JP3593651B2 - Sample analyzer - Google Patents

Sample analyzer Download PDF

Info

Publication number
JP3593651B2
JP3593651B2 JP2000050294A JP2000050294A JP3593651B2 JP 3593651 B2 JP3593651 B2 JP 3593651B2 JP 2000050294 A JP2000050294 A JP 2000050294A JP 2000050294 A JP2000050294 A JP 2000050294A JP 3593651 B2 JP3593651 B2 JP 3593651B2
Authority
JP
Japan
Prior art keywords
ray
sample
signal
rays
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000050294A
Other languages
Japanese (ja)
Other versions
JP2001201468A (en
Inventor
啓義 副島
忠 成沢
Original Assignee
株式会社島津総合科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津総合科学研究所 filed Critical 株式会社島津総合科学研究所
Priority to JP2000050294A priority Critical patent/JP3593651B2/en
Publication of JP2001201468A publication Critical patent/JP2001201468A/en
Application granted granted Critical
Publication of JP3593651B2 publication Critical patent/JP3593651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、X線等を試料、たとえば金属材料や非金属材料、さらには構造物等の被検査材に照射し、試料からの信号X線を検出することによって試料成分等の解析を行う試料解析装置に関する。
【0002】
【従来の技術】
この種の試料解析装置としては、たとえば蛍光X線装置を挙げることができる。この蛍光X線装置は、X線銃(X線源)から発生するX線を試料に照射し、この照射によって試料から出てくる蛍光X線をX線検出器にて検出するもので、この蛍光X線の波長を測定することによって試料の構成している元素を知ることができる。このような装置においては、図8に示すように、X線照射軸に対し、X線検出器は一定の角度を有する傾斜した方向にて設置され、X線銃2とX線検出器4は互いに離れた位置に配置されている。
【0003】
他方、上記蛍光X線装置やX線光電子分光装置等においては、X線銃からのX線を試料の微小部分に照射する必要があることから、X線を微小径のビームにする研究が行われてきており、新たな「X線ビーム収束装置」(特開昭62−299241号)および「X線集中装置」(特開平2−21299号)が提案されている。この新たな「X線ビーム収束装置」は、多数の微小口径パイプを、一方の集合面が大きく他方の集合面が小さくなるように、かつ他方の集合面からの各パイプの中心延長線が一点に収束するように束ねて円錐台状とし、前記一方の集合面をX線入射面とし、他方の集合面をX線出射面としたものである。このX線ビーム収束装置によれば、一層微小なX線ビームを高パワーで得ることができる。また「X線集中装置」は、各管の中心線の一方の管端からの外方への延長が一点で交わり、各管の他方の端における中心線の管端外方への延長が前記一点とは別の一点に会合するように多数の管を相互結合し、この管群の一端側の各管中心線延長の会合点にX線源を位置させ、他端側の各管中心線延長の会合点に試料の被照射点を位置させるものである。また、イオンビームを試料に照射し、試料から反射されるイオンを照射軸の周囲に配置した検出器にて検出する同軸形イオンビーム分析装置が提案されている。
【0004】
【発明が解決しようとする課題】
上記したように、X線を利用して各種材料の分析、解析を行う場合、X線を微小な点に収束させることや、その試料からの二次X線、すなわち試料の成分に相応する信号を含むX線(以下、信号X線という)の検出を良好に行わせることが求められる。しかしながら、従来の蛍光X線装置においては、X線銃とX線検出器とは離れて設置されているので、装置の簡略化、小形化が困難である。また、照射位置と検出焦点位置を一致させるための調整や試料位置設定の作業が必要で、操作性が悪く熟練を要する等の問題を有してる。
【0005】
また、図9に示すように試料から出射される信号X線の強度は照射X線に対する角度θが小さい程大きい。しかし、この角度θが小さい位置でのX線検出器の設置は困難である。また、新しく提案されている「X線ビーム収束装置」や「X線集中装置」は、微小な地点にX線を収束し照射できる技術、あるいは微小な地点から発生するX線を効率よく検出する技術であるが、照射位置とX線検出位置を一致させるための調整作業が必要で、しかもかつ相当の熟練を要するという問題を有している。
本発明はこのような問題を解決する試料解析装置を提供せんとするものである。
