JP3565664B2 - Hub clutch device - Google Patents

Hub clutch device Download PDF

Info

Publication number
JP3565664B2
JP3565664B2 JP23021196A JP23021196A JP3565664B2 JP 3565664 B2 JP3565664 B2 JP 3565664B2 JP 23021196 A JP23021196 A JP 23021196A JP 23021196 A JP23021196 A JP 23021196A JP 3565664 B2 JP3565664 B2 JP 3565664B2
Authority
JP
Japan
Prior art keywords
driven member
clutch device
axle
hub
coupling member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23021196A
Other languages
Japanese (ja)
Other versions
JPH09164856A (en
Inventor
健一郎 伊藤
孝幸 乗松
勲 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP23021196A priority Critical patent/JP3565664B2/en
Publication of JPH09164856A publication Critical patent/JPH09164856A/en
Application granted granted Critical
Publication of JP3565664B2 publication Critical patent/JP3565664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Mechanical Operated Clutches (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、4輪駆動車の前輪に取付け、車軸とホイールハブの間で圧力流体の制御により駆動力の伝達と遮断を切り換えるハブクラッチ装置、更に詳しくは、圧力流体の給排を行なう経路の構造に関する。
【0002】
【従来の技術】
パートタイム式の4輪駆動車においては、前輪ハブと車軸の間にハブクラッチ装置を組込み、ホイールに対する駆動力の伝達状態を切り換えるようにしている。
【0003】
従来のハブクラッチ装置は、車軸に嵌合したスライドギヤを軸方向に移動自在とし、このギヤをホイールハブに対して係脱させ、係合時に車軸とホイールハブを直結した4輪駆動状態とし、離脱時は2輪駆動状態となる構造を有し、この駆動の切り換えには、圧力流体、例えばエア圧力を使用するようになっている。
【0004】
【発明が解決しようとする課題】
ところで、エア圧力でスライドギヤを移動させて駆動の切り換えを制御するには、エア経路を車体に設けられたエア供給源と気密室との間に形成する必要があり、ホイールハブを回転自在に支持する軸受の外側にこれらの経路を設けるようにすると、加工が複雑となり、コスト的に高くなると共に、ハブクラッチ装置の断面径が大きくなるという問題がある。
【0005】
そこで、この発明の課題は、駆動部材と従動部材の結合と切り離しを行なう圧力流体の経路の1つに軸受の内部を利用すると共に、他の経路を車軸の外周面に形成し、製作面、コスト面で有利となり、断面径を小さくすることができるハブクラッチ装置を提供することにある。
【0006】
【課題を解決するための手段】
上記の課題を解決するため、請求項1の発明は、車軸に連結する駆動部材と軸受で回動自在に支持されたホイールハブに連結する従動部材とを内外に回転可能に嵌合させ、前記駆動部材と従動部材の間に、圧力流体によって駆動部材と従動部材とを結合する位置と切り離す位置とに移動させるための結合部材を設け、この結合部材の両側に設けた2つの気密室にそれぞれ圧力流体を給排する2つの通路を形成したハブクラッチ装置において、前記2つの気密室がそれぞれエア源に接続されており、前記ホイールハブを支持する軸受内に生じる空間を、一方の気密室に連通する通路として使用し、前記車軸の外周面に、他方の気密室に連通する通路を形成する構成を採用したものである。
【0007】
請求項2の発明は、車軸に連結する駆動部材と軸受で回動自在に支持されたホイールハブに連結する従動部材とを内外に回転可能に嵌合させ、前記駆動部材と従動部材の間に、圧力流体によって駆動部材と従動部材とを結合する位置と切り離す位置とに移動させるための結合部材を設け、この結合部材に結合する位置へ向けての移動弾性を付勢し、前記結合部材の切り離し位置をマグネットの吸着によって保持するようにし、前記結合部材の両側に設けた2つの気密室にそれぞれ圧力流体を給排する2つの通路を形成したハブクラッチ装置において、前記2つの気密室がそれぞれエア源に接続されており、前記ホイールハブを支持する軸受内に生じる空間を、一方の気密室に連通する通路として使用し、前記車軸の外周面に、他方の気密室に連通する通路を形成する構成を採用したものである。
【0008】
請求項3の発明は、車軸に連結する駆動部材と軸受で回動自在に支持されたホイールハブに連結する従動部材とを内外に回転可能に嵌合させ、その駆動部材と従動部材の間に、駆動部材と従動部材が相対回転したときにその両部材間に係合する係合子と、駆動部材と従動部材に対して相対回転可能な係合子の保持器とを組込み、この保持器に、係合子が係合作動位置に移動するように保持器を駆動部材に対して相対回転させる回転力付与手段を連結し、保持器と従動部材の間に、流体の圧力によって保持器と従動部材とを結合する位置と切り離す位置とに移動させるための結合部材を設け、この結合部材に結合する位置と切り離す位置との何れか一方をスプリングの押圧弾性によって保持し、他方をマグネットの吸着によって保持するようにし、前記結合部材の両側に設けた2つの気密室にそれぞれ圧力流体を給排する2つの通路を形成したハブクラッチ装置において、前記2つの気密室がそれぞれエア源に接続されており、前記ホイールハブを支持する軸受内に生じる空間を、一方の気密室に連通する通路として使用し、前記車軸の外周面に、他方の気密室に連通する通路を形成する構成を採用したものである。
【0009】
ここで、結合部材を移動させる流体はエアの負圧又は正圧を使用し、4輪駆動と2輪駆動の切り換え時にのみ結合部材に作用させ、切り換わった後は大気圧に戻す。4輪駆動状態はスプリングの押圧弾性によって保持し、2輪駆動状態は従動部材の蓋又は駆動部材に対するマグネットの吸着力によって保持する。
【0010】
また、駆動部材と外輪間に組み込んだ係合子は、4輪駆動時に、車軸の回転を前輪ハブに伝えると共に、前輪ハブの回転が車軸を上回ったとき、フリーランニング機能を停止し、エンジンブレーキが効く。
【0011】
【発明の実施の形態】
以下、この発明の実施の形態を、図示例と共に説明する。
【0012】
図1と図2に示す第1の実施形態において、1はハブクラッチ装置、2は4輪駆動車の前輪車軸であり、この前輪車軸2は、車両の駆動系と連結した等速ジョイント3の軸部より成っている。
【0013】
上記前輪車軸2にはスピンドル4が外嵌し、車両のナックル5に該スピンドル4が固定支持されていると共に、スピンドル4がテーパ軸受6、7を介してホイールハブ8を回動自在に支持している。
【0014】
前輪車軸2の先端部には、ハブクラッチ装置1の駆動部材である内輪9が、セレーション溝10を介して、回転が一体で軸方向に移動自在となるよう外嵌挿され、この内輪9の外側に、従動部材となる外輪13が回転可能に外嵌し、この外輪13は後部端面が複数のボルト14によってホイールハブ8の端面に固定され、前記内輪9の外周面に外歯歯車15を設けると共に、外輪13の内周面に前記外歯歯車15が噛合及び離脱自在となる内歯歯車16が設けられている。
【0015】
上記外輪13の内部で先端側の位置に軸方向への移動が自在となるようシールリング17を介して嵌合したスライダー18が、前記内輪9と軸方向に一体動するよう固定化され、このスライダー18と蓋19の対向面間に、内輪9を後退側の位置に常時押圧するスプリング20が縮設され、外輪13内はスライダー18によって両側に遮蔽された二つの気密室21と22になっている。
【0016】
前記スライダー18の外面側中央に、内輪9が前進側の位置にあるとき蓋19に吸着し、外歯歯車15が内歯歯車16から離脱した状態を保持するマグネット23がケース24を介して固定されている。
【0017】
また、蓋19に設けたフェールセーフ機構は、蓋19の中心部に固定したピンケース25でピン26を軸方向に移動自在となるよう支持し、このピン26を押し込むことによりマグネット23を蓋19から引き離し、スプリング20によりスライダー18と内輪9を移動させ、外歯歯車15を内歯歯車16に噛合させるようになっている。
【0018】
前記スライダー18を移動させて2輪駆動と4輪駆動の切り換えを制御するため、ハブクラッチ装置1には、気密室21、22に対して個々に連通する2経路のエア通路27、28が設けられている。
【0019】
外側の気密室21と連通する第1のエア通路27は、外輪13に軸方向へ貫通するよう設けた通路27aと、この通路27aの先端と外側の気密室21を接続するよう蓋19に設けた切欠部27bと、スピンドル4とホイルハブ5の間に設けられ、前記通路27aの後端と連通する間隔27cと、この間隔27c内に組込まれたテーパ軸受6、7の内部空間と、スピンドル4の後端に隙間27cと連通するように設けた通路27dとによって形成され、通路27dに接続したエア配管29が、4輪駆動車のトランスファ等からの遠隔操作によって負圧又は正圧のエアの給排を切り換えるエア源(図示省略)に接続されている。
【0020】
