JP3564844B2 - Dielectric porcelain composition, method for producing the same, and method for controlling characteristics of dielectric porcelain composition - Google Patents

Dielectric porcelain composition, method for producing the same, and method for controlling characteristics of dielectric porcelain composition Download PDF

Info

Publication number
JP3564844B2
JP3564844B2 JP02374496A JP2374496A JP3564844B2 JP 3564844 B2 JP3564844 B2 JP 3564844B2 JP 02374496 A JP02374496 A JP 02374496A JP 2374496 A JP2374496 A JP 2374496A JP 3564844 B2 JP3564844 B2 JP 3564844B2
Authority
JP
Japan
Prior art keywords
dielectric
ceramic composition
dielectric ceramic
composition
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02374496A
Other languages
Japanese (ja)
Other versions
JPH09221365A (en
Inventor
晃一 福田
浩二 林
俊彦 阿武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP02374496A priority Critical patent/JP3564844B2/en
Publication of JPH09221365A publication Critical patent/JPH09221365A/en
Application granted granted Critical
Publication of JP3564844B2 publication Critical patent/JP3564844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、第1の誘電体磁器組成物の表面に第2の誘電体磁器組成物からなる薄膜が形成されている誘電体共振器等の材料として好適な誘電体磁器組成物およびその製造方法、ならびに誘電体磁器組成物の特性制御方法に関する。
【0002】
【従来の技術】
近年、マイクロ波回路の集積化に伴い、小型で高性能な誘電体共振器が求められている。このような誘電体共振器に使用される誘電体磁器組成物には、比誘電率εが大きいこと、無負荷Qが大きいこと、共振周波数の温度係数τが小さいこと等の特性が要求されている。
【0003】
このような誘電体磁器組成物として、BaO−TiO−Nd系の誘電体磁器組成物について提案〔Ber.Dt.Keram.Ges.,55(1978)Nr.7;特開昭60−35406号公報〕、あるいはBaO−TiO−Nd−Bi系(特開昭62−72558号公報)について提案されている。
【0004】
【発明が解決しようとする課題】
現在、誘電体磁器組成物を用いる素子はさまざまな電子機器に使用されている。しかしながら、その素子に要求される特性は使用される個所や使用目的等により異なっており、また、各素子は高い精度で制御される必要がある。このような特性を実現するために、一般には材料組成の制御、微量添加物の添加などが行われているが、一度調製された材料の特性は変えることは出来ず、また、極めて高精度での特性制御は困難であるなどの課題があった。
【0005】
本発明の目的は、前記課題を解決するものであり、具体的にはセラミックスの特性を制御することのできる誘電体磁器組成物およびその製造方法を提供するものである。また、本発明の目的は誘電体磁器組成物の特性制御方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、第1の誘電体磁器組成物の表面に第2の誘電体磁器組成物からなる薄膜が形成されている誘電体共振器用誘電体磁器組成物であって、前記第1の誘電体磁器組成物がBaO−TiO −Nd 系誘電体磁器組成物またはBaO−TiO −Sm 系誘電体磁器組成物であり、前記第2の誘電体磁器組成物がTiO 、BaTiO 、SrTiO 、PbTiO 、Pb(Zr,Ti)O 、およびTa から選ばれる誘電体磁器組成物であることを特徴とする誘電体共振器用誘電体磁器組成物に関する。特に、前記第2の誘電体磁器組成物としては、TiO 、またはPbTiO であることが好ましい。
【0007】
また本発明は、前記第1の誘電体磁器組成物の表面に前記第2の誘電体磁器組成物からなる薄膜を形成することを特徴とする誘電体共振器用磁器組成物の製造方法に関する。
【0008】
さらに本発明は、BaO−TiO −Nd 系誘電体磁器組成物またはBaO−TiO −Sm 系誘電体磁器組成物からなる第1の誘電体磁器組成物の表面に、TiO 、BaTiO 、SrTiO 、PbTiO 、Pb(Zr,Ti)O 、およびTa から選ばれる第2の誘電体磁器組成物からなる薄膜を形成することにより、誘電体磁器組成物の特性を所望値に制御することを特徴とする誘電体共振器用誘電体磁器組成物の特性制御方法に関する。