【0006】
【課題を解決するための手段】
本発明が提供する試料解析装置は、上記課題を解決するために、試料に対してX線を照射するX線発生器と、それぞれの一端側開口部が試料のX線照射点を頂点とする円錐面に沿って配列されていて、試料からの信号X線を入射し、他端側開口部は入射した信号X線を前記X線発生器とX線照射点を結ぶ照射軸の周囲に出射させるよう配列された多数本のX線導波細管を組み合わせたX線導波細管体と、このX線導波細管体から出射される信号X線を検出するX線検出器とを備え、X線検出器からの出力信号にて試料を解析するようにしたものである。したがって、試料から発射される信号X線は、X線導波細管体にて受け取られ、かつX線検出器へ導かれるので、X線の検出は適格に行われるとともにX線源とX線検出器を同軸上に配置でき、構成を簡略化、小形化ができる。
【0007】
【発明の実施の形態】
以下、本発明が提供する試料解析装置について、X線による解析装置の実施例を挙げ説明する。
図1は本発明による試料解析装置の基本的な構成の一例を斜視的に示している。すなわち、図1において1は解析を行う対象の試料で、具体的には金属材料や非金属材料、すなわちセメント、コンクリート、食品、薬品等あらゆる材料、さらには構造物等が対象となる。2はこの試料1にX線を発射し照射するX線発生器、具体的にはX線銃である。PはこのX線照射点を示している。
【0008】
X線が照射されると、前述したとおりその照射点Pを頂点とする円錐面に沿って信号X線が発生する。3はこの信号X線を一端側開口部にて入射するX線導波細管であって、前記円錐面に沿って多数本配列されている。このX線導波細管3は具体的にはX線を導くX線ファイバで構成され、これら多数本の組み合わせによってX線導波細管体3Dが構成されている。図示例では、このX線導波細管3は理解を容易にするために太く、しかも2本のみ代表的に示しているが、ファイバで細管であり、しかもこれらは照射点Pを頂点とし、かつX線照射軸Lを軸芯とする円錐面に沿って多数本配設されている。図示例では一円錐面形であるが、二重円錐面に沿って二重に配列させてもよいし、さらに三重、四重でもよい。ただし、照射点Pを頂点とする円錐面方向にそれぞれ開口していて信号X線の入射を効率よく適格に行い得るようになっている。この円錐面の頂角は図9について説明したように小さいことが望ましく、具体的には45°角度以内が好適である。
【0009】
そして、このX線導波細管体3Dの他端側は、入射された信号X線を出射するべく開口部が設けられているが、この開口部は図示例ではX線照射軸L上に収束するよう円錐面に沿って配列される形となっている。すなわち曲管として形成されており、したがってこのX線導波細管体3Dはレンズの機能を有している。ファイバが多数本でありX線を収束できることから、このX線導波細管体3DをマルチキャピラリX線ファイバレンズと称することもできる。4はこの開口部に近接して設置されたX線検出器で、図示例ではX線導波細管3ごとに1個対設した実施例となっているが、X線導波細管体3Dの他端側開口部がリング状をなしていることから、1個の環状のX線検出器とすることもできる。あるいは4Sで示すX線検出器のように収束位置に1個設置するものでもよい。
なお、後述するが本発明においては、このX線導波細管体3Dの他端側開口部は、出射するX線が収束する形に配設されることを必須要件としているものではない。
【0010】
以上のような構成によって、試料から発生した信号X線はX線検出器4によって検出され、その波長が測定されて試料1の元素が明らかとなり、定性分析が可能となる。あるいは信号X線の強度を測定することにより含有元素の量を知る、定量分析を行うことができる。
【0011】
この図1に示す構成では、X線検出器4、4SがX線銃2より後方に位置しているが、この配置関係は本発明においては限定される事項ではなく、X線銃の前方(試料側寄り)に配置することもできる。
図2に示す実施例は、X線導波細管体3Lが直線状で、かつX線照射軸Lの周囲に環状に配列された例である。この実施例ではX線導波細管体3Dはレンズ機能を有しないが、X線銃2がマルチキャピラリX線ファイバすなわちX線導波細管体3Dの内方に配置できるので小形化がはかれる。
【0012】
つぎに図3に示す実施例は、X線導波細管体3Dの分画を同心円にて行ったもので、内方側に照射X線用導波細管体3Sが配置され、外方側に信号X線用導波細管体3Uが配置されている。X線検出器4を環状形とすることもできる。さらに図4に示す実施例は、X線導波細管体3Dが円錐台状に形成された例を示しており、図3と同様、同心円にて照射X線用導波細管体3Sと信号X線用導波細管体3Uに分画されている。これら図3、図4に示す実施例は、一定の面積を有するX線導波細管体3Dの開口部にてX線の出射と入射が行われ、より精度の高い解析を保障する。
【0013】
図5は、X線導波細管体3Dの配置が図1と異なるもので、すなわちX線導波細管3は照射点Pを頂点とする円錐面に沿って配置されているものの、それらの組み合わせ体であるX線導波細管体3Dの円錐軸芯はX線銃2の照射軸Lと同一ではない。照射軸Lに対して一定の角度を有しているが、この傾きは固定的であってもよいし、調節自在(可変自在)であってもよい。この角度は小さいことが望まれ、たとえば30°前後以内が望まれる。
以上のような各変形例を挙げたが、本発明は基本的にはX線銃が照射点を頂点とする円錐面の範囲内に位置していることに特徴がある。