また、内側の気密室22と連通する第2のエア通路28は、前輪車軸2の外周面とスピンドル4の嵌合面間の隙間28aと、この隙間28aの後端と連通するよう、スピンドル4の後端部に設けた通路28bとで形成され、隙間28aは先端が気密室22と連通し、通路28bに前記と同様のエア配管30が接続されている。
【0021】
上記両気密室21、22は、スピンドル4の先端に螺合固定したナット31と、このナット31と外輪13の内周面の間に設けたオイルシール32によって気密保持され、両通路27と28は遮蔽されている。
【0022】
このように、2経路の通路の形成において、第1の通路27を軸受6、7の内部を通って形成し、第2の通路28を軸受6、7の内輪よりも内側に形成することにより、軸受6、7の内部隙間及び車軸2とスピンドル4間の隙間を有効に利用でき、通路を別途加工する必要がないという利点がある。
【0023】
第1の実施形態のハブクラッチ装置は上記のような構成であり、4輪駆動時は、図2に示すように、スライダー18と内輪9を後方に移動させ、外歯歯車15を内歯歯車16に噛合させる。
【0024】
これにより、前輪車軸2と外輪13が直結された4輪駆動状態になり、エンジンブレーキも前後輪で同時に効かせることができる。
【0025】
また、上記4輪駆動状態から2輪駆動状態に切り換えるには、外側の気密室21内のエアを吸引し、スライダー18に作用する負圧により、スプリング20に打ち勝って該スライダー18と内輪9を外方に移動させ、マグネット23を蓋19に吸着させることにより、外歯歯車15を内歯歯車16から離脱させればよい。
【0026】
上記のように、2輪駆動状態と4輪駆動の状態の切り換えは、スライダー18の両側の気密室21又は22の何れかに負圧又は正圧を作用させればよいと共に、2輪駆動状態はマグネット23の蓋19に対する吸着によって保持し、4輪駆動状態はスプリング20の押圧力によって保持する。
【0027】
従って、切り換え動作後において、負圧又は正圧を作用させる必要はなく、切り換わった後はエア通路を大気圧に戻るように設定できるので、ハブ部やスピンドル部のシールに作用する圧力が短時間ですみ、ハブ部やスピンドル部のシールの耐久性を向上させることができる。
【0028】
図3乃至図10に示す第2の実施形態において、1はハブクラッチ装置、2は4輪駆動車の前輪車軸であり、この前輪車軸2は、車両の駆動系と連結した等速ジョイント3の軸部より成っている。
【0029】
上記前輪車軸2にはスピンドル4が外嵌し、車両のナックル5に該スピンドル4が固定支持されていると共に、スピンドル4がテーパ軸受6、7を介してホイールハブ8を回動自在に支持している。
【0030】
前輪車軸2の先端部には、図4と図5に示すように、ハブクラッチ装置1の駆動部材である内輪9が、セレーション溝10を介して、回転が一体で軸方向に移動自在となるよう外嵌挿され、この内輪9の外側に、従動部材となる外輪13が回転可能に外嵌し、この外輪13は後部端面が複数のボルト14によってホイールハブ8の端面に固定され、この外輪13の内周面と前記内輪11の間に、二方向クラッチ41が組み込まれている。
【0031】
この二方向クラッチ41は、図7乃至図9に示すように、外輪13の内径面と内輪9の外径面が同芯の円筒面42、43に形成され、その両円筒面42、43の間に大径保持器44と小径保持器45が組み込まれている。
【0032】
上記大径保持器44は、図4及び図5に示すように、外輪13と内輪9に対して相対回転可能に収納され、一方、小径保持器45は、先端部に、内径側に向かって屈曲する屈曲部46が形成され、その屈曲部46が内輪9の端面にすべり接触しており、この屈曲部46に、皿バネから成る圧着バネ47が圧着している。この圧着バネ47は、屈曲部46を内輪9の端面に向かって押圧しており、その押圧力によって生じる摩擦力により小径保持器45を内輪9に保持している。なお、図中の48は圧着バネ47を止める止め輪である。
【0033】
また、上記大径保持器44と小径保持器45の周面には、図9に示すように、径方向に対向して複数のポケット49、50が形成され、その各ポケット49、50に、係合子としてのスプラグ51と、スプラグ51を保持するバネ52とが組込まれている。
【0034】
このスプラグ51は、外径側と内径側に、それぞれ異なった曲率中心をもつ左右対称形の円弧面53と53aが形成され、左右の両方向に所定角度傾くと両円筒面42、43と係合し、外輪13と内輪9を一体化する。また、バネ52は、大径保持器44に一端が支持されてスプラグ51を両側から押圧し、各スプラグ51を円筒面42、43と係合しない中立する位置に保持している。
【0035】
上記大径保持器44及び小径保持器45の周面には、図8の如く、それぞれ径方向に貫通するスリット54、55が形成され、そのスリット54、55に、C字形のリング形状をしたスイッチバネ56の両端部が係合している。このスイッチバネ56は、周方向に縮められた状態でセットされ、一端を大径保持器44に、他端を小径保持器45に押し付けて取付けられており、そのバネ力によって両保持器44、45に円周方向の力を与えている。
【0036】
ここで、上記スイッチバネ56のバネ力により、両保持器44、45とスプラグ51は、回転の一方向の噛み合い位置でスタンバイの状態となっている。上記の構造では、スイッチバネ56が大径保持器44に一方向の回転力を付与する回転力付与手段を構成する。
【0037】
上記二方向クラッチ41の外輪13内と内輪9の後端部間に支持メタル57を組み込み、この二方向クラッチ41の内輪9の後端とテーパ軸受6の間に、スピンドル4に外嵌するナット58を設け、このナット58と外輪13の後端部内周面との間に後述する二つの気密室の気密保持を行なうオイルシール59が組み込まれている。
【0038】
前記外輪13の先端面に、この先端面を密閉する蓋60が固定され、蓋60は外輪13内に丁度嵌合する円筒状で外端側が閉鎖されたシリンダ部61を有し、このシリンダ部61内に円形リング状のスライダー62が外周に嵌着したシールリング63を介して軸方向に摺動するよう収納され、このスライダー62によってその両側に遮蔽された二つの気密室64と65を形成している。
【0039】
前記二方向クラッチ41における大径保持器44の先端部に、図6の如く、円周方向に所定の間隔でギヤ歯66が形成され、また、蓋60のシリンダ部61における後端部に同様の条件でギヤ歯67が形成され、更にスライダー62の後端部外周に、上記両ギヤ歯66、67にわたって噛合すると共に、蓋60のギヤ歯67に沿って移動自在となるギヤ歯68が設けられている。
【0040】
従って、スライダー62が前方に移動すると、スライダー62のギヤ歯68は、大径保持器44のギヤ歯66と蓋60のギヤ歯67の両者にわたって噛合し、スライダー62を介して大径保持器44と蓋60(即ち外輪13)を一体に結合すると共に、スライダー62が後方に移動すると、大径保持器44と蓋60の結合を解くことになる。
【0041】
上記スライダー62と、二方向クラッチ41の先端面に配置したリング状受座金69との間に、スライダー62を常時先端側に押圧し、大径保持器44と蓋60の結合を解いた位置を保持するスプリング70が縮設させ、このスライダー62の後端で内輪9の先端面と対向する位置に、マグネット71が固定されている。
【0042】
このマグネット71は、スライダー62が後方に移動し、そのギヤ歯68が、大径保持器44と蓋60のギヤ歯66、67に噛合しない結合を解く位置にあるとき、内輪9に吸着して結合を解く位置を保持するようになっており、このとき、マグネット71は、圧縮したスプリング70の反発力に打ち勝ってスライダー62を保持する磁力に設定されている。
【0043】
前記スライダー62を移動させて2輪駆動状態と、4輪駆動状態の切り換えを行なうため、ハブクラッチ装置1に設けた2経路のエア通路27、28は、先に述べた第1の実施形態と同じであるので、同一部分に同一符号を付すことによって説明に代える。
【0044】
前記蓋60の内面中心部に円軸72を突設し、内輪9の先端部内側をメタル73を介して円軸72で支持していると共に、上記スライダー62の内径はこの円軸72に嵌合し、その内周面には円軸72に摺接するシールリング74が嵌着してある。
【0045】
前記蓋60の外面中心部にフェールセーフ用のボタンねじ75が回転可能に取り付けられ、円軸72を囲む周囲の複数箇所には、蓋60とスライダー62を軸方向に移動自在となるよう気密状に貫通する複数のピン76が配置され、各ピン76の後端はスライダー62との軸方向への係合端部になっていると共に、各ピン76の先端はボタンねじ75の外周面に形成した送りねじに嵌合するねじ頭部を有し、ボタンねじ75の回転操作により各ピン76を軸方向に移動させるようになっている。
【0046】
各ピン76は後退動位置にあるとき、スライダー62の前後動に干渉しないと共に、スライダー62のマグネット71が内輪9に吸着した2輪駆動状態時に、エア通路等でのエアもれで故障した場合、ドライバーがボタンねじ75を回転させると、各ピン76は外方へ前進動し、このピン76でスライダー62を介してマグネット71を内輪9から強制的に引き離し、スプリング70でスライダー62を外側へ移動させ、ギヤ歯68を蓋60と大径保持器44のギヤ歯66、67に嵌合させた4輪駆動状態にするフェールセーフ機能が得られるようになる。
【0047】
この発明の第2の実施形態のハブクラッチ装置は上記のような構成であり、次に、この装置を用いた車輌の走行状態について説明する。
【0048】
2駆走行状態では、図4と図6(A)に示すように、マグネット71を内輪9に吸着させ、スプリング70を圧縮してスライダー62を後退位置に保持し、そのギヤ歯68を蓋60のギヤ歯67から離脱させた状態にしておく。
【0049】
この状態で車輌が前進走行すると、二方向クラッチ41は、スプラグ51を前進方向の、係合作動位置へ移動させる。
【0050】