【0009】
本発明によれば、第1の誘電体磁器組成物の表面に第2の誘電体磁器組成物からなる薄膜を形成することにより、誘電体磁器組成物の特性、例えば、比誘電率ε、無負荷Q、共振周波数の温度係数τなどの電気特性を、所望の値に、高精度でかつ簡便に制御することができる。また、形状寸法が規定されているような場合においても、比誘電率εを変化させることにより所望の寸法において要求特性を満足させることができる。
【0010】
本発明において、第1の誘電体磁器組成物としては、BaO−TiO−Nd系、BaO−TiO系、あるいはBa(Zn、Ta)O系など従来より広く利用されているものを使用することができる。
【0011】
本発明において、第2の誘電体磁器組成物からなる薄膜としては、TiO、BaTiO、SrTiO、PbTiO、Pb(Zr、Ti)O、Taなどの薄膜を利用することができる。これらの薄膜は、スパッタ、蒸着、CVD、ゾルゲルなどの方法により形成することができる。薄膜の厚さは特に限定されないが、薄膜の厚みが過度に大きい場合にはセラミックス−薄膜間のひずみによるクラックの発生原因となり、また過度に小さい場合には特性制御の効果が小さいため、薄膜の厚さは1000〜100000オングストロームが好ましい。
【0012】
【発明の実施の形態】
本発明の誘電体磁器組成物の好適な製造法の一例を次に説明する。
炭酸バリウム、酸化チタンおよび酸化ネオジムの出発原料を各所定量ずつ水、アルコール等の溶媒と共に湿式混合する。続いて、水、アルコール等を除去した後、粉砕し、酸素含有ガス雰囲気(例えば空気雰囲気)下に1000〜1300℃で約1〜5時間程度仮焼する。このようにして得られた仮焼粉をポリビニルアルコールの如き有機バインダと共に混合して均質にし、乾燥、粉砕、加圧成形(圧力100〜1000Kg/cm 程度)する。得られた成形物を空気の如き酸素含有ガス雰囲気下に800℃〜1100℃で焼成することによりBaO−TiO−Nd系の第1の誘電体磁器組成物が得られる。
【0013】
次に特性を制御するために、第1の誘電体磁器組成物の表面に第2の誘電体磁器組成物からなる薄膜を形成する。すなわち、第1の誘電体磁器組成物を適当な大きさにカットした後、スパッタ装置の基板上に設置し、反応性スパッタにより第2の誘電体磁器組成物となる薄膜、例えばチタン酸化膜を作製する。この誘電体磁器組成物の模式図を図1に示す。このようにして得られた誘電体磁器組成物は、表面に形成する膜厚の厚さを制御することにより特性(比誘電率ε、共振周波数の温度係数τなど)を制御することができる。
【0014】
また、表面に形成された薄膜の一部を研削などの手段で除去することにより、あるいは薄膜およびその内部の誘電体磁器組成物の一部を除去することにより、さらに前記特性を制御することができる。
【0015】
このようにして得られた誘電体磁器組成物は、必要により適当な形状およびサイズに加工し、誘電体共振器、誘電体基板、積層素子等の材料として利用できる。
【0016】
【実施例】
以下に実施例および比較例を示し、本発明をさらに具体的に説明する。
実施例1
炭酸バリウム粉末(BaCO)0.166モル、酸化チタン粉末(TiO)0.668モルおよび酸化サマリウム粉末(Sm)0.166モルをジルコニア製玉石を用いエタノールを溶媒としてボールミルで12時間湿式混合した。溶液を脱媒後、粉砕し、空気雰囲気下1100℃で仮焼した。この仮焼粉を粉砕し、適量のポリビニルアルコール溶液を加えて乾燥後、直径10mm、厚さ約4mmのペレットに成形し、空気雰囲気下において1350℃で2時間焼成した。
【0017】
こうして得られた第1の誘電体磁器組成物を7mm角、厚み1mmtの大きさに加工したのち、誘電共振法によって測定し、共振周波数(8〜12GHz)における無負荷Q、比誘電率および共振周波数の温度係数τを求めた。その結果を表1(比較例1の電気的特性に同じ)に示す。
【0018】
次に得られた第1の誘電体磁器組成物の特性を制御するために、該第1の誘電体磁器組成物の表面に第2の誘電体磁器組成物からなる薄膜を形成した。すなわち、第1の誘電体磁器組成物をRFマグネトロンスパッタ装置の基板上に設置し、ターゲットの金属チタンを用い、反応性スパッタによりチタン酸化物(膜厚:0.3μm)を作製した。本実施例におけるスパッタ条件は、基板温度:600℃、スパッタ電力:300W、スパッタガス圧比:Ar/O=4/1、スパッタガス圧:5Pa、スパッタ時間:120minである。このようにして得られた誘電体磁器組成物の特性を表1に示す。得られた誘電体磁器組成物の構成を図1に示す。なお、形成した薄膜をX線回折によって分析した結果、ルチル構造を示していた。このようにして得られた誘電体磁器組成物を誘電共振法により測定し、共振周波数(8〜12GHz)における無負荷Q、比誘電率εおよび共振周波数の温度係数τを求めた。その結果を表1に示す。
【0019】
実施例2〜10および比較例1
実施例1のチタン酸化膜の厚さおよび形成する薄膜の種類を表1記載のように代えたほかは実施例1と同様にして誘電体磁器組成物を製造し、実施例1と同様に特性を測定した。なお、膜厚はスパッタ時間を変えて制御した。その結果を表1に併せて示す。
【0020】
【発明の効果】
本発明によれば、比誘電率εが大きく、かつ無負荷Q値も大きく、しかも共振周波数の温度係数τが小さく、さらに、これらを所望の値に高精度で制御することができる。
【0021】
【表1】

