JP3564583B2 - Control device for air conditioner - Google Patents

Control device for air conditioner Download PDF

Info

Publication number
JP3564583B2
JP3564583B2 JP09928495A JP9928495A JP3564583B2 JP 3564583 B2 JP3564583 B2 JP 3564583B2 JP 09928495 A JP09928495 A JP 09928495A JP 9928495 A JP9928495 A JP 9928495A JP 3564583 B2 JP3564583 B2 JP 3564583B2
Authority
JP
Japan
Prior art keywords
amount
indoor
bedtime
outdoor
pmv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09928495A
Other languages
Japanese (ja)
Other versions
JPH08296882A (en
Inventor
宏 駒野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP09928495A priority Critical patent/JP3564583B2/en
Publication of JPH08296882A publication Critical patent/JPH08296882A/en
Application granted granted Critical
Publication of JP3564583B2 publication Critical patent/JP3564583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明は、冷房,暖房等の運転モードを自動的に切り替える空気調和機の制御装置に関する。
【0002】
【従来の技術】
従来、空気調和機の制御装置としては、特開平6−185785号公報に記載のものがある。この空気調和機の制御装置は、運転開始時に冷房運転か暖房運転かの運転モードを判定する判定基準(設定温度)と、運転中の再判定基準(冷房運転を行う冷房設定値と暖房運転を行う暖房設定値)との差を季節により変化させることによって、季節により変わる在室者の快適感に合わせて空調運転を制御することができる。すなわち、空調運転を行ったり、運転開始後に熱負荷が変わったりすると、温熱環境が変化するために、在室者の希望する運転モードと実際の運転モードにずれが生じるので、運転中は運転開始時の判定基準と異なる再判定基準に基づいて、運転モードを再判定するのである。
【0003】
【発明が解決しようとする課題】
ところで、上記空気調和機の制御装置は、運転モードの誤判定を防止するために、再判定基準と判定基準との差に余裕を持たせておく必要がある。例えば、運転開始時に室内温度が判定基準の設定温度より低いので、暖房運転を行って室内温度を上げる。そして、上記室内温度が暖房運転領域と冷房運転領域が重なる領域に達した後に運転モードの再判定をすると、再判定基準の冷房設定温度が低いと、誤って冷房運転に切り替わってしまう場合がある。また、運転開始時に室内温度が判定基準の設定温度より高いので、冷房運転を行って室内温度を下げる。そして、上記室内温度が暖房運転領域と冷房運転領域が重なる領域に達した後に運転モードの再判定をすると、再判定基準の暖房設定温度が高いと、誤って暖房運転に切り替わってしまう場合がある。したがって、上記再判定のときに誤判定しないように、運転開始時の判定基準に対して再判定基準をある程度判定基準と差のある設定にするため、最適と考えられる運転モードと現状の運転モードが一致するまでに時間遅れが生じ、快適性が損なわれるという欠点がある。
【0004】
また、運転停止後に再度運転を開始する操作がされた場合、冷房運転と暖房運転の運転モードを判定するとき、過去の運転によって温熱環境がどの程度変化しているか分からないので、運転開始時の判定基準と再判定基準のどちらで運転モードを判定するか判断が困難という問題がある。
【0005】
そこで、この発明の目的は、在室者の室内の快適度と室外の快適度および季節感を表わす着衣量に従って、運転モードを切り替えて、過去の運転状態に関わらず、常に現在の温熱環境に最適な空調運転ができる空気調和機の制御装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1の空気調和機の制御装置は、少なくとも冷房と暖房の運転モードを切り替える空気調和機の制御装置において、室内の温度,湿度,輻射温度,気流速度および在室者の活動量を夫々表わす信号と上記在室者の着衣量を表わす信号とに基づいて、室内の快適度を算出する室内快適度算出手段と、室外の温度,湿度,輻射温度,気流速度および上記在室者が室外に出たときの活動量を夫々表わす信号と上記在室者の着衣量を表わす信号とに基づいて、上記室外の快適度を算出する室外快適度算出手段と、外気温度に関する信号に基づいて、上記在室者の着衣量を推定する着衣量推定手段と、上記室内快適度算出手段により算出された上記室内の快適度と上記室外快適度算出手段により算出された上記室外の快適度および上記着衣量推定手段により推定された上記着衣量に基づいて、運転モードを判定する運転モード判定手段とを備えたことを特徴としている。