このようにスプラグ51が係合作動位置に移行した状態では、車軸の回転数より上回った回転が外輪13に与えられた場合、スプラグ51は係合状態を解除し、外輪13はフリーランニングすることができる。このため、トランスファより動力を切離された前輪車軸2には、エンジン及びタイヤの両方から駆動力が伝わらず、後輪だけの2輪走行になるため、トランスファーから前輪車軸までの駆動系を停止させることができる。
【0051】
雪道等の摩擦係数の低い路面を4駆走行する場合は、図5のように密封された気密室64内のエアを吸引し、スライダー62に作用する負圧により、マグネット71を吸着力に打ちかって内輪9から引き離し、スプリング70の押圧力とによって該スライダー62を外方へ移動させ、そのギヤ歯68を、蓋60と大径保持器44の両ギヤ歯66、67にわたって噛合させる。なお、上記負圧は、切り換えに必要な時間だけとし、切り換え後は大気圧に戻す。
【0052】
これにより、外輪13と大径保持器44が一体になり、大径保持器44は外輪13と同一方向に回転する。このため、スプラグ51が図9のようにフリーランニングの状態にある場合でも、大径保持器44の回転によってスプラグ51は傾きを変えて内外輪9、13の円筒面42、43に結合し、外輪13のフリーランニングが停止する。したがって、外輪13と前輪車軸2が直結し、前後輪が直結した4輪駆動状態になり、エンジンブレーキも前後輪で同時に効かせることができる。
【0053】
一方、舗装道路等の摩擦係数の高い路面を4駆走行する場合は、図4のように、内側の気密室65内のエアを吸引し、スライダー62を後方に移動させ、マグネット71を内輪9に吸着させることにより、ギヤ歯68を蓋60のギヤ歯67から離脱させ、外輪13と大径保持器44を切り離した状態にする。
【0054】
これにより、前進方向において4輪駆動となり、駆動側と従動側の回転差に応じてフリーランニング機能が作動する。
【0055】
すなわち、車両が旋回して蛇角をもつと、前輪と後輪の旋回距離の差により、前輪に連結する外輪13が内輪9よりも速く回転し、外輪13がスプラグ51に対してフリーランニングする。このため、前輪と後輪は切離されて回転し、タイトコーナでのブレーキング現象が生じない。
【0056】
また、後輪2輪による前進走行中、後輪がスリップすると、車速の低下に伴って減速する前輪に対して前輪車軸2の回転が上回るため、スプラグ51が内外輪9、13に係合し、外輪13と内輪9が一体化する。これにより、前輪に駆動力が加わり、自動的に4輪駆動に切換わる。
【0057】
このように、第2の実施形態のハブクラッチ装置では、走行中の刻々と変わる路面の変化に幅広く対応することができ、フルタイムの4輪駆動車と同様に安定した走行を行なうことができる。
【0058】
また、エアによるスライダー62の駆動は、常時負圧或いは正圧の状態を保って結合部材を保持しておく必要がなく、スライダー62の移動時に負圧又は正圧を使ってスイッチ的にエアを使用するため、エア供給源の制御構造を簡略化できると共に、ハブ部やスピンドル部等のシール部の摩耗を抑えることができる。
【0059】
さらに、密封された気密室64、65に対するエアの導出入は、気密室64、65にエア通路を連通させることで行なうことができるため、外輪13に孔加工をするだけで簡単に対応することができ、ナックルや等速ジョイント等に対する複雑な加工や成形を不要にすることができる。
【0060】
次に、図11と図12に示す第3の実施形態を説明する。この第3の実施形態は、先に述べた第2実施形態における2駆走行と4駆走行の切り換えを行なうスライダーの操作を第2の実施形態と逆になるようにしたものであり、第2の実施形態と同一部分については同一符号を付して説明に代える。
【0061】
第3の実施形態においては、スライダー62と蓋60の対向面間に該スライダー62を内輪9側の後退位置に向けて押圧するスプリング70を縮設すると共に、蓋60の内面に前進位置のスライダー62を吸着保持するマグネット71を固定している。
【0062】
また、蓋60に設けたギヤ歯67と大径保持器44に設けたギヤ歯66は、スライダー62が後退位置にあるときそのギヤ歯68が両ギヤ歯66、67にわたって噛合し、蓋60と大径保持器44を結合すると共に、スライダー62が前進位置にあるとき、ギヤ歯68が大径保持器44のギヤ歯66から離脱するように設けられている。
【0063】
この第3の実施形態のフェールセーフ機構は、蓋60の中央部外面に設けたねじ孔81内にねじ板82を螺合し、ねじ板82を回転させることにより、蓋60を気密状に貫通する複数のピン83を軸方向に移動させ、マグネット71に吸着したスライダー62をピン83で押圧してマグネット71から引き離すようになっている。
【0064】
第3の実施形態は上記のような構成であり、図11のように、スライダー62が前進位置にあるとき、蓋60と大径保持器44の結合が解かれ、2駆走行状態となり、また、図12のように、スライダー62が後退位置にあるとき、蓋60と大径保持器44は直結され、4駆走行状態となる。この2駆走行と4駆走行の切り換えは、第2の実施形態と同様、スライダー62の両側の気密室64、65に負圧又は正圧を作用させればよい。
【0065】
【発明の効果】
以上のように、この発明によると、2輪駆動状態と4輪駆動状態を圧力流体で結合部材を移動させて切り換えるハブクラッチ装置において、結合部材を移動させるために流体を給排する2つの流体通路を、軸受の内部と車軸の外周面に設けたので、通路を別途加工する必要がなく、コスト的に有利であると共に、ハブクラッチ装置全体の小径化が可能になる。
【図面の簡単な説明】
【図1】4輪駆動車に対するハブクラッチ装置の第1の実施形態を示す一部縦断面図
【図2】同上要部を拡大した4輪駆動状態の縦断面図
【図3】第2の実施形態を示す一部縦断面図
【図4】同上要部を拡大した2輪駆動状態の縦断面図
【図5】同上要部を拡大した4輪駆動状態の縦断面図
【図6】(A)は切り換え部分の2輪駆動状態を示す拡大断面図、(B)は(A)の矢印B−Bの断面図、(C)は切り換え部分の4輪駆動状態を示す拡大断面図
【図7】二方向クラッチのスプラグの部分を示す断面図
【図8】二方向クラッチのスイッチバネの部分を示す断面図
【図9】二方向クラッチのスプラグの部分を示す拡大断面図
【図10】図3の矢印X−X部に沿う縦断面図
【図11】ハブクラッチ装置の第3の実施形態を示す2輪駆動時の縦断面図
【図12】同上の4輪駆動時の縦断面図
【符号の説明】
1 ハブクラッチ装置
2 前輪車軸
4 スピンドル
6、7 テーパ軸受
8 ホイールハブ
9 内輪
13 外輪
15 外歯歯車
16 内歯歯車
18 スライダー
19 蓋
20 スプリング
21、22 気密室
23 マグネット
27、28 エア通路
41 二方向クラッチ
44 大径保持器
45 小径保持器
51 スプラグ
60 蓋
62 スライダー
63 シールリング
66、67、68 ギヤ歯
70 スプリング
71 マグネット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hub clutch device which is mounted on a front wheel of a four-wheel drive vehicle and switches between transmission and disconnection of a driving force by controlling a pressure fluid between an axle and a wheel hub, and more specifically, a hub clutch device for supplying and discharging a pressure fluid. Regarding the structure.
[0002]
[Prior art]
In a part-time type four-wheel drive vehicle, a hub clutch device is incorporated between the front wheel hub and the axle to switch the state of transmission of the driving force to the wheels.
[0003]
In the conventional hub clutch device, a slide gear fitted to an axle is movable in the axial direction, this gear is disengaged from a wheel hub, and a four-wheel drive state in which the axle and the wheel hub are directly connected when engaged, It has a structure in which it is in a two-wheel drive state at the time of disengagement, and a pressure fluid, for example, air pressure is used for switching the drive.
[0004]
[Problems to be solved by the invention]
By the way, in order to control the switching of the drive by moving the slide gear by the air pressure, it is necessary to form an air path between an air supply source provided in the vehicle body and the airtight chamber, and the wheel hub is rotatable. If these paths are provided outside the bearing to be supported, there is a problem that processing becomes complicated, cost increases, and a cross-sectional diameter of the hub clutch device increases.