Figure 0003564844

【図面の簡単な説明】
【図1】本発明の誘電体磁器組成物を示す縦断面図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dielectric ceramic composition suitable as a material for a dielectric resonator or the like in which a thin film made of a second dielectric ceramic composition is formed on the surface of a first dielectric ceramic composition, and a method for producing the same. And a method for controlling the characteristics of the dielectric ceramic composition.
[0002]
[Prior art]
In recent years, with the integration of microwave circuits, a small and high-performance dielectric resonator has been demanded. The dielectric ceramic composition used for such a dielectric resonator is required to have characteristics such as a large relative permittivity ε r , a large unloaded Q, and a small temperature coefficient τ f of the resonance frequency. Have been.
[0003]
As such a dielectric ceramic composition, proposed BaO-TiO 2 -Nd 2 O 3 based dielectric ceramic composition [Ber. Dt. Keram. Ges. , 55 (1978) Nr. 7; JP 60-35406 JP], or have been proposed for BaO-TiO 2 -Nd 2 O 3 -Bi 2 O 3 system (JP 62-72558 JP).
[0004]
[Problems to be solved by the invention]
At present, devices using the dielectric ceramic composition are used in various electronic devices. However, the characteristics required for the element differ depending on the place where it is used, the purpose of use, and the like, and each element needs to be controlled with high precision. In order to realize such properties, generally, control of the material composition, addition of trace additives, etc. are performed, but the properties of the material once prepared cannot be changed, and it is extremely accurate. There is a problem that it is difficult to control the characteristics.
[0005]
An object of the present invention is to solve the above-mentioned problems, and more specifically, to provide a dielectric ceramic composition capable of controlling the characteristics of ceramics and a method for producing the same. Another object of the present invention is to provide a method for controlling the characteristics of a dielectric ceramic composition.
[0006]
[Means for Solving the Problems]
The present invention, I first dielectric dielectric resonator dielectric ceramic composition der a thin film made of a second dielectric ceramic composition is formed on the surface of the ceramic composition, the first dielectric body porcelain composition is a BaO-TiO 2 -Nd 2 O 3 based dielectric porcelain composition or BaO-TiO 2 -Sm 2 O 3 based dielectric ceramic composition, the second dielectric ceramic composition TiO 2 , a dielectric porcelain composition selected from BaTiO 3 , SrTiO 3 , PbTiO 3 , Pb (Zr, Ti) O 3 , and Ta 2 O 5 , which relates to a dielectric porcelain composition for a dielectric resonator. . In particular, the second dielectric ceramic composition is preferably TiO 2 or PbTiO 3 .
[0007]
The present invention relates to a process for the preparation of the first dielectric ceramic composition dielectric resonator ceramic composition and forming a thin film made of the second dielectric ceramic composition to the surface of the.
[0008]
The present invention relates to the surface of the BaO-TiO 2 -Nd 2 O 3 based dielectric porcelain composition or BaO-TiO 2 -Sm 2 O 3 based first dielectric ceramic composition comprising dielectric ceramic composition, By forming a thin film made of the second dielectric ceramic composition selected from TiO 2 , BaTiO 3 , SrTiO 3 , PbTiO 3 , Pb (Zr, Ti) O 3 , and Ta 2 O 5 , the dielectric ceramic composition is formed. The present invention relates to a method for controlling the characteristics of a dielectric ceramic composition for a dielectric resonator, which controls the characteristics of an object to a desired value.
[0009]
According to the present invention, by forming a thin film made of the second dielectric porcelain composition on the surface of the first dielectric porcelain composition, characteristics of the dielectric porcelain composition, for example, relative permittivity ε r , Electrical characteristics such as no-load Q and temperature coefficient τ f of resonance frequency can be controlled to desired values with high accuracy and ease. Further, in case that geometry is also defined, it is possible to satisfy the required characteristics in a desired size by varying the relative permittivity epsilon r.
[0010]
In the present invention, the first dielectric ceramic composition, BaO-TiO 2 -Nd 2 O 3 system, are widely used from the BaO-TiO 2 system, or Ba (Zn, Ta) O 3 based, such as a conventional Things can be used.
[0011]
In the present invention, as the thin film made of the second dielectric ceramic composition, a thin film such as TiO 2 , BaTiO 3 , SrTiO 3 , PbTiO 3 , Pb (Zr, Ti) O 3 , Ta 2 O 5 is used. Can be. These thin films can be formed by a method such as sputtering, vapor deposition, CVD, and sol-gel. Although the thickness of the thin film is not particularly limited, if the thickness of the thin film is excessively large, it causes cracks due to strain between the ceramic and the thin film, and if the thickness is excessively small, the effect of controlling the characteristics is small. The thickness is preferably from 1000 to 100,000 angstroms.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An example of a preferred method for producing the dielectric ceramic composition of the present invention will be described below.