【0007】
また、請求項2の空気調和機の制御装置は、請求項1の空気調和機の制御装置において、上記運転モード判定手段は、ファジィ推論規則によって運転モードを判定するファジィ推論手段を有することを特徴としている。
【0008】
また、請求項3の空気調和機の制御装置は、請求項1または2の空気調和機の制御装置において、上記着衣量推定手段は、外気温度を表わす信号と所定期間における上記外気温度の最高温度,最低温度を夫々表わす信号とに基づいて、上記着衣量を表わす信号を出力するニューラルネットワークを有することを特徴としている。
【0009】
また、請求項4の空気調和機の制御装置は、請求項1乃至3のいずれか一つの空気調和機の制御装置において、上記在室者の温冷感に基づく補正指令信号を受けて、上記室内快適度算出手段により算出された上記室内の快適度を補正する室内快適度補正手段を備えたことを特徴としている。
【0010】
また、請求項5の空気調和機の制御装置は、請求項1乃至4のいずれか一つの空気調和機の制御装置において、上記在室者が就寝中の室内の温度,湿度,輻射温度,気流速度および在室者の活動量を夫々表わす信号と就寝時の在室者の着衣量を表わす信号とに基づいて、就寝時における室内の快適度を算出する就寝時室内快適度算出手段と、上記在室者が就寝中の室外の温度,湿度,輻射温度,気流速度および上記在室者の活動量を夫々表わす信号と上記就寝時の在室者の着衣量を表わす信号とに基づいて、就寝時の室外の快適度を算出する就寝時室外快適度算出手段と、外気温度に関する信号に基づいて、上記在室者の就寝時の着衣量を推定する就寝時着衣量推定手段と、上記就寝時室内快適度算出手段により算出された上記就寝時の室内の快適度と上記就寝時室外快適度算出手段により算出された上記就寝時の室外の快適度および上記就寝時着衣量推定手段により推定された上記就寝時の着衣量に基づいて、運転モードを判定する就寝時運転モード判定手段とを備えたことを特徴としている。
【0011】
また、請求項6の空気調和機の制御装置は、請求項5の空気調和機の制御装置において、上記就寝時運転モード判定手段は、ファジィ推論規則によって運転モードを判定する就寝時ファジィ推論手段を有することを特徴としている。
【0012】
【作用】
上記請求項1の空気調和機の制御装置によれば、室内の温度,湿度,輻射温度,気流速度および在室者の活動量を夫々表わす信号と在室者の着衣量を表わす信号とに基づいて、上記室内快適度算出手段により在室者の室内の快適度を算出する。また、室外の温度,湿度,輻射温度,気流速度および在室者が室外に出たときの活動量を夫々表わす信号と在室者の着衣量を表わす信号とに基づいて、上記室外快適度算出手段により室外の快適度を算出する。また、上記外気温度に関する信号に基づいて、上記着衣量推定手段により着衣量を推定する。上記着衣量推定手段により推定された着衣量は、在室者が感じるいわゆる季節感を表しており、春夏秋冬の夫々の季節により変化する人の温冷感に応じて着衣量を推定する。すなわち、夏であれば、薄着となって着衣量が少なくなり、冬であれば厚着となって着衣量が多くなるのである。そして、上記室内快適度算出手段により算出された室内の快適度と、室外快適度算出手段により算出された室外の快適度および着衣量推定手段により推定された着衣量に基づいて、運転モード判定手段は、冷房運転や暖房運転等の運転を切り替えるための運転モードを判定する。
【0013】
したがって、上記室内の快適度,室外の快適度および着衣量によって、現在の室内,室外の温熱環境と在室者の現在の温冷感を正確に判断して、運転モードを判定するので、過去の運転状態に関わりなく、現在の温熱環境に最適な運転モードで空調運転を行うことができる。また、外気温度に関する信号に基づいて推定された着衣量を用いて、リアルタイムに運転モードが判定されるので、外気の急激な温度変化に対応することができ、1日の温冷感の格差が大きい場合でも、快適な温熱環境を実現できる。
【0014】
また、上記請求項2の空気調和機の制御装置によれば、請求項1の空気調和機の制御装置において、上記運転モード判定手段が運転モードを判定するとき、室内,室外の温熱環境の差による熱負荷を考慮した運転モードになるように、人の経験に基づいてファジィ推論規則を設定することによって、室内,室外の温熱環境に応じた運転モードの判定を行うことができる。
【0015】
また、上記請求項3の空気調和機の制御装置によれば、請求項1または2の空気調和機の制御装置において、上記着衣量推定手段は、外気温度を表わす信号と所定期間における上記外気温度の最高温度,最低温度を夫々表わす信号とに基づいて、ニューラルネットワークにより着衣量を推定するので、冷夏,暖冬等の季節差や寒冷な地域と温暖な地域との差による誤差なしに、季節感を表わす着衣量を得ることができる。
【0016】