[0005]
Therefore, an object of the present invention is to use the inside of the bearing as one of the paths of the pressure fluid for connecting and disconnecting the drive member and the driven member, and to form another path on the outer peripheral surface of the axle, It is an object of the present invention to provide a hub clutch device which is advantageous in cost and can reduce the cross-sectional diameter.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 has a driving member connected to an axle and a driven member connected to a wheel hub rotatably supported by a bearing rotatably fitted inside and outside, A coupling member is provided between the driving member and the driven member to move the driving member and the driven member to a position where the driving member and the driven member are coupled to each other and a position where the driving member and the driven member are separated from each other. In a hub clutch device having two passages for supplying and discharging a pressurized fluid, the two airtight chambers are respectively connected to air sources, and a space created in a bearing supporting the wheel hub is provided in one airtight chamber. It is used as a passage for communication, and adopts a configuration in which a passage communicating with the other airtight chamber is formed on the outer peripheral surface of the axle .
[0007]
According to a second aspect of the present invention, a driving member connected to an axle and a driven member connected to a wheel hub rotatably supported by a bearing are rotatably fitted inside and outside, and between the driving member and the driven member. A coupling member for moving the driving member and the driven member to a position where the driving member and the driven member are coupled to each other by a pressure fluid, and biasing the movement elasticity toward the position where the coupling member is coupled to the coupling member; In a hub clutch device in which a disconnection position is held by the attraction of a magnet and two passages for supplying and discharging a pressure fluid to two airtight chambers provided on both sides of the coupling member, respectively, the two airtight chambers are respectively provided. A space, which is connected to an air source and is generated in a bearing that supports the wheel hub, is used as a passage communicating with one airtight chamber, and is provided on the outer peripheral surface of the axle and on the other airtight chamber. It is obtained by adopting a configuration to form a passage for passing.
[0008]
According to a third aspect of the present invention, a driving member connected to the axle and a driven member connected to a wheel hub rotatably supported by a bearing are rotatably fitted inside and outside, and between the driving member and the driven member. When the driving member and the driven member rotate relative to each other, an engaging element that engages between the two members, and a retainer of an engaging element that is rotatable relative to the driving member and the driven member are incorporated. Rotating force applying means for rotating the retainer relative to the drive member so that the engagement element moves to the engagement operation position is connected, and the retainer and the driven member are moved between the retainer and the driven member by the pressure of the fluid. A coupling member is provided for moving the coupling member to a coupling position and a disconnecting position, and one of the coupling position and the disconnecting position is retained by the pressing elasticity of the spring, and the other is retained by the attraction of the magnet. like , At the hub clutch device forming the two passages for supplying and discharging pressure fluid respectively to the two airtight chambers provided on both sides of the coupling member, the two air-tight chambers is connected to the air source, respectively, said wheel hub Is used as a passage communicating with one of the airtight chambers, and a passage communicating with the other airtight chamber is formed on the outer peripheral surface of the axle .
[0009]
Here, the fluid for moving the coupling member uses the negative pressure or the positive pressure of the air, acts on the coupling member only when switching between four-wheel drive and two-wheel drive, and returns to atmospheric pressure after switching. The four-wheel drive state is held by the pressing elasticity of the spring, and the two-wheel drive state is held by the attraction of the magnet to the lid of the driven member or the driving member.
[0010]
In addition, the engaging element incorporated between the drive member and the outer wheel transmits the rotation of the axle to the front wheel hub during four-wheel drive, and stops the free running function when the rotation of the front wheel hub exceeds the axle, thereby stopping the engine brake. Works.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
In the first embodiment shown in FIGS. 1 and 2, reference numeral 1 denotes a hub clutch device, reference numeral 2 denotes a front wheel axle of a four-wheel drive vehicle, and the front wheel axle 2 comprises a constant velocity joint 3 connected to a drive system of the vehicle. It consists of a shaft.
[0013]
A spindle 4 is externally fitted to the front wheel axle 2 and the spindle 4 is fixedly supported by a knuckle 5 of the vehicle. The spindle 4 rotatably supports a wheel hub 8 via tapered bearings 6 and 7. ing.
[0014]
An inner ring 9, which is a driving member of the hub clutch device 1, is externally inserted through a serration groove 10 so as to be integrally rotatable and movable in the axial direction at a tip end of the front wheel axle 2. An outer ring 13 serving as a driven member is rotatably fitted to the outer side, and the outer ring 13 has a rear end face fixed to an end face of the wheel hub 8 by a plurality of bolts 14. At the same time, an internal gear 16 is provided on the inner peripheral surface of the outer ring 13 so that the external gear 15 can be engaged and disengaged.
[0015]
A slider 18 fitted via a seal ring 17 so as to be freely movable in the axial direction at a position on the distal end side inside the outer ring 13 is fixed so as to move integrally with the inner ring 9 in the axial direction. A spring 20 for constantly pressing the inner ring 9 to the retreating position is contracted between the facing surfaces of the slider 18 and the lid 19, and the inside of the outer ring 13 becomes two airtight chambers 21 and 22 which are shielded on both sides by the slider 18. ing.
[0016]
At the center of the outer surface side of the slider 18, a magnet 23 which is attracted to the lid 19 when the inner ring 9 is in the forward position and holds the external gear 15 detached from the internal gear 16 is fixed via a case 24. Have been.
[0017]
The fail-safe mechanism provided on the lid 19 supports a pin 26 so as to be movable in the axial direction by a pin case 25 fixed to the center of the lid 19, and pushes the pin 26 to move the magnet 23 to the lid 19. , And the slider 18 and the inner ring 9 are moved by the spring 20 so that the external gear 15 meshes with the internal gear 16.
[0018]
In order to control the switching between the two-wheel drive and the four-wheel drive by moving the slider 18, the hub clutch device 1 is provided with two paths of air passages 27 and 28 that respectively communicate with the airtight chambers 21 and 22. Have been.
[0019]
The first air passage 27 communicating with the outer airtight chamber 21 is provided in the lid 19 so as to connect the outer airtight chamber 21 with a passage 27a provided in the outer ring 13 so as to penetrate in the axial direction. Notch 27b, a space 27c provided between the spindle 4 and the wheel hub 5 and communicating with the rear end of the passage 27a, the internal space of the tapered bearings 6 and 7 incorporated in the space 27c, The air pipe 29 is formed by a passage 27d provided at the rear end thereof so as to communicate with the gap 27c, and is connected to the passage 27d. It is connected to an air source (not shown) for switching between supply and discharge.
[0020]
The second air passage 28 communicating with the inner hermetic chamber 22 is provided with a gap 28a between the outer peripheral surface of the front wheel axle 2 and the fitting surface of the spindle 4, and a spindle 4 so as to communicate with the rear end of the gap 28a. And a passage 28b provided at a rear end of the airtight chamber 22. The leading end of the gap 28a communicates with the airtight chamber 22, and the same air pipe 30 as described above is connected to the passage 28b.
[0021]
The airtight chambers 21 and 22 are airtightly held by a nut 31 screwed to the tip of the spindle 4 and an oil seal 32 provided between the nut 31 and the inner peripheral surface of the outer ring 13. Is shielded.
[0022]
As described above, in forming the two-path passage, the first passage 27 is formed inside the bearings 6 and 7 and the second passage 28 is formed inside the inner rings of the bearings 6 and 7. The advantage is that the internal clearances of the bearings 6 and 7 and the clearance between the axle 2 and the spindle 4 can be effectively used, and there is no need to separately process the passage.
[0023]
The hub clutch device according to the first embodiment has the above-described configuration. During four-wheel drive, the slider 18 and the inner ring 9 are moved backward as shown in FIG. 16 mesh.
[0024]
As a result, a four-wheel drive state in which the front wheel axle 2 and the outer wheel 13 are directly connected is established, and the engine brake can be simultaneously applied to the front and rear wheels.
[0025]
In order to switch from the four-wheel drive state to the two-wheel drive state, air in the outer airtight chamber 21 is sucked, and the slider 18 and the inner ring 9 are overcome by overcoming the spring 20 by the negative pressure acting on the slider 18. The external gear 15 may be disengaged from the internal gear 16 by moving it outward and attracting the magnet 23 to the lid 19.
[0026]
As described above, the switching between the two-wheel drive state and the four-wheel drive state can be performed by applying a negative pressure or a positive pressure to either of the airtight chambers 21 or 22 on both sides of the slider 18, and the two-wheel drive state. Is held by attracting the magnet 23 to the lid 19, and the four-wheel drive state is held by the pressing force of the spring 20.
[0027]
Therefore, it is not necessary to apply a negative pressure or a positive pressure after the switching operation, and the air passage can be set to return to the atmospheric pressure after the switching, so that the pressure acting on the seal of the hub portion and the spindle portion is short. In a short time, the durability of the seal of the hub portion and the spindle portion can be improved.
[0028]
In the second embodiment shown in FIGS. 3 to 10, reference numeral 1 denotes a hub clutch device, reference numeral 2 denotes a front wheel axle of a four-wheel drive vehicle, and the front wheel axle 2 is provided with a constant velocity joint 3 connected to a drive system of the vehicle. It consists of a shaft.
[0029]
A spindle 4 is externally fitted to the front wheel axle 2 and the spindle 4 is fixedly supported by a knuckle 5 of the vehicle. The spindle 4 rotatably supports a wheel hub 8 via tapered bearings 6 and 7. ing.
[0030]
As shown in FIGS. 4 and 5, an inner ring 9, which is a driving member of the hub clutch device 1, is rotatable integrally with the front wheel axle 2 via a serration groove 10 in an axial direction, as shown in FIGS. 4 and 5. An outer ring 13 serving as a driven member is rotatably fitted to the outer side of the inner ring 9, and a rear end surface of the outer ring 13 is fixed to an end surface of the wheel hub 8 by a plurality of bolts 14. A two-way clutch 41 is incorporated between the inner peripheral surface of the inner ring 13 and the inner ring 11.
[0031]
As shown in FIGS. 7 to 9, the two-way clutch 41 is formed such that the inner diameter surface of the outer ring 13 and the outer diameter surface of the inner ring 9 are concentric cylindrical surfaces 42, 43. A large-diameter cage 44 and a small-diameter cage 45 are incorporated between them.
[0032]
As shown in FIGS. 4 and 5, the large-diameter retainer 44 is accommodated in the outer ring 13 and the inner ring 9 so as to be rotatable relative to each other. A bent portion 46 is formed, and the bent portion 46 is in sliding contact with the end surface of the inner ring 9, and a compression spring 47 made of a disc spring is pressed against the bent portion 46. The compression spring 47 presses the bent portion 46 toward the end surface of the inner ring 9, and holds the small-diameter retainer 45 on the inner ring 9 by a frictional force generated by the pressing force. Reference numeral 48 in the drawing denotes a retaining ring for stopping the compression spring 47.
[0033]
As shown in FIG. 9, a plurality of pockets 49 and 50 are formed on the peripheral surface of the large-diameter cage 44 and the small-diameter cage 45 so as to face each other in the radial direction. A sprag 51 as an engaging element and a spring 52 holding the sprag 51 are incorporated.
[0034]
The sprag 51 has left and right symmetrical arc surfaces 53 and 53a having different centers of curvature on the outer diameter side and the inner diameter side, respectively. When the sprags 51 are inclined by a predetermined angle in both the left and right directions, they engage with the two cylindrical surfaces 42 and 43. Then, the outer ring 13 and the inner ring 9 are integrated. The spring 52 has one end supported by the large-diameter retainer 44 and presses the sprags 51 from both sides to hold each sprag 51 at a neutral position where the sprags 51 do not engage with the cylindrical surfaces 42 and 43.
[0035]
As shown in FIG. 8, slits 54 and 55 penetrating in the radial direction are respectively formed on the peripheral surfaces of the large-diameter cage 44 and the small-diameter cage 45, and the slits 54 and 55 have a C-shaped ring shape. Both ends of the switch spring 56 are engaged. The switch spring 56 is set in a state of being contracted in the circumferential direction, and is attached by pressing one end to the large-diameter retainer 44 and the other end to the small-diameter retainer 45. 45 is given a circumferential force.
[0036]
Here, due to the spring force of the switch spring 56, the two retainers 44 and 45 and the sprag 51 are in a standby state at a meshing position in one direction of rotation. In the above-described structure, the switch spring 56 constitutes a rotational force applying unit that applies a rotational force to the large-diameter retainer 44 in one direction.
[0037]
A support metal 57 is incorporated between the outer ring 13 of the two-way clutch 41 and the rear end of the inner ring 9, and a nut externally fitted to the spindle 4 between the rear end of the inner ring 9 of the two-way clutch 41 and the tapered bearing 6. An oil seal 59 is provided between the nut 58 and the inner peripheral surface of the rear end of the outer ring 13 to keep the two hermetically sealed chambers airtight.
[0038]
A lid 60 for sealing the distal end surface is fixed to the distal end surface of the outer ring 13. The lid 60 has a cylindrical portion 61 having a cylindrical shape and a closed outer end side just fitted into the outer ring 13. A circular ring-shaped slider 62 is accommodated in the inside 61 so as to slide in the axial direction via a seal ring 63 fitted on the outer periphery, and two airtight chambers 64 and 65 shielded on both sides by the slider 62 are formed. are doing.
[0039]
As shown in FIG. 6, gear teeth 66 are formed at predetermined intervals in the circumferential direction at the distal end of the large-diameter cage 44 in the two-way clutch 41. Gear teeth 67 are formed on the outer periphery of the rear end of the slider 62, and gear teeth 68 that mesh with the two gear teeth 66 and 67 and that are movable along the gear teeth 67 of the lid 60 are provided. Have been.
[0040]
Therefore, when the slider 62 moves forward, the gear teeth 68 of the slider 62 mesh with both the gear teeth 66 of the large-diameter cage 44 and the gear teeth 67 of the lid 60, and the large-diameter cage 44 When the slider 62 moves backward while the lid 60 and the lid 60 (that is, the outer ring 13) are integrally connected, the coupling between the large diameter retainer 44 and the lid 60 is released.
[0041]
Between the slider 62 and the ring-shaped washer 69 disposed on the distal end surface of the two-way clutch 41, the slider 62 is constantly pressed to the distal end side, and the position where the large diameter retainer 44 and the lid 60 are uncoupled is set. A holding spring 70 is contracted, and a magnet 71 is fixed at a position where the rear end of the slider 62 faces the front end surface of the inner ring 9.
[0042]
The magnet 71 is attracted to the inner ring 9 when the slider 62 moves rearward and the gear teeth 68 are at a position where the gear teeth 68 and the gear teeth 66 and 67 of the lid 60 are disengaged from each other. At this time, the magnet 71 is set to a magnetic force for holding the slider 62 by overcoming the repulsive force of the compressed spring 70.
[0043]
In order to switch between the two-wheel drive state and the four-wheel drive state by moving the slider 62, the two-path air passages 27 and 28 provided in the hub clutch device 1 are different from those in the first embodiment described above. Since they are the same, the same parts are denoted by the same reference numerals, and description will be omitted.
[0044]
A circular shaft 72 protrudes from the center of the inner surface of the lid 60, and the inner end of the inner ring 9 is supported by the circular shaft 72 via a metal 73. The inner diameter of the slider 62 is fitted to the circular shaft 72. A seal ring 74 that slides on the circular shaft 72 is fitted on the inner peripheral surface.
[0045]
A fail-safe button screw 75 is rotatably attached to the center of the outer surface of the lid 60, and is hermetically sealed at a plurality of locations around the circular shaft 72 so that the lid 60 and the slider 62 can be freely moved in the axial direction. A plurality of pins 76 are arranged to penetrate the slider 62, and the rear end of each pin 76 is an engagement end in the axial direction with the slider 62, and the tip of each pin 76 is formed on the outer peripheral surface of the button screw 75. Each of the pins 76 is axially moved by rotating the button screw 75.
[0046]
When each pin 76 is in the retracted position, it does not interfere with the forward and backward movements of the slider 62, and when the magnet 71 of the slider 62 is in a two-wheel drive state in which the magnet 71 is attracted to the inner ring 9, a failure occurs due to air leakage in an air passage or the like. When the driver rotates the button screw 75, each pin 76 moves forward, and the pin 76 forcibly separates the magnet 71 from the inner ring 9 via the slider 62, and the spring 70 moves the slider 62 outward. By moving the gear teeth 68 to the gear teeth 66 and 67 of the large-diameter retainer 44 with the gear teeth 68 fitted thereto, a fail-safe function of bringing the gear into a four-wheel drive state can be obtained.
[0047]
The hub clutch device according to the second embodiment of the present invention is configured as described above. Next, the running state of a vehicle using this device will be described.
[0048]
In the two-wheel drive state, as shown in FIGS. 4 and 6A, the magnet 71 is attracted to the inner ring 9, the spring 70 is compressed to hold the slider 62 at the retracted position, and the gear teeth 68 are attached to the lid 60. The gear teeth 67 have been separated.
[0049]
When the vehicle travels forward in this state, the two-way clutch 41 moves the sprag 51 to the forward engagement position.