The starting materials of barium carbonate, titanium oxide, and neodymium oxide are wet-mixed in predetermined amounts with a solvent such as water or alcohol. Subsequently, after removing water, alcohol and the like, the mixture is pulverized and calcined at 1000 to 1300 ° C. for about 1 to 5 hours in an oxygen-containing gas atmosphere (for example, air atmosphere). The calcined powder thus obtained is mixed with an organic binder such as polyvinyl alcohol to make it homogeneous, and then dried, pulverized, and pressed (with a pressure of about 100 to 1000 kg / cm 2 ). The obtained molded article is fired at 800 ° C. to 1100 ° C. in an atmosphere of an oxygen-containing gas such as air to obtain a BaO—TiO 2 —Nd 2 O 3 -based first dielectric ceramic composition.
[0013]
Next, in order to control the characteristics, a thin film made of the second dielectric ceramic composition is formed on the surface of the first dielectric ceramic composition. That is, after the first dielectric ceramic composition is cut into an appropriate size, the first dielectric ceramic composition is placed on a substrate of a sputtering apparatus, and a thin film, for example, a titanium oxide film which becomes the second dielectric ceramic composition by reactive sputtering is formed. Make it. FIG. 1 shows a schematic diagram of this dielectric ceramic composition. By controlling the thickness of the film formed on the surface of the dielectric porcelain composition thus obtained, the characteristics (such as the relative permittivity ε r and the temperature coefficient τ f of the resonance frequency) can be controlled. it can.
[0014]
Further, by removing a part of the thin film formed on the surface by grinding or the like, or by removing a part of the thin film and the dielectric ceramic composition inside the thin film, it is possible to further control the characteristics. it can.
[0015]
The dielectric ceramic composition thus obtained can be processed into an appropriate shape and size as needed, and can be used as a material for a dielectric resonator, a dielectric substrate, a laminated element, and the like.
[0016]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
Example 1
0.166 mol of barium carbonate powder (BaCO 3 ), 0.668 mol of titanium oxide powder (TiO 2 ), and 0.166 mol of samarium oxide powder (Sm 2 O 3 ) were mixed in a ball mill using zirconia balls with ethanol as a solvent and 12 Wet mixed for hours. After removing the solvent, the solution was pulverized and calcined at 1100 ° C. in an air atmosphere. The calcined powder was pulverized, dried with an appropriate amount of a polyvinyl alcohol solution, formed into pellets having a diameter of 10 mm and a thickness of about 4 mm, and fired at 1350 ° C. for 2 hours in an air atmosphere.
[0017]
The first dielectric porcelain composition thus obtained was processed into a size of 7 mm square and 1 mmt thick, and then measured by a dielectric resonance method. The unloaded Q, the relative dielectric constant and the resonance at a resonance frequency (8 to 12 GHz) were measured. The temperature coefficient of frequency τ f was determined. The results are shown in Table 1 (the same as the electrical characteristics of Comparative Example 1).
[0018]
Next, in order to control the characteristics of the obtained first dielectric ceramic composition, a thin film made of the second dielectric ceramic composition was formed on the surface of the first dielectric ceramic composition. That is, the first dielectric ceramic composition was placed on a substrate of an RF magnetron sputtering apparatus, and a titanium oxide (thickness: 0.3 μm) was produced by reactive sputtering using metallic titanium as a target. The sputtering conditions in this embodiment are as follows: substrate temperature: 600 ° C., sputtering power: 300 W, sputtering gas pressure ratio: Ar / O 2 = 4/1, sputtering gas pressure: 5 Pa, and sputtering time: 120 min. Table 1 shows the properties of the dielectric ceramic composition thus obtained. FIG. 1 shows the structure of the obtained dielectric ceramic composition. In addition, as a result of analyzing the formed thin film by X-ray diffraction, it showed a rutile structure. The thus obtained dielectric ceramic composition was measured by a dielectric resonator method, to determine the temperature coefficient tau f of the unloaded Q, the dielectric constant epsilon r and the resonance frequency at the resonance frequency (8~12GHz). Table 1 shows the results.
[0019]
Examples 2 to 10 and Comparative Example 1
A dielectric ceramic composition was manufactured in the same manner as in Example 1 except that the thickness of the titanium oxide film and the type of the thin film to be formed in Example 1 were changed as shown in Table 1, and the characteristics were the same as in Example 1. Was measured. The thickness was controlled by changing the sputtering time. The results are shown in Table 1.
[0020]
【The invention's effect】
According to the present invention, the relative permittivity ε r is large, the unloaded Q value is large, the temperature coefficient τ f of the resonance frequency is small, and these can be controlled to desired values with high accuracy.
[0021]
[Table 1]
Figure 0003564844

