JP3567740B2 - Semiconductor sensor and mounting structure - Google Patents

Semiconductor sensor and mounting structure Download PDF

Info

Publication number
JP3567740B2
JP3567740B2 JP18720598A JP18720598A JP3567740B2 JP 3567740 B2 JP3567740 B2 JP 3567740B2 JP 18720598 A JP18720598 A JP 18720598A JP 18720598 A JP18720598 A JP 18720598A JP 3567740 B2 JP3567740 B2 JP 3567740B2
Authority
JP
Japan
Prior art keywords
substrate
sensor
semiconductor
external connection
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18720598A
Other languages
Japanese (ja)
Other versions
JP2000019042A (en
Inventor
史彦 梅田
善之 森田
高志 外谷
光一 古澤
浩二 山口
健太郎 原
琢 政井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP18720598A priority Critical patent/JP3567740B2/en
Publication of JP2000019042A publication Critical patent/JP2000019042A/en
Application granted granted Critical
Publication of JP3567740B2 publication Critical patent/JP3567740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体の圧力や加速度や振動などの物理量に感応する半導体センサに関し、特に、半導体マイクロマシーン技術により製作する超小型の半導体センサ及び実装構造に関する。
【0002】
【従来の技術】
良く知られているように、次のような構造でごく小型の半導体センサがある。これは半導体デバイス製造技術やマイクロマシーン技術を応用してシリコンなどの半導体基板を成形加工し、肉厚の支持枠部の枠内に肉薄のダイヤフラムを一体形成した小さなチップを造る。このチップを感圧チップと呼び、これとガラスなどの絶縁基板とを組み合わせて接合する。この時、感圧チップのダイヤフラムと絶縁基板の表面とがごく小さな間隔をおいて対向するようにしておく。そして、ダイヤフラムには可動電極を、絶縁基板には固定電極をそれぞれ薄膜形成しておくことにより、小さな間隔をおいて対向する可動電極と固定電極によって可変容量素子が形成される。従って、例えばダイヤフラムに圧力が作用して前記間隔が変化すると、両電極間の容量が変化する。これがセンサ出力である。
【0003】
この種の半導体センサ(圧力センサ)の基本構造体の外観を図1に示している。図1のように、半導体基板からなる感圧チップ1と絶縁基板2を積層した構造となっており、絶縁基板2の外形寸法は感圧チップ1の外形寸法より明確に小さい。そして、感圧チップ1と絶縁基板2の接合面における感圧チップ1の余りの部分(階段状部分)に、前記可変容量素子を含むセンサ回路の端子パッド部3が配設されている。この端子パッド部3を介して外部周辺回路と電気的に接続される。
【0004】
なお、センサには導圧穴が開口しており、図1に示したセンサ側部の穴4は導圧穴の一例である。その導圧穴を通じて内部のダイヤフラムに圧力が作用する。絶縁基板2の側にも厚さ方向に延びる導圧穴をあけて、そこを通じてダイヤフラムの反対側の面にも外部から圧力を作用させるタイプもある。
以上のような構造のセンサ本体のままでは実装面でさまざまな不便があるので、これを適当なパッケージに収納した形態で実装するのが普通である。
【0005】
従来の半導体センサのパッケージング構造は、樹脂製または金属製のパッケージを別途に製作し(リードフレームが付いている)、その中に前記のセンサ本体を収納して接着剤などで固定する。また、センサ本体のボンディング部とパッケージのリードフレームとをパッケージ内部でワイヤボンディングしている。もちろん、パッケージには検出対象圧力を外部からセンサ本体内に導入するための通路がある。
【0006】
【発明が解決しようとする課題】
前述した従来のパッケージング構造では、樹脂製または金属製のパッケージを別途に製作するために相当にコスト高になり、パッケージにセンサ本体を収納する組立作業のためにもコスト高になる。また、別途に製作したパッケージ内にセンサ本体を収納する構造では、両者の間に相当程度の寸法余裕を持たせる必要があり、そのためにパッケージング後のセンサの外形寸法が大きくなり、小型化が難しいという問題があった。さらに、パッケージ内部でセンサ本体とリードフレームとを接続しているボンディングワイヤや、センサ本体自体が中空のパッケージ内部に開放された状態になるため、耐環境性が悪くなる等の各種の問題があった。
【0007】
本発明は、上記した背景に鑑みてなされたもので、その目的とするところは、上記した問題を解決し、小型で実装性がよく、また耐環境性もよく、加えて製造コストが安い半導体センサ及び実装構造を提供することにある。
【0008】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る半導体センサでは、物理量に応じて変位する可動部位を備えた半導体基板と、絶縁基板とが接合され、前記半導体基板と前記絶縁基板は、両者の接合面における外形寸法を異ならせ、少なくとも一方の接合面を露出させるとともに、その露出部分にセンサ回路の端子パッド部を設けたセンサ本体と、そのセンサ本体が取り付けられる外部接続基板とを備えた。そして、前記半導体基板と前記絶縁基板のうち外形寸法の小さい方と、前記外部接続基板とが接合される。この時、その外部接続基板の外形寸法を前記センサ本体との接合面より大きくして、前記端子パッドと前記外部接続基板の接合面側表面とを対向させ、前記外部接続基板の接合側表面露出部と前記端子パッド部の対向する部分に中継コンタクト手段が設けられ、この中継コンタクト手段を介して前記端子パッド部を外部回路に電気的に接続可能に構成した(請求項1)。そして、好ましくは前記中継コンタクト手段の部分が樹脂モールドされていることである(請求項2)。
【0009】
前記外部接続基板の前記センサ本体との接合面に窪み部を形成し、前記センサ本体を構成する基板のうち前記外部接続基板に接合する基板の下部を前記窪み部に挿入した状態で前記外部接続基板と前記センサ本体とを接合するようにしてもよい(請求項1)。さらにまた、前記外部接続基板はフレキシブル印刷配線板を用いて構成してもよい(請求項4)。
【0010】
センサ本体は、実施の形態では圧力センサに適用した例を示したが、これに限ることはなく、加速度センサ(振動センサ)等でももちろんよい。また、前記中継コンタクト手段としては、各種のものが用いられるが、例えば外部接続基板に起立形成された金属ピンを用いることができる。またそれ以外にも、ハンダ,ハンダボール,各種のバンプ,導電性接着剤(特に異方性導電性接着剤がよい),導電性の台座を用いることもできる。この導電性の台座としては例えば導電性ゴムを用いることができる。
【0011】
本発明によれば、外部接続基板に対してセンサ本体を取り付けるに際し、従来と逆に外形寸法の小さい基板を外部接続基板側にくるように配置して接合したため、外部接続基板と端子パッドが対向し、しかもその間隔は外部接続基板と接合された基板の肉厚以下となるので非常に短い。従って、上記に例示列挙したような中継コンタクト手段により簡単に端子パッドと実装基板(実装基板に設けられた配線経路)とを電気的に接続することができる。しかも、従来のワイヤボンディングと異なり、非常に接近した短い距離でありしかも対向していることから、センサ本体の外形寸法とほとんど同じ平面積で構成できる。また、積層方向の厚さも外部接続基板の厚さ程度ですむ。つまり、半導体センサが占める容積を可及的に小さくできる。
【0012】
そして、係る半導体センサを実装基板に取り付ける際には、他のICその他の電子部品と同様に外部接続基板の非接合面にバンプ等を設けることにより、リフロー処理により面実装することができるので、一括処理ができ簡単となる。つまり、従来、半導体基板と絶縁基板の外形寸法の差に基づく段差があり個別実装しかできなかった半導体センサが、面実装可能となるので、処理効率がはるかに向上する。
【0013】
特に、請求項2のように構成した場合には、断線などするおそれが可及的に抑制される。また、請求項3,4のように構成した場合には、積層方向の肉厚を低く抑えることができる。なお、請求項4において窪みとしているのは、接合面の表面から一段低くなっていればよいことを意味し、その底面の有無は問わない。つまり、底面がなく、例えば平面形状がロ字状の枠体であっても本発明の実装基板になり得る。そして、この場合に端子パッドと実装基板の間隔が狭くなった時には、中継コンタクト手段は、ハンダ等であってもよい。また、導電性ゴムや導電性接着剤(樹脂)なども用いることができる。特に異方性導電材を用いると、加圧することにより加圧方向(基板の積層方向)にのみ導電性を有するようになるので、複数の端子パッドを相互に絶縁を図りつつ外部接続基板のバンプに導通を図ることができる。そして、異方性導電材は加熱することに硬化するので、接着剤としても機能する。
【0014】
一方、本発明に係る半導体センサの実装構造では、物理量に応じて変位する可動部位を備えた半導体基板と、絶縁基板とが接合され、前記半導体基板と前記絶縁基板は、両者の接合面における外形寸法を異ならせ、少なくとも一方の接合面を露出させるとともに、その露出部分にセンサ回路の端子パッド部を設けたセンサ本体を有した半導体センサの実装基板への実装構造であって、前記半導体基板と前記絶縁基板のうち外形寸法の小さい方を、前記装基板側に位置させるとともに、前記端子パッド部を前記実装基板に設けた配線パターンと対向させ、前記実装基板に形成された配線パターンと、前記端子パッドを直接或いは連結部材を介して接続するようにした(請求項5)。そして、前記実装基板の取付面に穴部を設け、前記センサ本体の外形寸法の小さい方の基板をその穴部内に挿入するように構成すると好ましい(請求項6)。
【0015】
センサ本体のうち、外形寸法の小さい基板を実装基板側に位置させるので、外形寸法の大きい基板の接合面側露出面に設けた端子パッドが実装基板側を向く。従って、実装基板に設けた配線パターンと端子バッドが対向するので、直接または連結部材を介して両者を接続することができる。これにより、やはりワインボンディングなどが不要となり、占有面積が小さくてすむ。特に、請求項6のように構成すれば、小さい基板が穴部内に入り込むため、実装時の薄型化が図れるばかりでなく、端子パッドと配線パターンを直接接続することが可能となる。なお、ここで言う穴部とは、底部を有するいわゆる穴のみならず、底部がなく貫通した孔も含む概念である。
【0016】
【発明の実施の形態】
図2は、本発明に係る半導体センサの第1の実施の形態の構造を示している。まず、本形態で用いるセンサ本体は、圧力センサであり、半導体基板1に肉薄のダイヤフラムを形成し、そのダイヤフラムと絶縁基板2の表面とをごく小さな間隔をおいて対向させる。これにより、ダイヤフラムに設けた可動電極と、絶縁基板に成膜した固定電極の間には距離に応じた静電容量が発生するので、例えばダイヤフラムに圧力が作用して前記間隔が変化すると、両電極間の容量が変化する。よって、両基板1,2により可変容量素子が形成される。
【0017】
さらに、接合面における外形寸法は、絶縁基板2の方が小さいので、感圧チップ1の接合面側の露出表面(階段状部分)に、前記可変容量素子を含むセンサ回路の端子パッド部3が配設されている。このように、使用するセンサ本体は従来と同一の構成のものを用いることができる。
【0018】
ここで本発明では、同図に示すように、センサ本体を外部接続基板5に接合するに際し、外形寸法の小さい半導体基板2を外部接続基板5と接合するようにしている。この外部接続基板は、主体は絶縁基板からなり、外部接続基板5の外形寸法は感圧チップ1よりすこし大きく設定している。また、外部接続基板5の下面には表面実装用の金属バンプ6が形成されている。
【0019】
そして、上記したように半導体基板2と外部接続基板5を接続したことから、外部接続基板5の接合面には、絶縁基板2と接合されない領域が形成され、係る領域を前記感圧チップ1に設けた端子パッド3と対向するようにする。これにより、係る領域では、外部接続基板5と感圧チップ1との間で、絶縁基板2の厚さに応じた距離だけ離反した隙間空間が形成され、その隙間空間内に端子パッド3が存在することになる。
【0020】
そこで、外部接続基板5の上面(接合面)における前記端子パッド部3と対向する部分に中継コンタクト手段が設けられ、この中継コンタクト手段を介して前記端子パッド部3と前記金属バンプ6とが電気的に接続されている。図2の実施の形態においては、中継コンタクト手段として、外部接続基板5に起立形成された金属ピン7を用い、フリップチップ15を介して端子パッド3と金属ピン7を接続している。よって、図示省略の実装基板上に、外部接続基板5を置くとともに金属バンプ6を介して実装基板上に面実装ができ、また、金属ピン7を介して実装基板の配線パターンと導通がとれる。
【0021】
また、中継コンタクト手段としては、上記した実施の形態に限ることはなく、以下に示す各種の形態をとれる。すなわち、図3に示す第2の実施の形態においては、絶縁基板2の厚さを薄くしたため、前記中継コンタクト手段としてハンダ或いはハンダボール8を用いることができる。なお、図示の例では、外部接続基板5の対向面に金属製のターミナル16を設け、そのターミナルにハンダボール8が接合される。また、このように絶縁基板2が薄くなると、図2に示すように金属ピン7を用いる必要がなくなり、図2におけるハンダボール8に替えてフリップチップによる接続もできる。つまり、この場合にフリップチップが中継コンタクト手段となる。
【0022】
さらには、絶縁基板2を薄くするのではなく、図4に示す第3の実施の形態のように、外部接続基板5に台座9を用いる(上面にターミナル16がある)ことにより、フリップチップ15による接続ができる。この場合に台座9としては、導電材料で形成するとよい。そして、この形態における中継コンタクト手段は、フリップチップ15や台座9(導電性材料の場合)となる。さらに、台座9の部分を導電性ゴムで形成すると、そのゴムの弾性力を利用してフリップチップ15を設けずに直接端子パッドとの導通を図ることもできる。
【0023】
また図5に示す第4の実施の形態においては、外部接続基板5の上面に所定形状の窪み部5aを形成しておき、絶縁基板2の下部をその窪み部5aにはめ込んで接合する。こうすることでセンサ構造体の全高をより小さくできる。また図6に示す第5の実施の形態においては、外部接続基板5としてフレキシブル印刷配線板を用いている。この実施の形態によればさらに全高を小さくできる。そして、第4,第5の実施の形態はいずれもフリップチップ15を用いて導通を図るようにしたが、上記した各例のようにハンダ,ハンダボール,バンプなど各種の構成をとることができる。
【0024】
以上説明したいずれの実施の形態においても、各基板1,2,5の接合部分にシリコーン樹脂等のモールド樹脂10を塗布し、樹脂モールドにより全体的に封止し、保護している。また各図に示しているように、外部接続基板5の中央部に貫通孔11を形成し、絶縁基板2に設けた貫通孔11aを介して感圧チップ1のダイヤフラムに外部の圧力を導くようにしている。もちろん、図1に示したように絶縁基板2と感圧チップ1の接合面に設けた穴や、感圧チップ1の上方から圧力を供給するようにした場合には、この貫通孔11,11aは設けなくてもよい。
【0025】
図7は、第6の実施の形態を示している。本実施の形態では、絶縁基板2の周囲に感圧チップ1の未接合領域が存在し(上記した第5の実施の形態までは、一辺側にのみ未接合領域が存在していた)端子パッド3が両側に位置している。これに伴い外部接続基板5の両側に中継コンタクト手段としてのハンダボール8を介して補助基板17と接続を図っている。なお、この補助基板17は、上記した各実施の形態で説明したターミナルととらえてもよいし、底上げ用の台座ととらえてもよいし、補助基板17を外部接続基板5の一部と考えその補助基板17の内側を窪み部5aが形成されているととらえてもよい。
【0026】
そして、図示するように外部接続基板5に形成した金属バンプ6を介して実装基板18に接続している。このような実装基板18への接続形態は、上記した各実施の形態で共通である。
【0027】
また、別紙の実装構造の一例としては、図8に示すようにすることができる。すなわち、中継コンタクト手段として金属チップ19を用いフリップチップ15との接続を図ったタイプのセンサ本体を用い、それを外部接続基板5と導通を図る。これにより半導体センサが構成される。各実施の形態と等価の他の該当部分は同一符号を付し、詳細な説明を省略する。
【0028】
これを基板22にバンプ6を介して接続し、この基板22をネジ23によりケース24に取り付ける。そして、外部接続基板5と同様に、基板22及びケース24にも厚さ方向に貫通する圧力導入孔26を設け、外部からの圧力導入を図っている。なお、外部接続基板5と基板22の間及び基板22とケース24の間の圧力導入孔26の周囲には、Oリング25を介在させて気密性の保持を図っている。
【0029】
図9は、本発明に係る半導体センサの実装構造の実施の形態を示している。
実施の形態でも、使用するセンサ本体自体の構造は、上記した各実施の形態と同様である。そして、外形寸法の小さい絶縁基板2を実装基板18側に向けて配置する。感圧チップ1に設けた端子パッド部3と実装基板18の間には連結部材28が設けられている。この連結部材28は、本形態では、平面ロ字状で絶縁基板2の外周囲に位置するように配置している。そして、ガラスエポキシの両面基板を用い、両面をスルーホール29で接続している。つまり、端子パッド部3は連結部材28の片面に形成した配線パターン28aと導通を図り、その配線パターン28aの端部にスルーホール29を接続し連結部材28の裏面側に導く。そして、そのスルーホール29の裏面側端部に実装基板18の配線パターンを位置させることにより、端子パッド部3を実装基板18に導くことができる。
【0030】
さらに本形態では、連結部材28の上面に蓋状のケース30を接続し、ケース30にてセンサ本体を覆っている。このケース30の天面には、圧力導入管30aが設けられており、この圧力導入管30aを介して導入される測定圧力が、感圧チップ1に設けたダイヤフラムに加わるようになっている。
【0031】
上記した実施の形態では、連結部材28として、平面ロ字状の上下開口した基板を用いたが、本発明はこれに限ることはなく、例えば図10に示すように、底面を有する連結部材32を用いてもよい。つまり、連結部材32の上面に凹部32aを設け、この凹部32a内に絶縁基板1を挿入する。そして、連結部材32に設けたスルーホール33を介して端子パッド部3と実装基板18に設けた配線パーターン(図示せず)との導通を図るようにしている。そして、スルーホール33の両端では、バンプ(ハンダ,金)35を用いて電気的接続を図っている。
【0032】
図11は、さらに別の実施の形態であり、この例では、連結部材を設けることなく、直接実装基板18に半導体センサを実装している。すなわち、実装基板18に穴部18aを設ける。そして、その穴部18a内に半導体センサの小さい基板(この例では、感圧チップ1)を挿入する。大きい基板(絶縁基板2)に設けた端子パッド部3を、実装基板18上の配線パターン(電極ランド)に直接接続するようにしている。このようにすると、上記した図9,図10に示す基板に比べて高さを低く抑えることができる。
【0033】
なお、本形態では、実装基板18の穴部18aの底面を開口し、その開口部18bを介してダイヤフラム1aに比較圧力(基準圧力)となる大気圧が加わるようにしている。また、実装基板18の上面側もケース30で覆い、圧力導入管30aから測定圧力をケース30の内部に導入し、絶縁基板2の圧力導入孔2aを介してダイヤフラム1aに測定圧力を加えるようにしている。また、センサ本体と実装基板18の接続及びケース30と実装基板18との接続は、接着剤36を介して行うようにしている。
【0034】
なお、上記した各実施の形態では、いずれも圧力センサに適用した例を示したが、本発明はこれに限ることはなく、加速度センサ等の他の半導体センサにも適用できる。さらに、検出方式として静電容量型に限ることもなく、ピエゾ型その他の形態にも適用できる。また、半導体センサの各実施の形態では、いずれも感圧チップ1の方が外形寸法形状が大きい例を説明したが、これに限ることはなく図11に示すものと同様に、絶縁基板側が大きくても問題がない。
【0035】
【発明の効果】
本発明によれば、端子パッド部と取付基板(外部接続基板・実装基板)を対向させたため、中継コンタクト手段により簡単に接続できる。よって、ワイヤボンディングのように、外部に引き回す必要がなく、チップサイズと同程度の占有面積ですみ、小型化が図れる。このセンサを外部周辺回路システムに組み込むのに一般的な表面実装方式を採用できるので、既存の実装技術により高能率に高密度な実装を行うことができる。さらに、センサ核心部及びこれに付随した中継コンタクト部分が樹脂モールドされるので、耐環境性が向上するとともに、モールドによる樹脂封止部分も含んだセンサ全体を従来よりも小型化できる。
【図面の簡単な説明】
【図1】本発明の対象となる半導体センサの素体構造(センサ本体)を示す図である。
【図2】本発明の第1実施の形態に係る半導体センサの構造図である。
【図3】本発明の第2実施の形態に係る半導体センサの構造図である。
【図4】本発明の第3実施の形態に係る半導体センサの構造図である。
【図5】本発明の第4実施の形態に係る半導体センサの構造図である。
【図6】本発明の第5実施の形態に係る半導体センサの構造図である。
【図7】本発明の第6実施の形態に係る半導体センサの構造図である。
【図8】本発明の半導体センサの実装例を示す図である。
【図9】本発明に係る半導体センサの実装構造の一実施の形態を示す図である。
【図10】本発明に係る半導体センサの実装構造の別の実施の形態を示す図である。
【図11】本発明に係る半導体センサの実装構造のさらに別の実施の形態を示す図である。
【符号の説明】
1 感圧チップ(半導体基板)
2 絶縁基板
3 端子パッド部
4 穴
5 外部接続基板
6 金属バンプ
7 金属ピン
8 ハンダボール
9 台座
10 モールド樹脂
11 貫通孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor sensor responsive to physical quantities such as pressure, acceleration, and vibration of a fluid, and more particularly, to an ultra-compact semiconductor sensor and a mounting structure manufactured by a semiconductor micromachine technology.
[0002]
[Prior art]
As is well known, there is a very small semiconductor sensor having the following structure. In this method, a semiconductor substrate such as silicon is formed by applying a semiconductor device manufacturing technology or a micro machine technology, and a small chip is formed in which a thin diaphragm is integrally formed in a frame of a thick supporting frame portion. This chip is called a pressure-sensitive chip, and it is combined with an insulating substrate such as glass to be joined. At this time, the diaphragm of the pressure-sensitive chip and the surface of the insulating substrate are opposed to each other with a very small interval. By forming a thin film of the movable electrode on the diaphragm and a thin film of the fixed electrode on the insulating substrate, a variable capacitance element is formed by the opposed movable electrode and the fixed electrode at a small interval. Therefore, for example, when the pressure changes on the diaphragm to change the distance, the capacitance between the two electrodes changes. This is the sensor output.
[0003]
FIG. 1 shows the appearance of a basic structure of a semiconductor sensor (pressure sensor) of this type. As shown in FIG. 1, it has a structure in which a pressure-sensitive chip 1 made of a semiconductor substrate and an insulating substrate 2 are laminated, and the outer dimensions of the insulating substrate 2 are clearly smaller than the outer dimensions of the pressure-sensitive chip 1. A terminal pad portion 3 of a sensor circuit including the variable capacitance element is provided in a remaining portion (step-like portion) of the pressure-sensitive chip 1 on a bonding surface between the pressure-sensitive chip 1 and the insulating substrate 2. The terminal pad section 3 is electrically connected to an external peripheral circuit.
[0004]
The sensor has a pressure guiding hole, and the hole 4 on the sensor side shown in FIG. 1 is an example of the pressure guiding hole. Pressure acts on the internal diaphragm through the pressure guiding hole. There is also a type in which a pressure guiding hole extending in the thickness direction is also formed on the side of the insulating substrate 2, and pressure is applied from the outside to the opposite surface of the diaphragm through the hole.
Since the mounting of the sensor body having the above-mentioned structure as it is has various inconveniences, it is common to mount the sensor body in an appropriate package.
[0005]
In a conventional semiconductor sensor packaging structure, a resin or metal package is separately manufactured (with a lead frame), and the sensor main body is housed in the package and fixed with an adhesive or the like. Further, the bonding portion of the sensor body and the lead frame of the package are wire-bonded inside the package. Of course, the package has a passage for introducing the pressure to be detected from outside into the sensor body.
[0006]
[Problems to be solved by the invention]
In the above-mentioned conventional packaging structure, the cost is considerably increased because a resin or metal package is separately manufactured, and the cost is also high for an assembly operation for housing the sensor body in the package. In addition, in the structure in which the sensor body is housed in a separately manufactured package, it is necessary to provide a considerable dimensional allowance between the two, so that the external dimensions of the sensor after packaging are large, and miniaturization is required. There was a problem that it was difficult. In addition, there are various problems such as poor environmental resistance because the bonding wires connecting the sensor body and the lead frame inside the package and the sensor body itself is opened inside the hollow package. Was.
[0007]
The present invention has been made in view of the above-mentioned background, and aims at solving the above-mentioned problems, and is a semiconductor that is small in size, has good mountability, has good environmental resistance, and has a low manufacturing cost. It is to provide a sensor and a mounting structure.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in a semiconductor sensor according to the present invention, a semiconductor substrate having a movable portion that is displaced in accordance with a physical quantity and an insulating substrate are joined, and the semiconductor substrate and the insulating substrate are both The external dimensions of the joining surface are different, at least one of the joining surfaces is exposed, and a sensor main body having a sensor circuit terminal pad on the exposed portion and an external connection board to which the sensor main body is attached are provided. Then, one of the semiconductor substrate and the insulating substrate having a smaller outer dimension is joined to the external connection substrate. At this time, the external dimensions of the external connection board are made larger than the bonding surface with the sensor main body, and the terminal pad portion and the bonding surface side surface of the external connection board are opposed to each other. A relay contact means is provided at a portion where the exposed part and the terminal pad part face each other, and the terminal pad part can be electrically connected to an external circuit via the relay contact means. Preferably, a portion of the relay contact means is resin-molded (claim 2).
[0009]
A concave portion is formed in a joint surface of the external connection substrate with the sensor main body, and the external connection is performed in a state in which a lower portion of a substrate that forms the sensor main body and is bonded to the external connection substrate is inserted into the concave portion. The substrate and the sensor body may be joined (claim 1). Furthermore, the external connection substrate may be configured using a flexible printed wiring board (claim 4).
[0010]
In the embodiment, an example in which the sensor body is applied to a pressure sensor has been described. However, the present invention is not limited to this, and may be an acceleration sensor (vibration sensor) or the like. Further, various types of relay contact means may be used, and for example, a metal pin standing upright on an external connection board may be used. Besides, solder, solder balls, various bumps, conductive adhesive (especially anisotropic conductive adhesive is preferable), and conductive base can be used. As the conductive pedestal, for example, conductive rubber can be used.
[0011]
According to the present invention, when the sensor body is attached to the external connection board, a board having a small external dimension is arranged so as to come to the external connection board side and bonded, contrary to the conventional case, so that the external connection board and the terminal pad portion are connected. The distance therebetween is very short because the distance between them is equal to or less than the thickness of the substrate joined to the external connection substrate. Therefore, the terminal pad portion and the mounting board (the wiring path provided on the mounting board) can be easily electrically connected by the relay contact means as exemplified above. Further, unlike the conventional wire bonding, since the distance is very short and the distance is opposed to each other, the sensor can be configured with a flat area almost the same as the outer dimensions of the sensor body. Further, the thickness in the laminating direction may be about the thickness of the external connection board. That is, the volume occupied by the semiconductor sensor can be reduced as much as possible.
[0012]
Then, when attaching the semiconductor sensor to the mounting board, the bumps and the like can be provided on the non-bonding surface of the external connection board as in the case of other ICs and other electronic components, so that the semiconductor sensor can be surface-mounted by reflow processing. Batch processing is simplified. In other words, a semiconductor sensor, which conventionally has a step based on the difference between the outer dimensions of the semiconductor substrate and the insulating substrate and can only be individually mounted, can now be surface-mounted, so that the processing efficiency is greatly improved.
[0013]
In particular, in the case of the configuration according to claim 2, the risk of disconnection or the like is suppressed as much as possible. In the case of the third and fourth aspects, the thickness in the stacking direction can be reduced. It should be noted that the depression in claim 4 means that it is only necessary to be one step lower than the surface of the bonding surface, and the presence or absence of the bottom surface does not matter. In other words, a mounting substrate of the present invention can be used even if the frame has no bottom surface and, for example, has a rectangular shape in plan view. Then, in this case, when the distance between the terminal pad portion and the mounting board becomes narrow, the relay contact means may be solder or the like. Further, a conductive rubber, a conductive adhesive (resin), or the like can also be used. In particular, when an anisotropic conductive material is used, the conductive material becomes conductive only in the pressing direction (the laminating direction of the substrate) by pressing, so that the plurality of terminal pad portions are mutually insulated while the external connecting substrate is insulated. Conduction can be achieved to the bumps. Since the anisotropic conductive material is cured by heating, it also functions as an adhesive.
[0014]
On the other hand, in the mounting structure of the semiconductor sensor according to the present invention, a semiconductor substrate having a movable portion that is displaced in accordance with a physical quantity and an insulating substrate are joined, and the semiconductor substrate and the insulating substrate have an outer shape at a joint surface between them. The mounting structure of a semiconductor sensor having a sensor body having a sensor body provided with a terminal pad portion of a sensor circuit on the exposed portion while varying the dimensions and exposing at least one bonding surface, wherein the semiconductor substrate and A smaller outer dimension of the insulating substrate is positioned on the mounting substrate side, and the terminal pad portion is opposed to a wiring pattern provided on the mounting substrate, and a wiring pattern formed on the mounting substrate, The terminal pad portions are connected directly or via a connecting member (claim 5). Preferably, a hole is provided in the mounting surface of the mounting board, and a board having a smaller outer dimension of the sensor main body is inserted into the hole (claim 6).
[0015]
In the sensor main body, a substrate having a small external dimension is located on the mounting substrate side, so that a terminal pad portion provided on an exposed surface on a bonding surface side of the substrate having a large external dimension faces the mounting substrate side. Therefore, since the terminal pattern and the wiring pattern provided on the mounting board are opposed to each other, the two can be connected directly or via a connecting member. This also eliminates the need for wine bonding and the like, and occupies a small area. In particular, according to the structure as claimed in claim 6, less substrate for entering the hole, not only attained be thinned at the time of mounting, it is possible to connect the wiring pattern terminal pad section directly. The term “hole” as used herein is a concept including not only a so-called hole having a bottom but also a hole penetrating without a bottom.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 2 shows the structure of the first embodiment of the semiconductor sensor according to the present invention. First, the sensor main body used in the present embodiment is a pressure sensor, in which a thin diaphragm is formed on the semiconductor substrate 1, and the diaphragm is opposed to the surface of the insulating substrate 2 at a very small interval. Thereby, a capacitance corresponding to the distance is generated between the movable electrode provided on the diaphragm and the fixed electrode formed on the insulating substrate. For example, when the pressure is applied to the diaphragm to change the distance, both capacitances are changed. The capacitance between the electrodes changes. Therefore, a variable capacitance element is formed by the two substrates 1 and 2.
[0017]
Furthermore, since the outer dimensions of the bonding surface of the insulating substrate 2 are smaller, the terminal pad portion 3 of the sensor circuit including the variable capacitance element is provided on the exposed surface (step-like portion) of the pressure-sensitive chip 1 on the bonding surface side. It is arranged. As described above, the sensor body to be used may have the same configuration as the conventional one.
[0018]
Here, in the present invention, as shown in the figure, when the sensor main body is joined to the external connection substrate 5, the semiconductor substrate 2 having a small external dimension is joined to the external connection substrate 5. This external connection substrate is mainly composed of an insulating substrate, and the external dimensions of the external connection substrate 5 are set slightly larger than the pressure-sensitive chip 1. A metal bump 6 for surface mounting is formed on the lower surface of the external connection substrate 5.
[0019]
Since the semiconductor substrate 2 and the external connection substrate 5 are connected as described above, a region that is not bonded to the insulating substrate 2 is formed on the bonding surface of the external connection substrate 5. It faces the terminal pad portion 3 provided. Thus, in such a region, a gap space is formed between the external connection substrate 5 and the pressure-sensitive chip 1 by a distance corresponding to the thickness of the insulating substrate 2, and the terminal pad portion 3 is formed in the gap space. Will exist.
[0020]
Therefore, a relay contact means is provided on a portion of the upper surface (bonding surface) of the external connection substrate 5 which faces the terminal pad section 3, and the terminal pad section 3 and the metal bump 6 are electrically connected via the relay contact means. Connected. In the embodiment of Figure 2, as the relay contact means, a metal pin 7 that is formed upright on the external connection board 5 connects the terminal pad portion 3 and the metal pin 7 via the flip chip 15. Therefore, the external connection board 5 can be placed on the mounting board (not shown), and can be surface-mounted on the mounting board via the metal bumps 6, and can be electrically connected to the wiring pattern of the mounting board via the metal pins 7.
[0021]
Further, the relay contact means is not limited to the above-described embodiment, but may take various forms as described below. That is, in the second embodiment shown in FIG. 3, since the thickness of the insulating substrate 2 is reduced, a solder or a solder ball 8 can be used as the relay contact means. In the illustrated example, a metal terminal 16 is provided on the opposite surface of the external connection substrate 5, and a solder ball 8 is bonded to the terminal. Further, when the insulating substrate 2 is made thinner in this way, it is not necessary to use the metal pins 7 as shown in FIG. 2, and the connection can be made by flip chips instead of the solder balls 8 in FIG. That is, in this case, the flip chip serves as the relay contact means.
[0022]
Further, instead of making the insulating substrate 2 thin, the pedestal 9 is used for the external connection substrate 5 (the terminal 16 is provided on the upper surface) as in the third embodiment shown in FIG. Can be connected. In this case, the pedestal 9 may be formed of a conductive material. The relay contact means in this embodiment is the flip chip 15 and the pedestal 9 (in the case of a conductive material). Further, when the pedestal 9 is formed of a conductive rubber, the continuity with the terminal pad portion can be achieved directly without using the flip chip 15 by utilizing the elastic force of the rubber.
[0023]
In the fourth embodiment shown in FIG. 5, a recess 5a having a predetermined shape is formed on the upper surface of the external connection substrate 5, and the lower portion of the insulating substrate 2 is fitted into the recess 5a and joined. By doing so, the overall height of the sensor structure can be made smaller. In the fifth embodiment shown in FIG. 6, a flexible printed wiring board is used as the external connection board 5. According to this embodiment, the overall height can be further reduced. In each of the fourth and fifth embodiments, electrical continuity is achieved by using the flip chip 15. However, various configurations such as solder, solder balls, and bumps can be employed as in the above-described examples. .
[0024]
In any of the above-described embodiments, a mold resin 10 such as a silicone resin is applied to a joint portion between the substrates 1, 2, 5, and is entirely sealed and protected by a resin mold. As shown in each figure, a through-hole 11 is formed in the center of the external connection substrate 5 so that external pressure is guided to the diaphragm of the pressure-sensitive chip 1 via the through-hole 11a provided in the insulating substrate 2. I have to. Of course, as shown in FIG. 1, when the pressure is supplied from a hole provided on the joint surface between the insulating substrate 2 and the pressure-sensitive chip 1 or from above the pressure-sensitive chip 1, the through holes 11, 11a are provided. May not be provided.
[0025]
FIG. 7 shows a sixth embodiment. In the present embodiment, the unbonded region of the pressure-sensitive chip 1 exists around the insulating substrate 2 (until the fifth embodiment described above, the unbonded region exists only on one side). The part 3 is located on both sides. Along with this, connection is made to the auxiliary board 17 on both sides of the external connection board 5 via solder balls 8 as relay contact means. Note that the auxiliary board 17 may be considered as the terminal described in each of the above-described embodiments, or as a pedestal for raising the bottom, and the auxiliary board 17 may be considered as a part of the external connection board 5. The inside of the auxiliary substrate 17 may be regarded as having the depression 5a.
[0026]
Then, as shown in the drawing, it is connected to the mounting board 18 via the metal bumps 6 formed on the external connection board 5. Such a form of connection to the mounting board 18 is common to the above embodiments.
[0027]
FIG. 8 shows an example of the mounting structure of the separate sheet. That is, a sensor body of a type which uses the metal chip 19 as the relay contact means and is connected to the flip chip 15 is used, and conducts it to the external connection substrate 5. Thereby, a semiconductor sensor is configured. The other corresponding parts equivalent to those of the embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0028]
This is connected to the substrate 22 via the bump 6, and the substrate 22 is attached to the case 24 with the screw 23. As in the case of the external connection board 5, the board 22 and the case 24 are also provided with a pressure introduction hole 26 that penetrates in the thickness direction, thereby introducing pressure from the outside. An O-ring 25 is interposed between the external connection board 5 and the board 22 and around the pressure introducing hole 26 between the board 22 and the case 24 to maintain airtightness.
[0029]
FIG. 9 shows an embodiment of the mounting structure of the semiconductor sensor according to the present invention.
Also in the embodiment, the structure of the sensor body itself to be used is the same as in each of the above-described embodiments. Then, the insulating substrate 2 having a small outer dimension is arranged toward the mounting substrate 18 side. A connecting member 28 is provided between the terminal pad 3 provided on the pressure-sensitive chip 1 and the mounting board 18. In the present embodiment, the connecting member 28 is arranged so as to be located in the shape of a plane R in the outer periphery of the insulating substrate 2. Then, both sides are connected by through holes 29 using a glass epoxy double-sided board. That is, the terminal pad portion 3 conducts with the wiring pattern 28a formed on one surface of the connecting member 28, connects the through hole 29 to the end of the wiring pattern 28a, and guides the through hole 29 to the back side of the connecting member 28. The terminal pad portion 3 can be guided to the mounting substrate 18 by locating the wiring pattern of the mounting substrate 18 at the rear end of the through hole 29.
[0030]
Further, in this embodiment, a lid-shaped case 30 is connected to the upper surface of the connecting member 28, and the case 30 covers the sensor body. A pressure introducing pipe 30a is provided on the top surface of the case 30, and a measurement pressure introduced through the pressure introducing pipe 30a is applied to a diaphragm provided on the pressure-sensitive chip 1.
[0031]
In the above-described embodiment, a substrate having an upper and lower opening in a flat rectangular shape is used as the connecting member 28. However, the present invention is not limited to this. For example, as shown in FIG. May be used. That is, the concave portion 32a is provided on the upper surface of the connecting member 32, and the insulating substrate 1 is inserted into the concave portion 32a. In addition, conduction is established between the terminal pad portion 3 and a wiring pattern (not shown) provided on the mounting board 18 via a through hole 33 provided in the connecting member 32. At both ends of the through hole 33, electrical connection is made using bumps (solder, gold) 35.
[0032]
FIG. 11 shows still another embodiment. In this example, a semiconductor sensor is directly mounted on a mounting board 18 without providing a connecting member. That is, the hole 18 a is provided in the mounting board 18. Then, a small substrate (the pressure-sensitive chip 1 in this example) of the semiconductor sensor is inserted into the hole 18a. The terminal pad portion 3 provided on the large substrate (insulating substrate 2) is directly connected to a wiring pattern (electrode land) on the mounting substrate 18. In this case, the height can be suppressed lower than that of the substrate shown in FIGS. 9 and 10 described above.
[0033]
In this embodiment, the bottom surface of the hole 18a of the mounting board 18 is opened, and the atmospheric pressure serving as the comparative pressure (reference pressure) is applied to the diaphragm 1a through the opening 18b. Also, the upper surface side of the mounting board 18 is also covered with the case 30 so that the measurement pressure is introduced into the case 30 from the pressure introduction pipe 30a, and the measurement pressure is applied to the diaphragm 1a through the pressure introduction hole 2a of the insulating substrate 2. ing. Further, the connection between the sensor body and the mounting board 18 and the connection between the case 30 and the mounting board 18 are performed via an adhesive 36.
[0034]
Note that, in each of the above-described embodiments, an example in which the present invention is applied to a pressure sensor has been described. However, the present invention is not limited to this, and can be applied to other semiconductor sensors such as an acceleration sensor. Further, the detection method is not limited to the capacitance type, but can be applied to a piezo type or other forms. Further, in each of the embodiments of the semiconductor sensor, the example in which the external dimensions of the pressure-sensitive chip 1 are larger is described. However, the present invention is not limited to this, and the insulating substrate side is larger than that shown in FIG. There is no problem.
[0035]
【The invention's effect】
According to the present invention, since the terminal pad portion and the mounting substrate (external connection substrate / mounting substrate) are opposed to each other, they can be easily connected by the relay contact means. Therefore, unlike the wire bonding, it is not necessary to route the wires to the outside, and the occupied area is about the same as the chip size, and the size can be reduced. Since a general surface mounting method can be adopted for incorporating this sensor into an external peripheral circuit system, high-density mounting can be performed with high efficiency using existing mounting technology. Furthermore, since the core of the sensor and the relay contact portion attached thereto are molded with resin, environmental resistance is improved, and the entire sensor including the resin-sealed portion by molding can be made smaller than before.
[Brief description of the drawings]
FIG. 1 is a diagram showing a body structure (sensor main body) of a semiconductor sensor to which the present invention is applied.
FIG. 2 is a structural diagram of the semiconductor sensor according to the first embodiment of the present invention.
FIG. 3 is a structural diagram of a semiconductor sensor according to a second embodiment of the present invention.
FIG. 4 is a structural diagram of a semiconductor sensor according to a third embodiment of the present invention.
FIG. 5 is a structural diagram of a semiconductor sensor according to a fourth embodiment of the present invention.
FIG. 6 is a structural diagram of a semiconductor sensor according to a fifth embodiment of the present invention.
FIG. 7 is a structural diagram of a semiconductor sensor according to a sixth embodiment of the present invention.
FIG. 8 is a diagram showing a mounting example of the semiconductor sensor of the present invention.
FIG. 9 is a diagram showing one embodiment of a mounting structure of a semiconductor sensor according to the present invention.
FIG. 10 is a diagram showing another embodiment of the mounting structure of the semiconductor sensor according to the present invention.
FIG. 11 is a view showing still another embodiment of the mounting structure of the semiconductor sensor according to the present invention.
[Explanation of symbols]
1 Pressure-sensitive chip (semiconductor substrate)
2 Insulating substrate 3 Terminal pad portion 4 Hole 5 External connection substrate 6 Metal bump 7 Metal pin 8 Solder ball 9 Base 10 Mold resin 11 Through hole

Claims (6)

物理量に応じて変位する可動部位を備えた半導体基板と、絶縁基板とが接合され、前記半導体基板と前記絶縁基板は、両者の接合面における外形寸法を異ならせ、少なくとも一方の接合面を露出させるとともに、その露出部分にセンサ回路の端子パッド部を設けたセンサ本体と、
そのセンサ本体が取り付けられる外部接続基板とを備え、
前記半導体基板と前記絶縁基板のうち外形寸法の小さい方と、前記外部接続基板とが接合され、
その外部接続基板の外形寸法を前記センサ本体との接合面より大きくして、前記端子パッドと前記外部接続基板の接合面側表面とを対向させ、
前記外部接続基板の接合側表面露出部と前記端子パッド部の対向する部分に中継コンタクト手段が設けられ、この中継コンタクト手段を介して外部回路との接続を可能とした半導体センサ。
A semiconductor substrate having a movable portion that is displaced in accordance with a physical quantity is bonded to an insulating substrate, and the semiconductor substrate and the insulating substrate have different outer dimensions at a bonding surface of the two and expose at least one bonding surface. And a sensor body having a sensor circuit terminal pad portion on the exposed portion thereof,
An external connection board to which the sensor body is attached,
The smaller of the outer dimensions of the semiconductor substrate and the insulating substrate and the external connection substrate are joined,
The external dimensions of the external connection board are made larger than the bonding surface with the sensor main body, and the terminal pad portion and the bonding surface side surface of the external connection board are opposed to each other,
A semiconductor sensor in which relay contact means is provided at a portion of the external connection substrate opposite to the joint-side surface exposed portion and the terminal pad portion, and connection to an external circuit is enabled via the relay contact means.
前記中継コンタクト手段の部分が樹脂モールドされていることを特徴とする請求項1に記載の半導体センサ。The semiconductor sensor according to claim 1, wherein a portion of the relay contact means is resin-molded. 前記外部接続基板の前記センサ本体との接合面に窪み部を形成し、前記センサ本体を構成する基板のうち前記外部接続基板に接合する基板の下部を前記窪み部に挿入した状態で前記外部接続基板と前記センサ本体とを接合するようにした請求項1または2に記載の半導体センサ。A concave portion is formed on a joint surface of the external connection substrate with the sensor main body, and the external connection is performed in a state in which a lower portion of a substrate that forms the sensor main body and that is bonded to the external connection substrate is inserted into the concave portion. The semiconductor sensor according to claim 1, wherein a substrate and the sensor main body are joined. 前記外部接続基板としてフレキシブル印刷配線板を用いたことを特徴とする請求項1または2に記載の半導体センサ。The semiconductor sensor according to claim 1, wherein a flexible printed wiring board is used as the external connection board. 物理量に応じて変位する可動部位を備えた半導体基板と、絶縁基板とが接合され、前記半導体基板と前記絶縁基板は、両者の接合面における外形寸法を異ならせ、少なくとも一方の接合面を露出させるとともに、その露出部分にセンサ回路の端子パッド部を設けたセンサ本体を有した半導体センサの実装基板への実装構造であって、
前記半導体基板と前記絶縁基板のうち外形寸法の小さい方を、前記実装基板側に位置させるとともに、前記端子パッドを前記実装基板に設けた配線パターンと対向させ、
前記実装基板に形成された配線パターンと、前記端子パッドを直接或いは連結部材を介して接続するようにした半導体センサの実装構造。
A semiconductor substrate having a movable portion that is displaced in accordance with a physical quantity is bonded to an insulating substrate, and the semiconductor substrate and the insulating substrate have different outer dimensions at a bonding surface of the two and expose at least one bonding surface. And a mounting structure of a semiconductor sensor having a sensor body provided with a sensor circuit terminal pad portion on an exposed portion thereof, on a mounting substrate,
A smaller outer dimension of the semiconductor substrate and the insulating substrate is located on the mounting substrate side, and the terminal pad portion is opposed to a wiring pattern provided on the mounting substrate,
A semiconductor sensor mounting structure in which a wiring pattern formed on the mounting board and the terminal pad portion are connected directly or via a connecting member.
前記実装基板の取付面に穴部を設け、前記センサ本体の外形寸法の小さい方の基板をその穴部内に挿入するようにしたことを特徴とする請求項5に記載の半導体センサの実装構造。6. The semiconductor sensor mounting structure according to claim 5, wherein a hole is provided in a mounting surface of the mounting substrate, and a substrate having a smaller outer dimension of the sensor body is inserted into the hole.
JP18720598A 1998-07-02 1998-07-02 Semiconductor sensor and mounting structure Expired - Lifetime JP3567740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18720598A JP3567740B2 (en) 1998-07-02 1998-07-02 Semiconductor sensor and mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18720598A JP3567740B2 (en) 1998-07-02 1998-07-02 Semiconductor sensor and mounting structure