[0050]
In the state where the sprags 51 are shifted to the engagement operating position, when the rotation exceeding the rotation speed of the axle is given to the outer ring 13, the sprags 51 release the engagement state and the outer ring 13 free-runs. Can be. For this reason, since the front wheel axle 2 from which power is separated from the transfer receives no driving force from both the engine and the tires and runs only on the rear wheels, the drive system from the transfer to the front wheel axle is stopped. Can be done.
[0051]
When four-wheel drive is performed on a road surface having a low coefficient of friction such as a snowy road, the air in the sealed airtight chamber 64 is sucked as shown in FIG. The slider 62 is moved outward by the pushing force of the spring 70, and the gear teeth 68 of the slider 62 are engaged with the gear teeth 66, 67 of the lid 60 and the large diameter retainer 44. The negative pressure is set only for the time necessary for the switching, and after the switching, the pressure is returned to the atmospheric pressure.
[0052]
As a result, the outer ring 13 and the large diameter cage 44 are integrated, and the large diameter cage 44 rotates in the same direction as the outer ring 13. For this reason, even when the sprags 51 are in a free running state as shown in FIG. 9, the sprags 51 change the inclination by the rotation of the large-diameter retainer 44 and are connected to the cylindrical surfaces 42 and 43 of the inner and outer rings 9 and 13. Free running of the outer ring 13 stops. Therefore, the outer wheel 13 is directly connected to the front wheel axle 2 and the front and rear wheels are directly connected, so that a four-wheel drive state is achieved, and the engine brake can be simultaneously applied to the front and rear wheels.
[0053]
On the other hand, when four-wheel drive is performed on a road surface having a high coefficient of friction such as a pavement road, as shown in FIG. 4, the air in the inner airtight chamber 65 is sucked, the slider 62 is moved backward, and the magnet 71 is moved to the inner ring 9. , The gear teeth 68 are disengaged from the gear teeth 67 of the lid 60, and the outer ring 13 and the large diameter retainer 44 are separated.
[0054]
As a result, four-wheel drive is performed in the forward direction, and the free running function operates according to the rotation difference between the drive side and the driven side.
[0055]
That is, when the vehicle turns and has an angle, the outer wheel 13 connected to the front wheel rotates faster than the inner wheel 9 due to the difference in the turning distance between the front wheel and the rear wheel, and the outer wheel 13 free-runs with respect to the sprag 51. . For this reason, the front wheel and the rear wheel are separated from each other and rotate, and the braking phenomenon at the tight corner does not occur.
[0056]
Also, when the rear wheels slip during forward traveling by the two rear wheels, the rotation of the front wheel axle 2 exceeds the rotation of the front wheels decelerated as the vehicle speed decreases, so that the sprags 51 engage the inner and outer wheels 9 and 13. The outer ring 13 and the inner ring 9 are integrated. As a result, a driving force is applied to the front wheels, and the mode is automatically switched to four-wheel drive.
[0057]
As described above, the hub clutch device according to the second embodiment can widely cope with a constantly changing road surface during traveling, and can perform stable traveling as in a full-time four-wheel drive vehicle. .
[0058]
In addition, when the slider 62 is driven by air, it is not necessary to maintain the state of negative pressure or positive pressure at all times to hold the coupling member, and when the slider 62 is moved, the air is switched by using the negative pressure or positive pressure. Since it is used, the control structure of the air supply source can be simplified, and the wear of the seal portions such as the hub portion and the spindle portion can be suppressed.
[0059]
Further, the air can be introduced into and closed from the sealed airtight chambers 64 and 65 by connecting the air passages to the airtight chambers 64 and 65. This eliminates the need for complicated processing and forming for knuckles and constant velocity joints.
[0060]
Next, a third embodiment shown in FIGS. 11 and 12 will be described. In the third embodiment, the operation of the slider for switching between the two-wheel drive and the four-wheel drive in the above-described second embodiment is reversed from that in the second embodiment. The same parts as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0061]
In the third embodiment, a spring 70 that presses the slider 62 toward the retreat position on the inner ring 9 side is contracted between the facing surface of the slider 62 and the lid 60, and the slider at the forward position is provided on the inner surface of the lid 60. A magnet 71 for holding the suction member 62 is fixed.
[0062]
The gear teeth 67 provided on the lid 60 and the gear teeth 66 provided on the large-diameter cage 44 mesh with the gear teeth 68 over the two gear teeth 66 and 67 when the slider 62 is at the retracted position. The gear teeth 68 are provided so as to be disengaged from the gear teeth 66 of the large-diameter retainer 44 when the large-diameter retainer 44 is connected and the slider 62 is in the forward position.
[0063]
In the fail-safe mechanism of the third embodiment, a screw plate 82 is screwed into a screw hole 81 provided on the outer surface of the central portion of the lid 60, and the screw plate 82 is rotated to penetrate the lid 60 in an airtight manner. The plurality of pins 83 to be moved are moved in the axial direction, and the slider 62 attracted to the magnet 71 is pressed by the pins 83 and separated from the magnet 71.
[0064]
The third embodiment is configured as described above. When the slider 62 is at the forward position as shown in FIG. 11, the connection between the lid 60 and the large-diameter retainer 44 is released, and a two-wheel drive state is established. As shown in FIG. 12, when the slider 62 is at the retracted position, the lid 60 and the large-diameter retainer 44 are directly connected, and the vehicle is in a four-wheel drive state. The switching between the two-wheel drive and the four-wheel drive can be performed by applying a negative pressure or a positive pressure to the airtight chambers 64 and 65 on both sides of the slider 62 as in the second embodiment.
[0065]
【The invention's effect】
As described above, according to the present invention, in the hub clutch device that switches between the two-wheel drive state and the four-wheel drive state by moving the coupling member with the pressurized fluid, the two fluids that supply and discharge the fluid to move the coupling member Since the passage is provided inside the bearing and on the outer peripheral surface of the axle, there is no need to separately process the passage, which is advantageous in terms of cost and allows the hub clutch device as a whole to be reduced in diameter.
[Brief description of the drawings]
FIG. 1 is a partial longitudinal sectional view showing a first embodiment of a hub clutch device for a four-wheel drive vehicle. FIG. 2 is a longitudinal sectional view of a four-wheel drive state in which essential parts of the hub clutch device are enlarged. FIG. FIG. 4 is a longitudinal sectional view of a two-wheel drive state in which essential parts of the embodiment are enlarged. FIG. 5 is a longitudinal sectional view of a four-wheel drive state in which the essential parts are enlarged. (A) is an enlarged sectional view showing a two-wheel drive state of a switching portion, (B) is a sectional view of an arrow BB of (A), and (C) is an enlarged sectional view showing a four-wheel drive state of a switching portion. 7 is a sectional view showing a sprag part of the two-way clutch. FIG. 8 is a sectional view showing a switch spring part of the two-way clutch. FIG. 9 is an enlarged sectional view showing a sprag part of the two-way clutch. FIG. 11 is a longitudinal sectional view taken along the arrow XX section of FIG. 3. FIG. Sectional view and FIG. 12 is a longitudinal sectional view of the 4-wheel drive of the same [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Hub clutch device 2 Front wheel axle 4 Spindle 6, 7 Taper bearing 8 Wheel hub 9 Inner ring 13 Outer ring 15 External gear 16 Internal gear 18 Slider 19 Cover 20 Spring 21, 22 Airtight chamber 23 Magnet 27, 28 Air passage 41 Two directions Clutch 44 Large-diameter cage 45 Small-diameter cage 51 Sprag 60 Cover 62 Slider 63 Seal ring 66, 67, 68 Gear teeth 70 Spring 71 Magnet

Claims (3)

車軸に連結する駆動部材と軸受で回動自在に支持されたホイールハブに連結する従動部材とを内外に回転可能に嵌合させ、前記駆動部材と従動部材の間に、圧力流体によって駆動部材と従動部材とを結合する位置と切り離す位置とに移動させるための結合部材を設け、この結合部材の両側に設けた2つの気密室にそれぞれ圧力流体を給排する2つの通路を形成したハブクラッチ装置において、前記2つの気密室がそれぞれエア源に接続されており、前記ホイールハブを支持する軸受内に生じる空間を、一方の気密室に連通する通路として使用し、前記車軸の外周面に、他方の気密室に連通する通路を形成したことを特徴とするハブクラッチ装置。A driving member connected to the axle and a driven member connected to a wheel hub rotatably supported by a bearing are rotatably fitted inside and outside, and a driving member is connected between the driving member and the driven member by pressure fluid. A hub clutch device provided with a coupling member for moving the driven member between a position where the driven member is coupled and a position where the driven member is disconnected, and having two passages for supplying and discharging pressure fluid to two airtight chambers provided on both sides of the coupling member. In the above, the two hermetic chambers are respectively connected to an air source, and a space generated in a bearing supporting the wheel hub is used as a passage communicating with one of the hermetic chambers. A hub clutch device, wherein a passage communicating with the airtight chamber is formed . 車軸に連結する駆動部材と軸受で回動自在に支持されたホイールハブに連結する従動部材とを内外に回転可能に嵌合させ、前記駆動部材と従動部材の間に、圧力流体によって駆動部材と従動部材とを結合する位置と切り離す位置とに移動させるための結合部材を設け、この結合部材に結合する位置へ向けての移動弾性を付勢し、前記結合部材の切り離し位置をマグネットの吸着によって保持するようにし、前記結合部材の両側に設けた2つの気密室にそれぞれ圧力流体を給排する2つの通路を形成したハブクラッチ装置において、前記2つの気密室がそれぞれエア源に接続されており、前記ホイールハブを支持する軸受内に生じる空間を、一方の気密室に連通する通路として使用し、前記車軸の外周面に、他方の気密室に連通する通路を形成したことを特徴とするハブクラッチ装置。A driving member connected to the axle and a driven member connected to a wheel hub rotatably supported by a bearing are rotatably fitted inside and outside, and a driving member is connected between the driving member and the driven member by pressure fluid. A coupling member is provided for moving the driven member between a position where the driven member is coupled and a position where the driven member is disconnected. The coupling member is urged to move toward the position coupled with the coupling member. In a hub clutch device for holding and forming two passages for supplying and discharging pressure fluid to two airtight chambers provided on both sides of the coupling member, the two airtight chambers are respectively connected to an air source. A space formed in a bearing supporting the wheel hub is used as a passage communicating with one airtight chamber, and a passage communicating with the other airtight chamber is formed on the outer peripheral surface of the axle. Hub clutch device, characterized in that the. 車軸に連結する駆動部材と軸受で回動自在に支持されたホイールハブに連結する従動部材とを内外に回転可能に嵌合させ、その駆動部材と従動部材の間に、駆動部材と従動部材が相対回転したときにその両部材間に係合する係合子と、駆動部材と従動部材に対して相対回転可能な係合子の保持器とを組込み、この保持器に、係合子が係合作動位置に移動するように保持器を駆動部材に対して相対回転させる回転力付与手段を連結し、保持器と従動部材の間に、流体の圧力によって保持器と従動部材とを結合する位置と切り離す位置とに移動させるための結合部材を設け、この結合部材に結合する位置と切り離す位置との何れか一方をスプリングの押圧弾性によって保持し、他方をマグネットの吸着によって保持するようにし、前記結合部材の両側に設けた2つの気密室にそれぞれ圧力流体を給排する2つの通路を形成したハブクラッチ装置において、前記2つの気密室がそれぞれエア源に接続されており、前記ホイールハブを支持する軸受内に生じる空間を、一方の気密室に連通する通路として使用し、前記車軸の外周面に、他方の気密室に連通する通路を形成したことを特徴とするハブクラッチ装置。A driving member connected to the axle and a driven member connected to a wheel hub rotatably supported by a bearing are rotatably fitted inside and outside, and a driving member and a driven member are provided between the driving member and the driven member. An engaging element that engages between the two members when the members rotate relative to each other, and a retainer of the engaging element that is rotatable relative to the driving member and the driven member are incorporated. A rotational force applying means for rotating the retainer relative to the drive member so that the retainer moves relative to the drive member, and a position for separating the retainer and the driven member by the pressure of the fluid between the retainer and the driven member; A coupling member for moving the coupling member, one of a position coupled to the coupling member and a position separated from the coupling member is held by pressing elasticity of a spring, and the other is retained by adsorption of a magnet, In a hub clutch device forming the two passages for supplying and discharging two respective pressure fluid in an airtight chamber provided on the side, the two air-tight chambers is connected to an air source, respectively, in the bearing for supporting the wheel hub A hub clutch device characterized in that a space created in (1) is used as a passage communicating with one airtight chamber, and a passage communicating with the other airtight chamber is formed on the outer peripheral surface of the axle .
JP23021196A 1996-08-30 1996-08-30 Hub clutch device Expired - Lifetime JP3565664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23021196A JP3565664B2 (en) 1996-08-30 1996-08-30 Hub clutch device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23021196A JP3565664B2 (en) 1996-08-30 1996-08-30 Hub clutch device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21892195A Division JP3535622B2 (en) 1995-08-28 1995-08-28 Hub clutch device

Publications (2)

Publication Number Publication Date
JPH09164856A JPH09164856A (en) 1997-06-24
JP3565664B2 true JP3565664B2 (en) 2004-09-15

Family

ID=16904317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23021196A Expired - Lifetime JP3565664B2 (en) 1996-08-30 1996-08-30 Hub clutch device

Country Status (1)

Country Link
JP (1) JP3565664B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835586B2 (en) * 2007-11-28 2011-12-14 トヨタ自動車株式会社 Dog clutch device and power transmission device

Also Published As

Publication number Publication date
JPH09164856A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
US6170628B1 (en) Vehicle drive train
US8382633B2 (en) Axle shaft disconnect assembly
JP3202031B2 (en) Vehicle driving force transmission device
US5176591A (en) Planetary gear differential with disconnect
JP3565664B2 (en) Hub clutch device
JP3535622B2 (en) Hub clutch device
JPH0158776B2 (en)
US5429221A (en) All-wheel drive free-wheel mechanism for a motor vehicle
US5967279A (en) Hub clutch assembly
US5871072A (en) Hub clutch assembly
JPH11334406A (en) Hub clutch device
JP3757000B2 (en) Hub clutch device
WO2023141883A1 (en) Electric axle driving system and vehicle
JPH0958293A (en) Hub clutch device
JP3616710B2 (en) Hub clutch device
JPH0999754A (en) Hub clutch device
JP3609476B2 (en) Vehicle driving force transmission device
JPH08175206A (en) Rotational transmission device
JP4876361B2 (en) Power transmission device
KR960001871B1 (en) Drive axle brake
KR100325382B1 (en) wet multiple plate service brake and parking brake
JP2508123B2 (en) Drive coupling device for four-wheel drive
KR100282880B1 (en) Front and rear wheel drive force distribution device of 4 wheel drive vehicle
JP2507018B2 (en) Hub clutch
JPH10166886A (en) Four-wheel drive mechanism

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term