[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a dielectric ceramic composition of the present invention.

Claims (4)

第1の誘電体磁器組成物の表面に第2の誘電体磁器組成物からなる薄膜が形成されている誘電体共振器用誘電体磁器組成物であって、前記第1の誘電体磁器組成物がBaO−TiO −Nd 系誘電体磁器組成物またはBaO−TiO −Sm 系誘電体磁器組成物であり、前記第2の誘電体磁器組成物がTiO 、BaTiO 、SrTiO 、PbTiO 、Pb(Zr,Ti)O 、およびTa から選ばれる誘電体磁器組成物であることを特徴とする誘電体共振器用誘電体磁器組成物。 What first dielectric dielectric resonator dielectric ceramic composition der a thin film made of a second dielectric ceramic composition is formed on the surface of the ceramic composition, the first dielectric ceramic composition There is a BaO-TiO 2 -Nd 2 O 3 based dielectric porcelain composition or BaO-TiO 2 -Sm 2 O 3 based dielectric ceramic composition, the second dielectric ceramic composition TiO 2, BaTiO 3 , SrTiO 3, PbTiO 3, Pb (Zr, Ti) O 3, and a dielectric resonator dielectric ceramic composition characterized by from Ta 2 O 5 is a dielectric ceramic composition chosen. 前記第2の誘電体磁器組成物がTiOThe second dielectric porcelain composition is TiO. 2 、またはPbTiOOr PbTiO 3 であることを特徴とする請求項1記載の誘電体共振器用誘電体磁器組成物。2. The dielectric ceramic composition for a dielectric resonator according to claim 1, wherein: 前記第1の誘電体磁器組成物の表面に前記第2の誘電体磁器組成物からなる薄膜を形成することを特徴とする請求項1または2記載の誘電体共振器用誘電体磁器組成物の製造方法。 3. The production of a dielectric ceramic composition for a dielectric resonator according to claim 1, wherein a thin film made of the second dielectric ceramic composition is formed on the surface of the first dielectric ceramic composition. Method. BaO−TiO −Nd 系誘電体磁器組成物またはBaO−TiO −Sm 系誘電体磁器組成物からなる第1の誘電体磁器組成物の表面に、TiO 、BaTiO 、SrTiO 、PbTiO 、Pb(Zr,Ti)O 、およびTa から選ばれる第2の誘電体磁器組成物からなる薄膜を形成することにより、誘電体磁器組成物の特性を所望値に制御することを特徴とする誘電体共振器用誘電体磁器組成物の特性制御方法。On the surface of the BaO-TiO 2 -Nd 2 O 3 based dielectric porcelain composition or BaO-TiO 2 -Sm 2 O 3 based first dielectric ceramic composition comprising dielectric ceramic composition, TiO 2, BaTiO 3 By forming a thin film made of a second dielectric porcelain composition selected from the group consisting of SrTiO 3 , PbTiO 3 , Pb (Zr, Ti) O 3 , and Ta 2 O 5 , the characteristics of the dielectric porcelain composition are desired. A characteristic control method for a dielectric ceramic composition for a dielectric resonator, characterized in that the characteristic is controlled to a value.
JP02374496A 1996-02-09 1996-02-09 Dielectric porcelain composition, method for producing the same, and method for controlling characteristics of dielectric porcelain composition Expired - Fee Related JP3564844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02374496A JP3564844B2 (en) 1996-02-09 1996-02-09 Dielectric porcelain composition, method for producing the same, and method for controlling characteristics of dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02374496A JP3564844B2 (en) 1996-02-09 1996-02-09 Dielectric porcelain composition, method for producing the same, and method for controlling characteristics of dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH09221365A JPH09221365A (en) 1997-08-26