【0014】
本発明による実施例としては上記したような形態が基本的に挙げられるが、実装置としては図6に示されるプローブ形の装置を提供できる。すなわち、図において5はX線シールドされたプローブで、筐体として構成されこの内方にX線の発生部、検出部が内設されている。この内部の構成は図2に示す実施例と同一で、詳細な説明は省略するが、プローブの小形化がはかられ、携帯形(モバイル形)X線解析装置として利用できる。
【0015】
図7は被検査体、すなわち試料が実物(構造物)であり、具体的にはトンネルのコンクリート内壁面を検査するモバイルX線解析装置の例を示している。すなわち、調査者OPはプローブ5を片手に持って直接内壁面に対置し、他方CDはX線銃や検出器のための電源と制御部およびコンピュータよりなる電源制御部で、肩に掛け調査することができる。この電源制御部CDにはアンテナTPが設置されていて、測定結果を作業管理事務所(図示せず)に送信したり、交通機関の往来などの情報をキャッチして、安全調査ができるようになっている。HDはヘッドマウンテッドディスプレイで、解析結果が作業中にリアルタイムに観察できるる。
【0016】
本発明が提供する試料解析装置は以上詳述したとおりであるが、上記ならびに図示例に限定されず種々の変形例を包含するものである。
まず、上記ならびに図示例においては、解析のために取り扱うビームをX線とし、X線発生器すなわちX線銃やX線検出器との組み合わせによる、いわゆるX線形試料解析装置であるが、このビームを電子線とすることも可能で、この場合は電子銃とX線検出器の組み合わせとなる。あるいはビームをイオンとするイオン形試料解析装置とすることもでき、この場合はイオン発生器(イオン銃)とX線検出器の組み合わせとなる。これら電子線やイオンの場合、電磁界によりビーム方向を偏向できる利点がある。さらにビームをレーザとすることもでき、この場合はレーザ発振機とX線検出器の組み合わせとなる。このように本発明の解析装置におけるビームはX線のみに限定されるものではない。したがって、本発明が特許請求の範囲において規定している「X線発生器」には、上記電子線発生器、イオン発生器、あるいはレーザ発振機を含むものとする。
【0017】
つぎに上記ならびに図示例ではモバイル形、すなわち携帯形、移動形の装置への適用例を中心に挙げたが、研究設備として据え付けられる蛍光X線装置など大形器械や汎用機器としての解析装置にも適用でき、本発明の適用により小形化、軽量化、簡略化がはかられ、経済的にも優れた解析装置を提供することになる。本発明はこれらすべての変形例を包含する。
【0018】
【発明の効果】
本発明が提供する試料解析装置は以上詳述したとおりであるから、検出機構の小形化、簡略化がはかられ、可搬形、移動形の解析装置を提供できる。このことに関連し、従来では試料を測定できる大きさに切断して据え置かれた大形解析装置の試料台位置にセットしなければならず、そのための作業を要したが、そのような作業を省略でき現地にて試料に直接対応でき、分析、解析の作業性が飛躍的に向上する。X線銃とX線検出器は同軸上に配置でき、したがって照射位置とX線検出位置を一致させる作業が極めて容易になる。しかも操作者1人で手持式に操作でき、手軽に分析、解析ができる利点もある。研究所等に設置される大形解析装置の場合でも、その小形化、軽量化がはかられ経済性、操作性にすぐれ、取り扱い容易な試料解析装置を提供する。
【図面の簡単な説明】
【図1】本発明による試料解析装置の基本的な構成を示す図である。
【図2】本発明による試料解析装置の変形例の構成を示す図である。
【図3】本発明による試料解析装置の変形例の構成を示す図である。
【図4】本発明による試料解析装置の変形例の構成を示す図である。
【図5】本発明による試料解析装置の変形例の構成を示す図である。
【図6】本発明による試料解析装置の実用的な構成を示す図である。
【図7】本発明による試料解析装置の使用例を示す図である。
【図8】X線分析の原理を示す図である。
【図9】信号X線の特性を示す図である。
【符号の説明】
1……試料
2……X線銃
3……X線導波細管
3D……X線導波細管体
3S……照射X線用導波細管体
3U……信号X線用導波細管体
3L……直線形X線導波細管体
4、4S……X線検出器
5……プローブ
L……X線照射軸
P……X線照射点
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a sample for irradiating a sample, for example, a metal material or a nonmetal material, or a material to be inspected such as a structure, and analyzing a sample component or the like by detecting a signal X-ray from the sample. It relates to an analyzer.
[0002]
[Prior art]