Publications (2)

Publication Number Publication Date
JP2000019042A JP2000019042A (en) 2000-01-21
JP3567740B2 true JP3567740B2 (en) 2004-09-22

Family

ID=16201939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18720598A Expired - Lifetime JP3567740B2 (en) 1998-07-02 1998-07-02 Semiconductor sensor and mounting structure

Country Status (1)

Country Link
JP (1) JP3567740B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004023126A1 (en) * 2002-09-03 2005-12-22 日本特殊陶業株式会社 Silicon microsensor mounting method, manufacturing method, and silicon microsensor
JP4670699B2 (en) * 2006-03-28 2011-04-13 パナソニック電工株式会社 Microphone chip mounting method and microphone chip mounted by the method
ITMI20070099A1 (en) * 2007-01-24 2008-07-25 St Microelectronics Srl ELECTRONIC DEVICE INCLUDING DIFFERENTIAL SENSOR DEVICES MEMS AND SUBSTRATES LAUNDRY
JP2009294152A (en) * 2008-06-06 2009-12-17 Alps Electric Co Ltd Capacity sensor package
CN101799344B (en) * 2010-04-21 2014-07-09 无锡莱顿电子有限公司 Packaging structure of silicon pressure sensor
JP2015007561A (en) * 2013-06-25 2015-01-15 セイコーエプソン株式会社 Module, electronic device, and mobile body
CN115824490A (en) 2018-02-15 2023-03-21 三美电机株式会社 Pressure sensor device

Also Published As

Publication number Publication date
JP2000019042A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
US7282397B2 (en) Methods for designing bond pad rerouting elements for use in stacked semiconductor device assemblies and for assembling semiconductor devices
JP5769964B2 (en) MEMS device
US11174152B2 (en) Over-under sensor packaging with sensor spaced apart from control chip
US20120133042A1 (en) Mounting structure of chip and module using the same
JP3567740B2 (en) Semiconductor sensor and mounting structure
KR20020084889A (en) Semiconductor device
JP3702062B2 (en) Pressure sensor device
JPH11126865A (en) Semiconductor element and manufacture thereof
JP2524482B2 (en) QFP structure semiconductor device
JPH10274583A (en) Semiconductor pressure sensor
JPH10209469A (en) Semiconductor pressure sensor
KR100218335B1 (en) Chip-sized package
JPS6327724A (en) Semiconductor pressure sensor
JPH04312980A (en) Semiconductor pressure sensor
JP3562294B2 (en) Sensor
KR100256305B1 (en) Chip scale package
JPH04320052A (en) Semiconductor device
KR100369501B1 (en) Semiconductor Package
JPH06163811A (en) Semiconductor device and manufacture thereof
JPH1140743A (en) Semiconductor device
JP2023038631A (en) Sensor having dust/noise resistant structure
JPH11326085A (en) Sensor
JPH09196966A (en) Semiconductor accelerometer
KR20010046879A (en) Method for assembling a semiconductor chip
JPH098171A (en) Semiconductor package

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

EXPY Cancellation because of completion of term