JP3564844B2 true JP3564844B2 (en) 2004-09-15

Family

ID=12118829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02374496A Expired - Fee Related JP3564844B2 (en) 1996-02-09 1996-02-09 Dielectric porcelain composition, method for producing the same, and method for controlling characteristics of dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3564844B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734440B (en) * 2019-03-11 2021-08-24 西南科技大学 SrTiO with heterogeneous layered structure3Base energy storage medium ceramic and preparation method thereof

Also Published As

Publication number Publication date
JPH09221365A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
CN103601488A (en) Method for regulating and controlling ceramic dielectric medium microstructure and dielectric property
EP1415960B1 (en) Method for making raw dielectric ceramic powder, dielectric ceramic and monolithic ceramic capacitor
JP2023114296A (en) Dielectric composition and electronic component
KR102033058B1 (en) Oxynitride thin film and capacitance element
WO2020209039A1 (en) Dielectric inorganic composition
KR101021361B1 (en) Dielectric ceramic composition and method of production thereof
JP3564844B2 (en) Dielectric porcelain composition, method for producing the same, and method for controlling characteristics of dielectric porcelain composition
US11551867B2 (en) Dielectric composition, dielectric thin film, dielectric element, and electronic circuit board
JP2001110665A (en) Dielectric component and ceramic capacitor using the same
JP3243874B2 (en) Dielectric porcelain composition
KR100355933B1 (en) A method for preparing Barium Titanate powders for X7R type multilayer ceramic Chip Capacitor
WO2022244479A1 (en) Ceramic material and capacitor
JP3291780B2 (en) Dielectric porcelain composition
KR100916048B1 (en) Dielectric ceramic material, fabrication mehtod of the same and ceramic condencer
JPH07114824A (en) Dielectric ceramic composition
JP3243873B2 (en) Dielectric porcelain composition
KR100355932B1 (en) A method for preparing Barium Titanate powders for the multilayer ceramic Chip Capacitor
JP2645589B2 (en) Dielectric porcelain composition
JP3257152B2 (en) Dielectric porcelain composition
JP3243890B2 (en) Dielectric porcelain composition
JPH06325620A (en) Dielectric ceramic composition
JP2023045881A (en) Dielectric composition and electronic component
JP2872512B2 (en) Dielectric porcelain and porcelain capacitor
JP2023046256A (en) Dielectric composition and electronic component
CN116891379A (en) Dielectric ceramic composition, method for producing the same, and multilayer ceramic capacitor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees