JP3567185B2 - Sample analyzer - Google Patents

Sample analyzer Download PDF

Info

Publication number
JP3567185B2
JP3567185B2 JP2000050293A JP2000050293A JP3567185B2 JP 3567185 B2 JP3567185 B2 JP 3567185B2 JP 2000050293 A JP2000050293 A JP 2000050293A JP 2000050293 A JP2000050293 A JP 2000050293A JP 3567185 B2 JP3567185 B2 JP 3567185B2
Authority
JP
Japan
Prior art keywords
ray
sample
signal
waveguide
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000050293A
Other languages
Japanese (ja)
Other versions
JP2001201467A (en
Inventor
啓義 副島
Original Assignee
株式会社島津総合科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津総合科学研究所 filed Critical 株式会社島津総合科学研究所
Priority to JP2000050293A priority Critical patent/JP3567185B2/en
Publication of JP2001201467A publication Critical patent/JP2001201467A/en
Application granted granted Critical
Publication of JP3567185B2 publication Critical patent/JP3567185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、X線等を試料、たとえば金属材料や非金属材料、さらには構造物等の被検査材に照射し、試料からの信号X線を検出することによって試料成分等の解析を行う試料解析装置に関する。
【0002】
【従来の技術】
この種の試料解析装置としては、たとえば蛍光X線装置を挙げることができる。この蛍光X線装置は、X線銃(X線源)から発生するX線を試料に照射し、この照射によって試料から出てくる蛍光X線をX線検出器にて検出するもので、この蛍光X線の波長を測定することによって試料の構成している元素を知ることができる。このような装置においては、図6に示すように、X線照射軸に対し、X線検出器は一定の角度を有する傾斜した方向にて設置され、X線銃2とX線検出器4は互いに離れた位置に配置されている。
【0003】
他方、上記蛍光X線装置やX線光電子分光装置等においては、X線銃からのX線を試料の微小部分に照射する必要があることから、X線を微小径のビームにする研究が行われてきており、新たな「X線ビーム収束装置」(特開昭62−299241号)および「X線集中装置」(特開平2−21299号)が提案されている。この新たな「X線ビーム収束装置」は、多数の微小口径パイプを、一方の集合面が大きく他方の集合面が小さくなるように、かつ他方の集合面からの各パイプの中心延長線が一点に収束するように束ねて円錐台状とし、前記一方の集合面をX線入射面とし、他方の集合面をX線出射面としたものである。このX線ビーム収束装置によれば、一層微小なX線ビームを高パワーで得ることができる。また「X線集中装置」は、各管の中心線の一方の管端からの外方への延長が一点で交わり、各管の他方の端における中心線の管端外方への延長が前記一点とは別の一点に会合するように多数の管を相互結合し、この管群の一端側の各管中心線延長の会合点にX線源を位置させ、他端側の各管中心線延長の会合点に試料の被照射点を位置させるものである。また、イオンビームを試料に照射し、試料から反射されるイオンを照射軸の周囲に配置した検出器にて検出する同軸形イオンビーム分析装置が提案されている。
【0004】
【発明が解決しようとする課題】
上記したように、X線を利用して各種材料の分析、解析を行う場合、X線を微小な点に収束させることや、その試料からの二次X線、すなわち試料の成分に相応する信号を含むX線(以下、信号X線という)の検出を良好に行わせることが求められる。しかしながら、従来の蛍光X線装置においては、X線銃とX線検出器とは離れて設置されているので、装置の簡略化、小形化が困難である。また、照射位置と検出焦点位置を一致させるための調整や試料位置設定の作業が必要で、操作性が悪く熟練を要する等の問題を有してる。
【0005】
また、図7に示すように試料から出射される信号X線の強度は照射X線に対する角度θが小さい程大きい。しかし、この角度θが小さい位置でのX線検出器の設置は困難である。また、新しく提案されている「X線ビーム収束装置」や「X線集中装置」は、微小な地点にX線を収束し照射できる技術、あるいは微小な地点から発生するX線を効率よく検出する技術であるが、照射位置とX線検出位置を一致させるための調整作業が必要で、しかもかつ相当の熟練を要するという問題を有している。
