pipe roof construction method. Eliminating from excavation, this can be done reasonably and quickly.
In addition, the tunnel 44 is supported by a plurality of buried pipes 17 having an upward arch shape, and an external force such as earth pressure acts on the pipes 17 in the pipe axial direction to form an axial compression force. Since the bending moment and the bending stress due to the external force are reduced against them, the strength is increased as a whole.
[0041]
When the underpass 9 having a circular inner cross section, which is one form of the tunnel, is constructed by the tunnel construction method shown in FIGS. 1 to 16 constructed as described above, the earth anchor 23 is attached to one of the ground opening planned positions. The base frame 22 is installed via the.
The opening shape on the plane of the underpass 9 has a long ellipse or oval shape on the underpass 9 side as shown in FIG. 4, and the base frame 22 has an opening window 22a having substantially the same shape as the above opening shape. The base frame 22 is installed with the opening window 22a aligned with the expected opening position.
[0042]
Then, a pair of guide rails 24, 24 are laid on the base frame 22 in a ring shape similar to the opening shape, the traveling wheel 25 is placed on the rail 24, and the work platform 26 is moved along the guide rail 24. Install it movably.
Then, the propulsion gantry 28 of the curved boring device 29 is installed at a predetermined position on the frame 27 of the work gantry 26, and the propulsion device 30 and components attached thereto are assembled on the gantry 28.
[0043]
In this case, in this embodiment, the base frame 22 is directly installed on the ground, and excavation of the shaft is not required. Therefore, the construction can be simplified, the construction period can be shortened, and the construction cost can be reduced. In addition, since the refilling work of the buried pipe 17 to be described later can be performed on the ground, these works can be performed easily and efficiently.
[0044]
Next, the work gantry 26 is pushed and moved to the boring construction start position, and a lock mechanism (not shown) is operated to fix the work gantry 26 to the base frame 22 to adjust the position of the propulsion gantry 28.
The position of the propulsion gantry 28 is adjusted based on the boring position, the length of the buried pipe 17 used at that position, and the radius of curvature thereof, while adjusting the position on the gantry 27 up, down, left and right, and tilting it with respect to the horizontal plane. This is done by adjusting the angle, that is, the boring execution angle.
[0045]
For example, when boring is performed from the periphery of the opening of the entrance 10, since the buried pipe 17 having a small radius and a small radius of curvature is used as shown in FIG. 1, the propulsion gantry 28 maintains the position relative to the mouth pipe 33. Then, as shown in FIG. 6, it is installed in a substantially upright state with respect to the horizontal plane.
On the other hand, when boring is performed from the periphery of the opening of the mounting passage 12 that is separated from the entrance 10, the buried pipe 17 is longer and has a larger radius of curvature than the buried pipe 17 described above as shown in FIG. 1. The propulsion gantry 28 is installed in an acute angle state in which the propulsion gantry 28 has fallen outward from the state of FIG.
[0046]
Thereafter, the mouth pipe 33 is connected to the inner end of the base frame 22, the buried pipe 17 is inserted into the pipe 33, and this is held by the bent pipe holder 32.
An inner pipe (not shown) is previously inserted into the buried pipe 17, and a vacuum and a water swivel (both not shown) are attached to the rear end of the pipe 17, and the water swivel communicates with the water swivel. Water hoses (both not shown) are connected.
[0047]
After such preparation work, the excavator is driven, the excavation bit is driven and rotated to start excavation, and the propulsion device 30 is driven to send out the buried pipe 17 containing the inner pipe to the excavation hole.
At the time of excavation, a large amount of water is injected from the tip of the excavator to cool the excavation bit, and at the same time, the injected water and excavated earth and sand are sucked into the vacuum, and these are guided to the gap between the buried pipe 17 and the inner pipe, and the It is discharged from the rear end of the pipe 17.
[0048]
In this case, when using the buried pipe 17 having the pipe joint 18 connected to the peripheral surface, the digging bit is enlarged to form a digging hole having a diameter larger than the outer diameter of the buried pipe 17.
At this time, the work platform 26 is moved by an amount equivalent to two pitches of the buried pipe 17, and after the buried pipe 17 is buried at the position, the work platform 26 is moved between the buried pipes 17, 17 after the burying is completed. The adjacent pipe joints 18, 18 are connected, and the buried pipe 17 is propelled and buried.
[0049]
In this way, when the first buried pipe 17 has been propelled for a predetermined distance, the water swivel attached to the pipe 17 is removed, and the additional buried pipe 17 incorporating the inner pipe in advance is set on the rear side of the propulsion device 30; After connecting the hydraulic hoses, connect the inner pipe.
The set buried pipe 17 is welded and connected after the pipe end is aligned with the pipe end of the preceding buried pipe 17.
In this case, since the work stand 26 is installed on the ground, the work of adding the buried pipe 17 can be performed easily and efficiently as compared with the case where the work stand 26 is installed in the shaft.
[0050]
Thereafter, the above operation is repeated to gradually increase the buried pipes 17 and sequentially send them to the ground 7, so that the tip of the buried pipe 17 reaches the other opening 11 or the planned opening of the mounting passage 13, and this is the ground. , The propulsion of the buried pipe 17 is completed.
Thereafter, the leading pipe is removed from the protruding side and recovered, and the inner pipe is pulled out through the hydraulic holder of the propulsion device 30. As shown in FIG. 7, the buried pipe 17 is left in the ground 7 and is buried. Both ends thereof are positioned at the opening positions.
[0051]
After the buried pipe 17 having a predetermined length is buried in this manner, the locking action of the lock mechanism is released, the constraint between the work platform 26 and the base frame 22 is released, and the work platform 26 is moved to the next boring work position, that is, the above-mentioned preceding work. The work table 26 is moved to the construction position adjacent to the position, and the lock mechanism is operated again to restrain the work platform 26 to the base frame 22.
Further, based on the above-mentioned boring work position, the length of the buried pipe 17 to be used, and the radius of curvature thereof, the installation position and the angle of the propulsion gantry 28 are adjusted, and the mouth pipe 33 is attached to the inner end of the base frame 22. After the connection, the buried pipe 17 is inserted into the pipe 33, and this is held by the curved pipe holder 32.
[0052]
Thereafter, the work platform 26 is sequentially moved along the guide rails 24, and the position and angle of the propulsion device 30 are sequentially adjusted via the propulsion platform 28, so that a predetermined number of the buried pipes 17 are connected to the underpass 9 as shown in FIG. It is buried in a ring shape in the circumferential direction.
In this manner, each buried pipe 17 is buried in the ground 7 along the length direction of the underpass 9, and its longitudinal section gradually curves downward based on each radius of curvature, and As shown in FIG. 4, the portion is arranged in a ring shape at the planned opening locations of the entrances 10 and 11 of the underpass 9.
[0053]
In this case, since the buried pipe 17 is press-fitted into the surrounding ground, even if a burial load, an overburden load, earth pressure, etc. act on the buried pipe 17, no slippage occurs between the buried pipe 17 and the ground 7. The ground 7 is reinforced by the buried pipe 17.
At that time, after the burying pipe 17 is buried, the filling member 20 such as concrete or mortar is injected, or the reinforcing member 21 is buried inside the filling member 20 to form a solid structure as shown in FIGS. The strength of the buried pipe 17 is further enhanced, and the ground 7 is further strengthened.
[0054]
When a predetermined number of the buried pipes 17 have been buried in this way, the base frame 22 and the work platform 26 are removed, and the ground 7 is removed from one or both sides of the entrances 10 and 11 of the underpass 9 or the mounting passages 12 and 13. Excavate.
In this case, the excavation only needs to be excavated along the buried pipe 17 in the ground 7 surrounded by the pipe 17, and the excavation amount is larger than the volume of the inner space section of the underpass 9. Compared with the excavation amount that is divided by the virtual line in Fig. 14 using the roof construction method, extra excavation is required in a much smaller amount, so minimal excavation is sufficient, and this kind of excavation work can be streamlined. The time can be greatly reduced, the construction period can be shortened and the construction cost can be reduced, and the excavation work can be downsized.
[0055]
In addition, since the curved tubular buried pipe 17 is arranged in a ring shape around the underpass 9 and the attachment passages 12 and 13, a structure in which a straight tubular pipe is buried at the top end as in the conventional pipe roof construction method. In comparison with the above, the contact area between the buried pipe 17 and the ground 7 is increased, the supporting strength of the ground 7 is enhanced, the collapse is prevented, and the underpass 9 and the mounting passages 12 and 13 are simultaneously excavated. Therefore, the excavation work can be performed easily and quickly as compared with a deep excavation structure using a shaft.
[0056]
Then, along with the excavation of the ground 7, the pier 34 is assembled in a ring shape to the excavated portion, and the piers 34 are arranged at predetermined intervals to support the buried pipe 17.
This situation is shown in FIGS. 14 and 15, whereby the deformation of the buried pipe 17 and the collapse of the ground 7 are prevented.
[0057]
Next, a formwork having a predetermined shape is assembled between the supports 34, 34, or an existing formwork is carried in, concrete is poured into the space between the formwork and the buried pipe 17, and the inner surface of the underpass 9 and the mounting passage 12 are inserted. , 13 are formed with lining walls 14, 15, 16.
In this case, lining of the underpass 9 and the mounting passages 12 and 13 can be performed at substantially the same time, so that these lining operations can be performed rationally.
[0058]
Thereafter, pavement concrete (not shown) is poured into the bottom of the underpass 9 and the road surface side of the mounting passages 12 and 13, and the underpass 9 is mounted on the vehicle.ToIf it is exclusive to passersby, a series of operations can be completed by providing stairs with a gradient as appropriate.
[0059]
The underpass 9 thus constructed is shown in FIGS. 1 and 2, and the buried pipe 17 is arranged in a ring shape outside the underpass 9 and the lining walls 14, 15, 16 of the mounting passages 12, 13. Are gently curved downward along the length direction of the underpass 9.
Therefore, the underpass 9 and the surroundings of the mounting passages 12 and 13 are supported by the buried pipe 17 to reinforce the relevant portion. Therefore, compared to a structure in which only the top end is reinforced as in the conventional pipe roof construction method, The strength of the entire area of the underpass 9 is enhanced, and the strength of the mounting passages 12 and 13 is enhanced.
[0060]
Further, since the buried pipe 17 is formed in a curved tubular shape, the contact area between the buried pipe 17 and the ground 7 is increased as compared with a structure in which a straight pipe is buried as in the conventional pipe roof method, and the ruggedness is correspondingly increased. Structure can be obtained.
In addition, since the underpass 9 has a small amount of earth covering, the length of the attachment passages 12 and 13 communicating from the entrances and exits 10 and 11 to the ground can be shortened. It is advantageous for construction in densely populated houses and can reduce the construction period and construction cost.
[0061]
On the other hand, this embodimentUsed forIn the tunnel construction apparatus, the work platform 26 on which the curved boring apparatus 29 can be installed is installed at the planned opening of the underpass 9 on the ground and its position can be adjusted along the periphery of the opening. It can be easily installed and removed, and can be accurately installed at the boring position.
[0062]
【The invention's effect】
The tunnel construction method of the present invention is as described above.LeSetspaceThe whole area aroundofMultiple curved buried pipesIsPlace them in a ring close to each otherOne anotherAnd a lining wall of a uniform thickness is formed over the entire area of the buried pipe facing the inner surface of the excavation, so that the buried pipes are connected to each other to stabilize the ground with a simple configuration. be able to.
In addition, the adhesion between the buried pipe and the lining wall is strengthened, so that a robust tunnel can be constructed, and the construction period can be shortened and the construction cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an embodiment in which the present invention is applied to a tunnel (underpass) having a shallow earth covering.
FIG. 2 is a cross-sectional view taken along the line AA of FIG.
FIG. 3 is a plan view of FIG. 1;
FIG. 4 is an enlarged plan view showing a part of FIG. 3, showing an entrance and an exit passage on one side of an underpass;
FIG. 5 shows the method of the present invention.UseFIG. 4 is a vertical cross-sectional view showing a process of constructing a tunnel by using a work stand at a position where an underpass entrance and an installation passage are to be opened above the ground.
FIG. 6 shows the present invention.Used forTunnel construction equipmentOne caseIs a front view showing a state where the vehicle is installed at a planned entrance opening of a tunnel entrance and its mounting passage.
FIG. 7 is a longitudinal sectional view showing a process of constructing a tunnel by applying the method of the present invention, and shows a situation where a buried pipe is buried from a work stand installed on the ground to the ground.
FIG. 8 is a cross-sectional view taken along the line BB of FIG.
FIG. 9 is an enlarged sectional view showing a main part of FIG. 8;
FIG. 10 is a front view showing an embodiment of a buried pipe applied to the present invention.
FIG. 11 shows another example of a buried pipe applied to the present invention.FormFIG.
FIG. 12 is a sectional view showing another embodiment of a buried pipe applied to the present invention.
FIG. 13 is a longitudinal sectional view showing a process of constructing a tunnel by applying the method of the present invention, and shows a situation where the ground of the tunnel and the mounting passage is excavated.
FIG. 14 is a longitudinal sectional view showing a process of constructing a tunnel by applying the method of the present invention, and shows a situation in which a shoring work has been carried out in a pit after excavation of the tunnel and the mounting passage;
FIG. 15 is a cross-sectional view taken along the line CC of FIG.
FIG. 16 is a longitudinal sectional view showing a process of building a tunnel by applying the method of the present invention, and shows a situation where a lining wall is formed on the inner surface of the tunnel.
FIG. 17 of the present invention.FirstofApplication formThis is a cross-sectional view showing the application to a tunnel with deep earth cover (underpass).BreakFIG.
FIG. 18FirstofApplication formApplyTatoFIG. 4 is a vertical cross-sectional view showing a process of building a tunnel, and shows a situation where a shaft is excavated at a tunnel entrance.
FIG. 19FirstofApplication formApplyWasFIG. 4 is a vertical cross-sectional view showing a process of constructing a tunnel, and shows a situation where a work platform is installed in a shaft on one side.
FIG. 20FirstofApplication formApplyWasIt is a front view showing an example of a tunnel construction device.
FIG. 21FirstofApplication formApplyWasFIG. 4 is a longitudinal sectional view showing a process of constructing a tunnel, showing a state where a buried pipe is buried from a work platform in a shaft to a ground.
FIG. 22FirstofApplication formApplyWasFIG. 4 is a vertical cross-sectional view showing a process of building a tunnel, showing a situation where a ground in the tunnel is excavated and then supported in a pit.
FIG. 23Second embodiment of the present inventionofIn a sectional view showing the application formApplies to small tunnels that curve upwardAndYou.
FIG. 24 is a longitudinal sectional view of a tunnel showing a conventional pipe roof method.
[Explanation of symbols]
7 Chiyama
9 Tunnel (underpass)
10,11 doorway
14                Lining wall
17 Buried pipe

Claims (1)

トンネル出入口予定位置から、トンネル予定空間の長さ方向の全域に亘って曲線状の掘削孔を複数掘削し、該掘削孔に曲管状の埋設管を埋設後、該埋設管で包囲した地山を掘削し、その掘削内面に覆工壁を形成するトンネルの築造方法において、前記トンネル予空間の外周の全域複数の曲管状の埋設管近接してリング状に配置し、かつ互いに連結するとともに、前記掘削内面に臨む埋設管の全域に一様な厚さの覆工壁を形成することを特徴とするトンネルの築造方法。From the tunnel entrance / exit position, a plurality of curved excavation holes are excavated throughout the length of the planned tunnel space , and a curved tubular buried pipe is buried in the excavation hole, and then the ground surrounded by the buried pipe is removed. excavated, the construction method of tunnel forming the lining wall to the excavation inner surface, buried pipe of the plurality of songs tubular entire area of the outer periphery of the tunnel scheduled space is arranged in a ring in close proximity, one or each other And forming a lining wall of uniform thickness over the entire area of the buried pipe facing the inner surface of the excavation.
JP11744794A 1994-05-09 1994-05-09 How to build a tunnel Expired - Lifetime JP3567939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11744794A JP3567939B2 (en) 1994-05-09 1994-05-09 How to build a tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11744794A JP3567939B2 (en) 1994-05-09 1994-05-09 How to build a tunnel

Publications (2)

Publication Number Publication Date
JPH07301095A JPH07301095A (en) 1995-11-14
JP3567939B2 true JP3567939B2 (en) 2004-09-22

Family

ID=14711886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11744794A Expired - Lifetime JP3567939B2 (en) 1994-05-09 1994-05-09 How to build a tunnel

Country Status (1)

Country Link
JP (1) JP3567939B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2582376B (en) * 2019-03-22 2021-06-09 Hypertunnel Ip Ltd Method and system of constructing an underground tunnel

Also Published As

Publication number Publication date
JPH07301095A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
JP3824114B2 (en) Whale bone method for large section tunnel
JP3211673B2 (en) Simple temporary bridge temporary pier construction method
CN110374633A (en) The Portal Section Construction method of Tunnel Passing loose media
JP3833403B2 (en) Large-section tunnel sushi bone method
JPH04343995A (en) Middle part covering structure of juxtaposed tunnels
KR100562121B1 (en) Shield tunneling construction method and tunnel structure
JP2001520340A (en) Arch support structure
JP3155471B2 (en) Tunnel construction method and tunnel support structure
JP3567939B2 (en) How to build a tunnel
JPH07173835A (en) Excavator for underground continuous wall
JP2697762B2 (en) Tunnel structure and construction method
KR20030065963A (en) A method of constrution method for tunnel of structure pipe
JP2979044B2 (en) Large-scale underground structures and their construction methods
KR101447381B1 (en) No-Dig construction method of step passage using gallery pipe pushed upward
JPH0312633B2 (en)
JP2004060266A (en) Non-open-cut construction method for underground structure
JP2005180112A (en) Ground improvement structure and ground improvement method
JP2849822B2 (en) Underground diaphragm wall excavation method and its equipment
JPH11173072A (en) Chemical grouting method and chemical grouting equipment
JP2700694B2 (en) How to build a large architectural space underground
KR20000074753A (en) Shield tunneling apparatus and method
JPH09125405A (en) Deep foundation for inclined tower leg
JP3815258B2 (en) How to build a true pillar
JPH10121463A (en) Steel pipe concrete well foundation set on slant land and its construction method
KR20240135924A (en) the improved directionally controlled excavation system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 10

EXPY Cancellation because of completion of term