An example of this type of sample analyzer is a fluorescent X-ray device. This X-ray fluorescence apparatus irradiates a sample with X-rays generated from an X-ray gun (X-ray source), and detects X-ray fluorescence emitted from the sample by the irradiation with an X-ray detector. By measuring the wavelength of the fluorescent X-ray, the elements constituting the sample can be known. In such an apparatus, as shown in FIG. 8, the X-ray detector is installed in an inclined direction having a certain angle with respect to the X-ray irradiation axis, and the X-ray gun 2 and the X-ray detector 4 They are located away from each other.
[0003]
On the other hand, in the above-mentioned fluorescent X-ray apparatus, X-ray photoelectron spectroscopy apparatus, etc., since it is necessary to irradiate X-rays from an X-ray gun to a minute part of a sample, research on converting X-rays into a beam with a small diameter has been conducted. New "X-ray beam converging devices" (Japanese Patent Application Laid-Open No. 62-299241) and "X-ray concentrating devices" (Japanese Patent Application Laid-Open No. 2-21992) have been proposed. This new "X-ray beam converging device" has a structure in which a large number of small-diameter pipes are formed such that one collecting surface is large and the other collecting surface is small, and the center extension line of each pipe from the other collecting surface is one point. Are converged to form a truncated cone, the one collecting surface being an X-ray incident surface, and the other collecting surface being an X-ray emitting surface. According to this X-ray beam converging device, a finer X-ray beam can be obtained with high power. Further, in the "X-ray concentration apparatus", the extension of the center line of each tube outward from one end of the tube intersects at one point, and the extension of the center line at the other end of each tube outward from the end of the tube is as described above. A number of tubes are interconnected so as to be associated with one point different from one point, the X-ray source is located at the meeting point of each tube center line extension at one end of this tube group, and each tube center line at the other end is connected. The irradiation point of the sample is positioned at the extension meeting point. Further, there has been proposed a coaxial ion beam analyzer that irradiates a sample with an ion beam and detects ions reflected from the sample with a detector arranged around an irradiation axis.
[0004]
[Problems to be solved by the invention]
As described above, when analyzing and analyzing various materials using X-rays, it is necessary to converge the X-rays to a minute point, or to obtain a secondary X-ray from the sample, that is, a signal corresponding to the component of the sample. It is required that the detection of X-rays including X (hereinafter, referred to as signal X-rays) be performed well. However, in the conventional fluorescent X-ray apparatus, since the X-ray gun and the X-ray detector are installed separately, it is difficult to simplify and downsize the apparatus. In addition, there is a problem that adjustment for adjusting the irradiation position to coincide with the detection focus position and work for setting the sample position are required, and the operability is poor and skill is required.
[0005]
Further, as shown in FIG. 9, the intensity of the signal X-ray emitted from the sample increases as the angle θ with respect to the irradiation X-ray decreases. However, it is difficult to install the X-ray detector at a position where the angle θ is small. In addition, newly proposed “X-ray beam convergence device” and “X-ray concentration device” are technologies that can converge and irradiate X-rays to minute spots or efficiently detect X-rays generated from minute spots. Although it is a technique, there is a problem that an adjustment operation for matching the irradiation position and the X-ray detection position is required, and considerable skill is required.
An object of the present invention is to provide a sample analyzer which solves such a problem.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, a sample analyzer provided by the present invention has an X-ray generator that irradiates a sample with X-rays, and each one end side opening has an X-ray irradiation point of the sample as a vertex. Arranged along a conical surface, signal X-rays from the sample enter, and the other end opening emits the incident signal X-rays around an irradiation axis connecting the X-ray generator and the X-ray irradiation point. An X-ray waveguide combined with a large number of X-ray waveguides arranged to cause the X-ray, and an X-ray detector for detecting a signal X-ray emitted from the X-ray waveguide. The sample is analyzed by the output signal from the line detector. Therefore, the signal X-rays emitted from the sample are received by the X-ray waveguide tube and guided to the X-ray detector, so that the X-ray detection is performed appropriately and the X-ray source and X-ray detection are performed. Can be arranged coaxially, and the configuration can be simplified and downsized.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a sample analyzer provided by the present invention will be described with reference to an example of an analyzer using X-rays.
FIG. 1 is a perspective view showing an example of a basic configuration of a sample analyzer according to the present invention. That is, in FIG. 1, reference numeral 1 denotes a sample to be analyzed, specifically, a metal material or a non-metal material, that is, any material such as cement, concrete, food, medicine, and a structure. Reference numeral 2 denotes an X-ray generator for emitting and irradiating the sample 1 with X-rays, specifically, an X-ray gun. P indicates this X-ray irradiation point.
[0008]
When X-rays are irradiated, signal X-rays are generated along the conical surface having the irradiation point P as the vertex as described above. Numeral 3 denotes an X-ray waveguide tube which receives the signal X-rays at an opening on one end side thereof, and a large number thereof are arranged along the conical surface. The X-ray waveguide tube 3 is specifically composed of an X-ray fiber for guiding X-rays, and an X-ray waveguide tube body 3D is constituted by a combination of these many tubes. In the illustrated example, this X-ray waveguide thin tube 3 is thick for ease of understanding, and only two tubes are representatively shown. A large number are provided along a conical surface whose axis is the X-ray irradiation axis L. In the illustrated example, the shape is a single conical surface, but it may be arranged double along a double conical surface, or may be triple or quadruple. However, they are opened in the directions of the conical surfaces with the irradiation point P as the apex, so that the signal X-ray can be efficiently and appropriately incident. The apex angle of the conical surface is desirably small as described with reference to FIG. 9, and specifically, is preferably within a 45 ° angle.
[0009]
The other end of the X-ray waveguide tube 3D is provided with an opening for emitting the incident signal X-ray, but this opening converges on the X-ray irradiation axis L in the illustrated example. Are arranged along the conical surface. That is, it is formed as a curved tube, and thus this X-ray waveguide thin tube 3D has the function of a lens. Since there are many fibers and X-rays can be converged, this X-ray waveguide tube 3D can also be called a multi-capillary X-ray fiber lens. Reference numeral 4 denotes an X-ray detector installed in the vicinity of the opening, which is an embodiment in which one X-ray waveguide 3 is provided for each X-ray waveguide capillary 3 in the illustrated example. Since the opening on the other end side has a ring shape, it can be a single annular X-ray detector. Alternatively, one provided at the convergence position, such as an X-ray detector indicated by 4S, may be used.
Note that, as will be described later, in the present invention, it is not an essential requirement that the other end side opening of the X-ray waveguide thin tube 3D be arranged so that the emitted X-rays converge.
[0010]
With the above-described configuration, the X-ray signal generated from the sample is detected by the X-ray detector 4 and its wavelength is measured to clarify the element of the sample 1 and qualitative analysis becomes possible. Alternatively, quantitative analysis in which the amount of the contained element is known by measuring the intensity of the signal X-ray can be performed.
[0011]
In the configuration shown in FIG. 1, the X-ray detectors 4 and 4S are located behind the X-ray gun 2, but this arrangement is not limited in the present invention, and the X-ray detectors 4 and 4S are located in front of the X-ray gun. (Close to the sample side).
The embodiment shown in FIG. 2 is an example in which the X-ray waveguide thin tubes 3L are linearly arranged in a ring around the X-ray irradiation axis L. In this embodiment, the X-ray waveguide tube 3D does not have a lens function, but the X-ray gun 2 can be disposed inside the multi-capillary X-ray fiber, that is, the X-ray waveguide tube 3D, so that the size can be reduced.
[0012]
Next, in the embodiment shown in FIG. 3, the fractionation of the X-ray waveguide tube 3D is performed in a concentric circle, and the irradiation X-ray waveguide tube 3S is arranged on the inner side, and on the outer side. A signal X-ray waveguide tube 3U is arranged. The X-ray detector 4 may have an annular shape. Further, the embodiment shown in FIG. 4 shows an example in which the X-ray waveguide capillary 3D is formed in a truncated cone shape, and similarly to FIG. 3, the irradiation X-ray waveguide capillary 3S and the signal X are concentrically formed. It is fractionated into 3U of line waveguide tubing. In the embodiment shown in FIGS. 3 and 4, X-rays are emitted and incident at the opening of the X-ray waveguide tube 3D having a certain area, thereby ensuring more accurate analysis.
[0013]
FIG. 5 is different from FIG. 1 in the arrangement of the X-ray waveguide tube 3D. That is, although the X-ray waveguide tube 3 is arranged along a conical surface having the irradiation point P as the vertex, a combination thereof is shown. The conical axis of the X-ray waveguide tube 3D, which is the body, is not the same as the irradiation axis L of the X-ray gun 2. Although it has a certain angle with respect to the irradiation axis L, this inclination may be fixed or adjustable (variable). It is desirable that this angle is small, for example, within about 30 °.
Although the modifications described above have been described, the present invention is basically characterized in that the X-ray gun is located within the range of the conical surface whose apex is the irradiation point.
[0014]
Embodiments according to the present invention basically include the above-described embodiments. As an actual apparatus, a probe-type apparatus shown in FIG. 6 can be provided. That is, in the figure, reference numeral 5 denotes an X-ray shielded probe, which is configured as a housing and has an X-ray generation unit and a detection unit provided inside the housing. The internal configuration is the same as that of the embodiment shown in FIG. 2 and detailed description is omitted. However, the probe can be downsized and can be used as a portable (mobile) X-ray analyzer.
[0015]
FIG. 7 shows an example of a mobile X-ray analysis apparatus for inspecting an object to be inspected, that is, a specimen (structure), specifically, a concrete inner wall surface of a tunnel. That is, the investigator OP holds the probe 5 with one hand and directly opposes the inner wall surface, while the CD is a power supply and control unit for the X-ray gun and the detector and a power supply control unit composed of a computer, and conducts a survey by hanging on the shoulder. be able to. An antenna TP is provided in the power supply control unit CD so that a measurement result can be transmitted to a work management office (not shown) or information such as traffic traffic can be caught so that a safety investigation can be performed. Has become. HD is a head mounted display, which allows the analysis results to be observed in real time during work.
[0016]
The sample analyzer provided by the present invention is as described in detail above, but is not limited to the above and illustrated examples, but includes various modifications.
First, in the above and illustrated examples, a beam handled for analysis is an X-ray, and a so-called X-linear sample analyzer is used in combination with an X-ray generator, that is, an X-ray gun or an X-ray detector. May be an electron beam. In this case, a combination of an electron gun and an X-ray detector is used. Alternatively, an ion-type sample analyzer using a beam as an ion can be used. In this case, a combination of an ion generator (ion gun) and an X-ray detector is used. These electron beams and ions have the advantage that the beam direction can be deflected by an electromagnetic field. Further, the beam can be a laser, in which case a combination of a laser oscillator and an X-ray detector is used. Thus, the beam in the analyzer of the present invention is not limited to X-rays only. Therefore, the "X-ray generator" defined in the claims of the present invention includes the above-mentioned electron beam generator, ion generator, or laser oscillator.
[0017]
Next, in the above and illustrated examples, the example of application to a mobile type, that is, a portable type or a mobile type apparatus has been mainly described. The present invention can provide an analysis apparatus which is reduced in size, weight, and simplification, and which is economically excellent. The present invention covers all these variations.
[0018]
【The invention's effect】
Since the sample analyzer provided by the present invention has been described in detail above, the detection mechanism can be downsized and simplified, and a portable and mobile analyzer can be provided. In connection with this, in the past, it was necessary to cut the sample to a size that could be measured and set it at the sample table position of the large analyzer that had been set up, and this required work. It can be omitted and it can correspond directly to the sample on site, and the workability of analysis and analysis is dramatically improved. The X-ray gun and the X-ray detector can be arranged coaxially, so that the task of matching the irradiation position with the X-ray detection position becomes extremely easy. In addition, there is an advantage that one operator can operate the apparatus in a hand-held manner, and analysis and analysis can be easily performed. Provided is a sample analyzer that can be reduced in size and weight, has excellent economy, operability, and is easy to handle, even in the case of a large analyzer installed in a research laboratory or the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic configuration of a sample analyzer according to the present invention.
FIG. 2 is a diagram showing a configuration of a modified example of the sample analyzer according to the present invention.
FIG. 3 is a diagram showing a configuration of a modified example of the sample analyzer according to the present invention.
FIG. 4 is a diagram showing a configuration of a modified example of the sample analyzer according to the present invention.
FIG. 5 is a diagram showing a configuration of a modified example of the sample analyzer according to the present invention.
FIG. 6 is a diagram showing a practical configuration of a sample analyzer according to the present invention.
FIG. 7 is a diagram showing a usage example of the sample analyzer according to the present invention.
FIG. 8 is a diagram showing the principle of X-ray analysis.
FIG. 9 is a diagram showing characteristics of a signal X-ray.
[Explanation of symbols]
1 ... Sample 2 ... X-ray gun 3 ... X-ray waveguide capillary 3D ... X-ray waveguide capillary 3S ... Irradiation X-ray waveguide capillary 3U ... Signal X-ray waveguide capillary 3L ... Linear X-ray waveguide capillary 4, 4S X-ray detector 5 Probe L X-ray irradiation axis P X-ray irradiation point

Claims (1)

試料に対してX線を照射するX線発生器と、それぞれの一端側開口部が試料のX線照射点を頂点とする円錐面に沿って配列されていて試料からの信号X線を入射し、他端側開口部は入射した信号X線を前記X線発生器とX線照射点を結ぶ照射軸の周囲に出射させるよう配列された多数本のX線導波細管を組み合わせたX線導波細管体と、このX線導波細管体から出射される信号X線を検出するX線検出器とを備え、X線検出器からの出力信号にて試料を解析するようにしたことを特徴とする試料解析装置。An X-ray generator that irradiates the sample with X-rays, and each one end side opening is arranged along a conical surface whose vertex is the X-ray irradiation point of the sample, and receives a signal X-ray from the sample. The other end side opening is an X-ray waveguide combining a large number of X-ray waveguide tubes arranged to emit an incident signal X-ray around an irradiation axis connecting the X-ray generator and the X-ray irradiation point. A wave capillary tube; and an X-ray detector for detecting a signal X-ray emitted from the X-ray waveguide capillary tube, wherein the sample is analyzed by an output signal from the X-ray detector. Sample analyzer.
JP2000050294A 2000-01-21 2000-01-21 Sample analyzer Expired - Lifetime JP3593651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050294A JP3593651B2 (en) 2000-01-21 2000-01-21 Sample analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050294A JP3593651B2 (en) 2000-01-21 2000-01-21 Sample analyzer

Publications (2)

Publication Number Publication Date
JP2001201468A JP2001201468A (en) 2001-07-27
JP3593651B2 true JP3593651B2 (en) 2004-11-24

Family

ID=18572095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050294A Expired - Lifetime JP3593651B2 (en) 2000-01-21 2000-01-21 Sample analyzer

Country Status (1)

Country Link
JP (1) JP3593651B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090257555A1 (en) 2002-11-06 2009-10-15 American Science And Engineering, Inc. X-Ray Inspection Trailer
JP5102549B2 (en) * 2006-07-14 2012-12-19 独立行政法人科学技術振興機構 X-ray analyzer and X-ray analysis method
JP5963331B2 (en) * 2015-01-26 2016-08-03 株式会社リガク X-ray measuring device

Also Published As

Publication number Publication date
JP2001201468A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
JP3996821B2 (en) X-ray analyzer
US7583788B2 (en) Measuring device for the shortwavelength x ray diffraction and a method thereof
US6711234B1 (en) X-ray fluorescence apparatus
JP6851107B2 (en) X-ray analyzer
JP3284198B2 (en) X-ray fluorescence analyzer
WO2020199689A1 (en) Capillary focusing microbeam x-ray diffractometer
JP3593651B2 (en) Sample analyzer
JP3567185B2 (en) Sample analyzer
CN219391871U (en) Analytical system for detecting samples
JPH05113418A (en) Surface analyzing apparatus
JP4837964B2 (en) X-ray focusing device
US8832861B2 (en) Near field optical microscope
Yiming et al. An investigation of X-ray fluorescence analysis with an X-ray focusing system (X-ray lens)
JP3902048B2 (en) Radiation inspection equipment
CN108398450A (en) Microbeam X-ray fluorescence analytical method based on combination X-ray capillary
CN208125648U (en) MICRO-BEAM XRF ANALYSIS system based on combination X-ray capillary
CN111879756A (en) Breakdown spectrum detection system and method based on annular magnetic confinement technology
JP2010197229A (en) Fluorescent x-ray analyzer
JP5347559B2 (en) X-ray analyzer
CN115389538B (en) X-ray analysis device and method
CN2145381Y (en) X-ray fluorescence analyser using X-ray lens
CN108709898A (en) MICRO-BEAM XRF ANALYSIS system based on combination X-ray capillary
CN212341016U (en) Breakdown spectrum detection system based on annular magnetic confinement technology
JP2017211290A (en) X-ray irradiation device
JP2003004677A (en) Indicator of location of x-ray irradiation and x-ray spectroscope

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3593651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term