本発明はこのような問題を解決する試料解析装置を提供せんとするものである。
【0006】
【課題を解決するための手段】
本発明が提供する試料解析装置は、上記課題を解決するために、試料に対してX線を照射するX線発生器と、それぞれの一端側開口部が前記X線発生器からのX線出射点を頂点とし、かつX線照射軸を軸芯とする円錐方向に沿って集束され、他端側開口部は前記X線照射軸の軸芯上の一点を頂点とし前記X線照射軸を軸芯とする円錐方向に沿って集束された多数のX線導波細管からなり、かつこれらは二分画され、一方がX線発生器からのX線を前記一端側開口部から入射し他端側開口部に導いて試料に照射する照射X線用導波細管体を形成し、他方が前記他端側開口部より試料からの信号X線を入射し、前記一端側開口部に導く信号X線用導波細管体を形成するX線導波細管体と、前記信号X線導波細管体から出射される信号X線を検出するX線検出器とを備え、X線検出器からの出力信号にて試料を解析するようにしたものである。したがって、試料から発射される信号X線は、X線導波細管体に導かれて照射されそして信号X線がX線検出器へ導かれるので、X線の検出は適格に行われるとともにX線源とX線検出器を同軸上に配置でき、構成を簡略化、小形化ができる。
【0007】
【発明の実施の形態】
以下、本発明が提供する試料解析装置について、X線による解析装置の実施例を挙げ説明する。
図1は本発明による試料解析装置の基本的な構成を示している。すなわち、図1において1は解析を行う対象の試料で、具体的には金属材料や非金属材料、すなわちセメント、コンクリート、食品、薬品等あらゆる材料、さらには構造物等が対象となる。2はこの試料1にX線を発射し照射するX線発生器、具体的にはX線銃であり、4は試料からの信号X線を検出するX線検出器である。
【0008】
3Dは、X線銃2からのX線を試料1に照射するとともに、試料1からの信号X線をX線検出器4に導くX線導波細管体である。
このX線導波細管体3Dは多数本のX線導波細管3たとえばX線ファイバの集合体すなわち集束体であってつぎのとおり構成されている。
すなわちこのX線導波細管体3Dの各X線導波細管3は集束されているが、一端側開口部は、図に示すとおりX線発生器2のX線出射点2Pを頂点とし、かつX線照射軸Lを軸芯とする円錐の方向に沿って集束されている。そして他端側はこのX線照射軸Lを軸芯とするその軸芯上で、かつX線出射点2Pとは異なる別異の一点、具体的には試料1側の一点ないし試料寄りの一点を頂点とし試料へのX線照射軸を軸芯とする円錐の方向に沿って集束されている。
【0009】
しかもこの集束体は二分画されている点に特徴がある。具体的には図示例ではX線照射軸Lを通る平面で上下に二分画されている。そしてその一方側すなわち下方側は、X線銃2からの照射X線を他端側開口部に導き試料に照射する照射X線導波細管体3Sとして形成されている。
他方側すなわち上方側は、試料1の照射点Pからの信号X線を他端側開口部から入射(受け入れ)して一端側開口部に導きX線検出器4に入力される信号X線用導波細管体3Uとして形成させている。
【0010】
このX線導波細管体3Dは曲線の組み合わせ体であり、レンズ機能を有し、かつ多数本でありX線を収束できることから、このX線導波細管体3DをマルチキャピラリX線ファイバレンズと称することもできる。開口部に近接して設置されたX線検出器4は多数本のファイバ端開口部から出射される信号X線を検出できるよう一定の面積を有している。フラットパネル形のX線検出器が好適である。しかも、このX線導波細管体3Dと試料1との位置関係は、X線導波細管体3Dの集束における円錐の頂点(X線照射軸の軸芯上の一点)が試料1における照射点Pと一致する必要がある。そのような位置関係になるようX線導波細管体3Dを試料1に対して対置する案内機構を設けるのが望ましい。
このような構成においては、X線導波細管体3D(X線レンズ)の立体角が特に大きくなければ効果はほぼ同じであり、X線検出器4の数が少なくなるという利点がある。
【0011】
本発明による実施例としては上記したような形態が基本的に挙げられるが、実装置としては図2に示されるプローブ形の装置を提供できる。すなわち、図において5はX線シールドされたプローブで、筐体として構成されこの内方にX線の発生部、検出部が内設されている。この内部の構成は図1に示す実施例と同一で、詳細な説明は省略するが、プローブの小形化がはかられ、携帯形(モバイル形)X線解析装置として利用できる。さらに図3、図4に示されるような変形実施例を挙げることができる。この両変形例はX線銃2からのX線出射が行われる軸芯と試料1へのX線照射軸Lとが同軸でなく一定の角度を有している、ないし一定の角度を有するように変化できるようになっているものである。すなわち、図3は一定の角度がプローブ5により固定されている変形例であり、図4は蛇腹7の介設によって変形できるようになっている例である。図3はシンプルな形であり、図4は試料1の傾きに自在に対応できる利点がある。
【0012】
このプローブ5の先端部には上記した案内機構としての当接部材6が設けられている。もちろんこの部材の付設は必須条件ではない。なお、図1から図4も図1と同様、X線銃2からX線が照射され試料1からの信号X線がX線検出器4に入射されている状態を示している。図5は被検査体、すなわち試料が実物(構造物)であり、具体的にはトンネルのコンクリート内壁面を検査するモバイルX線解析装置の例を示している。すなわち、調査者OPはプローブ5を片手に持って直接内壁面に対置し、他方X線銃や検出器のための電源と制御部およびコンピュータよりなる電源制御部CDを肩に掛け調査することができる。この電源制御部CDにはアンテナTPが設置されていて、測定結果を作業管理事務所に送信したり交通機関の往来などの情報をキャッチして、安全調査ができるようになっている。HDはヘッドマウンテッドディスプレイで、解析結果が作業中にリアルタイムに観察できる。
【0013】
本発明が提供する試料解析装置は以上詳述したとおりであるが、上記ならびに図示例に限定されず種々の変形例を包含するものである。
まず、上記ならびに図示例においては、解析のために取り扱うビームをX線とし、X線発生器すなわちX線銃やX線検出器との組み合わせによる、いわゆるX線形試料解析装置であるが、このビームを電子線とすることも可能で、この場合は電子銃とX線検出器の組み合わせとなる。あるいはビームをイオンとすることもできる。この場合はイオン発生器(イオン銃)とX線検出器の組み合わせとなる。これら電子線やイオンの場合、電磁界によりビーム方向を偏向できる利点がある。さらにビームをレーザとすることもでき、この場合はレーザ発振機とX線検出器の組み合わせとなる。このように本発明の解析装置におけるビームはX線のみに限定されるものではない。したがって、本発明が特許請求の範囲において規定している「X線発生器」には、上記電子線発生器、イオン発生器、あるいはレーザ発振機を含むものとする。
【0014】
つぎに図示例では、X線導波細管体3Dの二分画をX線照射軸を通る平面にて上下に二分画した例としたか、この分画面は平面でなく曲面(円弧)でもよく、たとえば照射X線用導波細管体の断面を三日月形とすることもでき、あるいは信号X線用導波細管体の断面を三日月形にしてもよい。しかも分画は中心を通る必要はなく照射X線用と信号X線用の両導波細管体の断面積を必ずしも同じにする必要はない。また、上記ならびに図示例ではモバイル形、すなわち携帯形、移動形の装置への適用例を中心に挙げたが、研究設備として据え付けられる蛍光X線装置など大形器械や汎用機器としての解析装置にも適用でき、本発明の適用により、小形化、軽量化、簡略化がはかられ、経済的にも優れた解析装置を提供することになる。また、図3に示す照射軸の方向を可変自在にする構成については図示以外の方法もあり、図示例に限定されない。本発明はこれらすべての変形例を包含する。
【0015】
【発明の効果】
本発明が提供する試料解析装置は以上詳述したとおりであるから、検出機構の小形化、簡略化がはかられ、可搬形、移動形の解析装置を提供できる。このことに関連し、従来では試料を測定できる大きさに切断して据え置かれた大形解析装置の試料台位置にセットしなければならず、そのための作業を要したが、そのような作業を省略でき現地にて試料に直接対応でき、分析、解析の作業性が飛躍的に向上する。X線銃とX線検出器は同軸上に配置でき、したがって照射位置とX線検出位置を一致させる作業が極めて容易になる。しかも操作者1人で手持式に操作でき、手軽に分析、解析ができる利点もある。研究所等に設置される大形解析装置の場合でも、その小形化、軽量化がはかられ経済性、操作性にすぐれ、取り扱い容易な解析装置を提供する。
【図面の簡単な説明】
【図1】本発明による試料解析装置の基本的な構成を示す図である。
【図2】本発明による試料解析装置の変形例を示す図である。
【図3】本発明による試料解析装置の変形例を示す図である。
【図4】本発明による試料解析装置の実用的な構成を示す図である。
【図5】本発明による試料解析装置の使用例の構成を示す図である。
【図6】X線分析の原理を示す図である。
【図7】信号X線の特性を示す図である。
【符号の説明】
1……試料
2……X線銃
3……X線導波細管
3D……X線導波細管体
3S……照射X線用導波細管体
3U……信号X線用導波細管体
L……X線照射軸
P……X線照射点
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a sample for irradiating a sample, for example, a metal material or a nonmetal material, or a material to be inspected such as a structure, and analyzing a sample component or the like by detecting a signal X-ray from the sample. It relates to an analyzer.
[0002]
[Prior art]
An example of this type of sample analyzer is a fluorescent X-ray device. This X-ray fluorescence apparatus irradiates a sample with X-rays generated from an X-ray gun (X-ray source), and detects X-ray fluorescence emitted from the sample by the irradiation with an X-ray detector. By measuring the wavelength of the fluorescent X-ray, the elements constituting the sample can be known. In such an apparatus, as shown in FIG. 6, the X-ray detector is installed in an inclined direction having a certain angle with respect to the X-ray irradiation axis, and the X-ray gun 2 and the X-ray detector 4 are They are located away from each other.
[0003]
On the other hand, in the above-mentioned fluorescent X-ray apparatus, X-ray photoelectron spectroscopy apparatus, etc., since it is necessary to irradiate X-rays from an X-ray gun to a minute part of a sample, research on converting X-rays into a beam with a small diameter has been conducted. New "X-ray beam converging devices" (Japanese Patent Application Laid-Open No. 62-299241) and "X-ray concentrating devices" (Japanese Patent Application Laid-Open No. 2-21992) have been proposed. This new "X-ray beam converging device" has a structure in which a large number of small-diameter pipes are formed such that one collecting surface is large and the other collecting surface is small, and the center extension line of each pipe from the other collecting surface is one point. Are converged to form a truncated cone, the one collecting surface being an X-ray incident surface, and the other collecting surface being an X-ray emitting surface. According to this X-ray beam converging device, a finer X-ray beam can be obtained with high power. Further, in the "X-ray concentration apparatus", the extension of the center line of each tube outward from one end of the tube intersects at one point, and the extension of the center line at the other end of each tube outward from the end of the tube is as described above. A number of tubes are interconnected so as to be associated with one point different from one point, the X-ray source is located at the meeting point of each tube center line extension at one end of this tube group, and each tube center line at the other end is connected. The irradiation point of the sample is positioned at the extension meeting point. Further, there has been proposed a coaxial ion beam analyzer that irradiates a sample with an ion beam and detects ions reflected from the sample with a detector arranged around an irradiation axis.
[0004]
[Problems to be solved by the invention]
As described above, when analyzing and analyzing various materials using X-rays, it is necessary to converge the X-rays to a minute point, or to obtain a secondary X-ray from the sample, that is, a signal corresponding to the component of the sample. It is required that the detection of X-rays including X (hereinafter, referred to as signal X-rays) be performed well. However, in the conventional fluorescent X-ray apparatus, since the X-ray gun and the X-ray detector are installed separately, it is difficult to simplify and downsize the apparatus. In addition, there is a problem that adjustment for adjusting the irradiation position to coincide with the detection focus position and work for setting the sample position are required, and the operability is poor and skill is required.
[0005]
As shown in FIG. 7, the intensity of the signal X-ray emitted from the sample increases as the angle θ with respect to the irradiated X-ray decreases. However, it is difficult to install the X-ray detector at a position where the angle θ is small. In addition, newly proposed “X-ray beam convergence device” and “X-ray concentration device” are technologies that can converge and irradiate X-rays to minute spots or efficiently detect X-rays generated from minute spots. Although it is a technique, there is a problem that an adjustment operation for matching the irradiation position and the X-ray detection position is required, and considerable skill is required.
An object of the present invention is to provide a sample analyzer which solves such a problem.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a sample analyzer provided by the present invention has an X-ray generator for irradiating a sample with X-rays, and an opening on one end side of which emits X-rays from the X-ray generator. A point is set as an apex, and the light is focused along a conical direction with the X-ray irradiation axis as an axis. It is composed of a number of X-ray waveguide tubes focused along a conical direction as a core, and these are divided into two, one of which receives X-rays from an X-ray generator from the one end opening and receives the other end. An X-ray waveguide tubing for irradiating the sample by guiding it to the opening is formed, and the other end receives a signal X-ray from the sample through the other end side opening and guides it to the one end side opening. X-ray waveguide forming a waveguide thin-film body for use, and detecting a signal X-ray emitted from the signal X-ray waveguide thin-film. And an X-ray detector, in which so as to analyze the sample by the output signal from the X-ray detector. Therefore, the signal X-rays emitted from the sample are guided to the X-ray waveguide tube and irradiated, and the signal X-rays are guided to the X-ray detector. The source and the X-ray detector can be arranged coaxially, and the configuration can be simplified and downsized.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a sample analyzer provided by the present invention will be described with reference to an example of an analyzer using X-rays.
FIG. 1 shows a basic configuration of a sample analyzer according to the present invention. That is, in FIG. 1, reference numeral 1 denotes a sample to be analyzed, specifically, a metal material or a non-metal material, that is, any material such as cement, concrete, food, medicine, and a structure. Reference numeral 2 denotes an X-ray generator which emits and irradiates the sample 1 with X-rays, specifically an X-ray gun, and 4 denotes an X-ray detector which detects a signal X-ray from the sample.
[0008]
3D is an X-ray waveguide tube that irradiates the sample 1 with X-rays from the X-ray gun 2 and guides the signal X-rays from the sample 1 to the X-ray detector 4.
The X-ray waveguide tube 3D is an aggregate of a number of X-ray waveguide tubes 3, for example, an X-ray fiber, that is, a bundle, and is configured as follows.
That is, each X-ray waveguide tube 3 of the X-ray waveguide tube 3D is focused, but the opening at one end has the X-ray emission point 2P of the X-ray generator 2 as the apex as shown in the figure, and It is focused along the direction of a cone whose axis is the X-ray irradiation axis L. The other end is located on the axis centered on the X-ray irradiation axis L and different from the X-ray emission point 2P, specifically, one point on the sample 1 side or one point near the sample. Are focused along the direction of a cone whose axis is the vertex and whose axis is the X-ray irradiation axis on the sample.
[0009]
Moreover, this bundle is characterized in that it is divided into two parts. More specifically, in the example shown in the drawing, the image is vertically divided into two parts by a plane passing through the X-ray irradiation axis L. One side, that is, the lower side is formed as an irradiated X-ray waveguide tube 3S for guiding the irradiated X-rays from the X-ray gun 2 to the other end side opening and irradiating the sample with the X-rays.
On the other side, that is, on the upper side, a signal X-ray from the irradiation point P of the sample 1 is incident (accepted) from the other end side opening, guided to the one end side opening, and input to the X-ray detector 4. It is formed as a waveguide capillary 3U.
[0010]
Since the X-ray waveguide tube 3D is a combination of curved lines, has a lens function, and is capable of converging a large number of X-rays, the X-ray waveguide tube 3D is connected to a multi-capillary X-ray fiber lens. It can also be called. The X-ray detector 4 installed close to the opening has a certain area so that signal X-rays emitted from a large number of fiber end openings can be detected. A flat panel X-ray detector is preferred. Moreover, the positional relationship between the X-ray waveguide tube 3D and the sample 1 is such that the vertex of the cone (one point on the axis of the X-ray irradiation axis) in the convergence of the X-ray waveguide tube 3D is the irradiation point on the sample 1. Must match P. It is desirable to provide a guide mechanism that opposes the X-ray waveguide capillary 3D with respect to the sample 1 so as to have such a positional relationship.
In such a configuration, the effect is almost the same unless the solid angle of the X-ray waveguide capillary 3D (X-ray lens) is particularly large, and there is an advantage that the number of X-ray detectors 4 is reduced.
[0011]
Embodiments according to the present invention basically include the above-described embodiments. As an actual device, a probe-type device shown in FIG. 2 can be provided. That is, in the figure, reference numeral 5 denotes an X-ray shielded probe, which is configured as a housing and has an X-ray generation unit and a detection unit provided inside the housing. The internal configuration is the same as that of the embodiment shown in FIG. 1 and detailed description is omitted. However, the probe can be downsized and can be used as a portable X-ray analyzer. Further, there can be mentioned modified embodiments as shown in FIGS. In both of these modified examples, the axis at which the X-ray is emitted from the X-ray gun 2 and the X-ray irradiation axis L to the sample 1 are not coaxial and have a certain angle, or have a certain angle. It is something that can be changed to. That is, FIG. 3 shows a modification in which a fixed angle is fixed by the probe 5, and FIG. 4 shows an example in which it can be deformed by the provision of the bellows 7. FIG. 3 shows a simple form, and FIG. 4 has an advantage that it can freely cope with the inclination of the sample 1.
[0012]
A contact member 6 as the above-described guide mechanism is provided at the tip of the probe 5. Of course, the attachment of this member is not an essential condition. 1 to 4 also show a state in which X-rays are emitted from the X-ray gun 2 and signal X-rays from the sample 1 are incident on the X-ray detector 4 as in FIG. FIG. 5 shows an example of a mobile X-ray analysis apparatus for inspecting a concrete inner wall surface of a tunnel in which an object to be inspected, that is, a sample is a real object (structure). That is, the investigator OP can hold the probe 5 in one hand and directly oppose the inner wall surface, and on the other hand, carry out the investigation by hanging the power supply and control unit for the X-ray gun and the detector and the power supply control unit CD including the computer on the shoulder. it can. The power control unit CD is provided with an antenna TP so that a safety check can be performed by transmitting a measurement result to a work management office or catching information such as traffic. HD is a head-mounted display, and the analysis results can be observed in real time during work.
[0013]
The sample analyzer provided by the present invention is as described in detail above, but is not limited to the above and illustrated examples, but includes various modifications.
First, in the above and illustrated examples, a beam handled for analysis is an X-ray, and a so-called X-linear sample analyzer is used in combination with an X-ray generator, that is, an X-ray gun or an X-ray detector. May be an electron beam. In this case, a combination of an electron gun and an X-ray detector is used. Alternatively, the beam can be an ion. In this case, a combination of an ion generator (ion gun) and an X-ray detector is used. These electron beams and ions have the advantage that the beam direction can be deflected by an electromagnetic field. Further, the beam can be a laser, in which case a combination of a laser oscillator and an X-ray detector is used. Thus, the beam in the analyzer of the present invention is not limited to X-rays only. Therefore, the "X-ray generator" defined in the claims of the present invention includes the above-mentioned electron beam generator, ion generator, or laser oscillator.
[0014]
Next, in the illustrated example, the X-ray waveguide tube 3D is divided into two parts vertically in a plane passing through the X-ray irradiation axis, or the divided screen may be a curved surface (arc) instead of a plane. For example, the cross-section of the irradiated X-ray waveguide can be crescent-shaped, or the cross-section of the signal X-ray waveguide can be crescent-shaped. Moreover, the fraction does not need to pass through the center, and the cross-sectional areas of both the waveguide X-rays for irradiation and the signal X-rays do not necessarily have to be the same. In the above and illustrated examples, examples of application to a mobile type, that is, a portable type or a mobile type apparatus have been mainly described. However, the present invention is applied to a large-sized instrument such as a fluorescent X-ray apparatus installed as a research facility or an analyzer as a general-purpose instrument. By applying the present invention, it is possible to provide an analysis device which is reduced in size, weight, and simplification, and is economically excellent. In addition, the configuration shown in FIG. 3 that allows the direction of the irradiation axis to be made variable is not limited to the illustrated example, and is not limited to the illustrated example. The present invention covers all these variations.
[0015]
【The invention's effect】
Since the sample analyzer provided by the present invention has been described in detail above, the detection mechanism can be downsized and simplified, and a portable and mobile analyzer can be provided. In connection with this, in the past, it was necessary to cut the sample to a size that could be measured and set it at the sample table position of the large analyzer that had been set up, and this required work. It can be omitted and it can correspond directly to the sample on site, and the workability of analysis and analysis is dramatically improved. The X-ray gun and the X-ray detector can be arranged coaxially, so that the task of matching the irradiation position with the X-ray detection position becomes extremely easy. In addition, there is an advantage that one operator can operate the apparatus in a hand-held manner, and analysis and analysis can be easily performed. Even in the case of a large analyzer installed in a research laboratory or the like, an analyzer that can be reduced in size and weight, has excellent economic efficiency and operability, and is easy to handle is provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic configuration of a sample analyzer according to the present invention.
FIG. 2 is a diagram showing a modification of the sample analyzer according to the present invention.
FIG. 3 is a diagram showing a modification of the sample analyzer according to the present invention.
FIG. 4 is a diagram showing a practical configuration of a sample analyzer according to the present invention.
FIG. 5 is a diagram showing a configuration of a usage example of the sample analyzer according to the present invention.
FIG. 6 is a diagram showing the principle of X-ray analysis.
FIG. 7 is a diagram showing characteristics of a signal X-ray.
[Explanation of symbols]
1 ... Sample 2 ... X-ray gun 3 ... X-ray waveguide capillary 3D ... X-ray waveguide capillary 3S ... Irradiation X-ray waveguide capillary 3U ... Signal X-ray waveguide capillary L ... X-ray irradiation axis P ... X-ray irradiation point

Claims (1)

試料に対してX線を照射するX線発生器と、それぞれの一端側開口部が前記X線発生器からのX線出射点を頂点とし、かつX線照射軸を軸芯とする円錐方向に沿って集束され、他端側開口部は前記X線照射軸の軸芯上の一点を頂点とし前記X線照射軸を軸芯とする円錐方向に沿って集束された多数のX線導波細管からなり、かつこれらは二分画され、一方がX線発生器からのX線を前記一端側開口部から入射し他端側開口部に導いて試料に照射する照射X線用導波細管体を形成し、他方が前記他端側開口部より試料からの信号X線を入射して一端側開口部に導く信号X線用導波細管体を形成するX線導波細管体と、前記信号X線導波細管体から出射される信号X線を検出するX線検出器とを備え、X線検出器からの出力信号にて試料を解析するようにしたことを特徴とする試料解析装置。An X-ray generator that irradiates the sample with X-rays, and each opening on one end side has an X-ray emission point from the X-ray generator as an apex and an X-ray irradiation axis as a conical direction. A number of X-ray waveguide tubes focused along a conical direction with the other end side opening being a vertex at one point on the axis of the X-ray irradiation axis and having the X-ray irradiation axis as the axis. And these are divided into two parts, one of which is an irradiation X-ray waveguide tubing for irradiating a sample by irradiating an X-ray from an X-ray generator through the one end opening and guiding the X-ray to the other end opening. An X-ray waveguide tube for forming a signal X-ray waveguide tube for receiving a signal X-ray from a sample through the other end side opening and guiding the signal X-ray to the one end side opening; An X-ray detector for detecting a signal X-ray emitted from the line waveguide capillary, and analyzing the sample with an output signal from the X-ray detector Sample analyzing apparatus characterized by the way.
JP2000050293A 2000-01-21 2000-01-21 Sample analyzer Expired - Lifetime JP3567185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050293A JP3567185B2 (en) 2000-01-21 2000-01-21 Sample analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050293A JP3567185B2 (en) 2000-01-21 2000-01-21 Sample analyzer

Publications (2)

Publication Number Publication Date
JP2001201467A JP2001201467A (en) 2001-07-27
JP3567185B2 true JP3567185B2 (en) 2004-09-22

Family

ID=18572094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050293A Expired - Lifetime JP3567185B2 (en) 2000-01-21 2000-01-21 Sample analyzer

Country Status (1)

Country Link
JP (1) JP3567185B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102549B2 (en) * 2006-07-14 2012-12-19 独立行政法人科学技術振興機構 X-ray analyzer and X-ray analysis method
US7916834B2 (en) * 2007-02-12 2011-03-29 Thermo Niton Analyzers Llc Small spot X-ray fluorescence (XRF) analyzer
WO2010141709A1 (en) * 2009-06-03 2010-12-09 Thermo Niton Analyzers Llc X-ray system and methods with detector interior to focusing element
DE102014115383A1 (en) * 2014-08-01 2016-02-04 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Handheld device and mobile device for X-ray fluorescence analysis

Also Published As

Publication number Publication date
JP2001201467A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
JP3996821B2 (en) X-ray analyzer
CN102004113B (en) X-ray analysis apparatus and x-ray analysis method
US6711234B1 (en) X-ray fluorescence apparatus
US7972062B2 (en) Optical positioner design in X-ray analyzer for coaxial micro-viewing and analysis
US20220003691A1 (en) X-ray analyzer
DE112015000433B4 (en) Sample holder, viewing system, and imaging process
JP3284198B2 (en) X-ray fluorescence analyzer
JP3567185B2 (en) Sample analyzer
JP3593651B2 (en) Sample analyzer
JP4837964B2 (en) X-ray focusing device
US9268126B2 (en) Observation and analysis unit
JP3081648B2 (en) Telemetry device
JP2009236622A (en) High-resolution x-ray microscopic apparatus with fluorescent x-ray analysis function
JP3902048B2 (en) Radiation inspection equipment
CN108398450A (en) Microbeam X-ray fluorescence analytical method based on combination X-ray capillary
CN108709898B (en) Microbeam X-ray fluorescence analysis system based on combined X-ray capillary
CN208125648U (en) MICRO-BEAM XRF ANALYSIS system based on combination X-ray capillary
JP2010197229A (en) Fluorescent x-ray analyzer
JP5347559B2 (en) X-ray analyzer
CN2145381Y (en) X-ray fluorescence analyser using X-ray lens
CN115389538B (en) X-ray analysis device and method
JP2017211290A (en) X-ray irradiation device
JP2010055883A (en) X-ray tube and fluorescence x-ray spectroscopic analyzer using same
JP5833327B2 (en) X-ray tube and X-ray analyzer
JP2023521742A (en) Apparatus for transmission electron microscopy cathodoluminescence

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3567185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term