また、上記請求項4の空気調和機の制御装置によれば、請求項1乃至3の空気調和機の制御装置において、上記在室者からの温冷感に基づく補正指令信号を受けて、上記室内快適度補正手段は、上記室内快適度算出手段により算出された上記室内の快適度を補正する。例えば、上記在室者がリモートコントローラ等の操作により現在の温冷感が“寒い”か“暑い”かを指令し、“寒い”ときは、上記室内の快適度を寒い側に補正する一方、“暑い”ときは、上記室内の快適度を寒い側に補正するのである。そして、上記補正された室内の快適度と、室外の快適度および着衣量に基づいて、上記運転モード判定手段が運転モードを判定するので、在室者の温冷感の個人差を補正することができる。
【0017】
また、上記請求項5の空気調和機の制御装置によれば、在室者が就寝中の室内の温度,湿度,輻射温度,気流速度および在室者の活動量を夫々表わす信号と就寝時の在室者の着衣量を表わす信号とに基づいて、上記就寝時室内快適度算出手段により就寝時の室内の快適度を算出する。また、室外の温度,湿度,輻射温度,気流速度および在室者が室外に出たときの活動量を夫々表わす信号と就寝時の在室者の着衣量を表わす信号とに基づいて、上記就寝時室外快適度算出手段により就寝時の室外の快適度を算出する。上記外気温度に関する信号に基づいて、上記就寝時着衣量推定手段により在室者の就寝時の着衣量を推定する。そして、上記就寝時室内快適度算出手段により算出された上記就寝時の室内の快適度と上記就寝時室外快適度算出手段により算出された上記就寝時の室外の快適度および上記就寝時着衣量推定手段により推定された上記就寝時の着衣量に基づいて、上記就寝時運転モード判定手段は、冷房運転や暖房運転等を切り替えるための運転モードを判定する。
【0018】
したがって、上記就寝時の室内の快適度,室外の快適度および着衣量によって、就寝時の室内,室外の温熱環境と在室者の温冷感とを正確に判断して、運転モードを判定することができる。つまり、就寝時に暖房運転する場合は、例えば冬は布団等が厚くなり着衣量が多くなるので、昼間の活動時よりも室内の目標設定温度を低めにする一方、夏は薄着で布団等も少なくなり着衣量が少なくなると共に、活動量も少ないので、昼間の活動時よりも室内の目標設定温度を高めにするのである。したがって、就寝時の環境に適した空調運転を行うことができる。
【0019】
また、上記請求項6の空気調和機の制御装置によれば、請求項5の空気調和機の制御装置において、上記就寝時運転モード判定手段が運転モードを判定するとき、室内,室外の温熱環境の差による熱負荷を考慮した運転モードになるように、人の経験に基づいてファジィ推論規則を設定することによって、就寝時の室内,室外の温熱環境に応じた運転モードの判定を行うことができる。
【0020】
【実施例】
以下、この発明の空気調和機の制御装置を実施例により詳細に説明する。
【0021】
(第1実施例)
図1はこの発明の第1実施例の空気調和機の制御装置20の要部ブロック図であり、1は着衣量推定値を推定する着衣量推定手段としての着衣量推定部、2は室内の快適度としての室内PMV(Predicted Mean Vote)値を算出する室内快適度算出手段としての室内PMV算出部、3は室外の快適度としての室外PMV値を算出する室外快適度算出手段としての室外PMV算出部、4は上記着衣量推定部1により算出された着衣量推定値と、上記室内PMV算出部2により算出された室内PMV値および上記室外PMV算出部3により算出された室外PMV値とに基づいて、運転モードを判定する運転モード判定手段としての運転モード判定部である。上記制御装置20には、リモートコントローラ(以下、リモコンという)10と、室内温度センサ11と、室内の赤外線放射に基づいて輻射温度を検出する室内輻射温度センサ12と、室内湿度センサ13と、室内の赤外線放射の変化を検出する赤外線センサ14と、外気温度センサ15とを接続している。
【0022】
なお、上記室内PMV算出部2と室外PMV算出部3は、室内の温度,湿度,輻射温度,気流速度(以下、気流速という)および在室者の活動度と着衣量に基づき、国際標準化機構(International Organization for Standardition;ISO)が定めた国際規格ISO−7730に記載されている演算式により室内PMV値と室外PMV値を夫々算出する。上記室内PMV値と室外PMV値は、室内において在室者が感じる熱的感覚尺度(いわゆる温冷感)であって、例えば+3:暑い,+2:暖かい,+1:少し暖かい,0:ちょうど良い,−1:少し涼しい,−2:涼しい,−3:寒いなどを表わす。
【0023】
図2は上記制御装置20の着衣量推定部1と室内PMV算出部2のブロック図であり、上記着衣量推定部1は、外気温度センサ15からの外気温度を表わす信号を受けて、その外気温度を表わす信号と1日24時間の外気温度の最高温度,最低温度を夫々表わす信号とを出力する外気情報変換器1aと、上記外気情報変換器1aからの外気温度,最高温度および最低温度に基づいて、着衣量推定値を表わす信号を出力するニューラルネットワーク1bとを有している。
【0024】
上記ニューラルネットワーク1bは、上記外気温度と最高温度および最低温度に基づいて、季節に応じた着衣量を推定するように予め学習されている。すなわち、上記ニューラルネットワーク1bは、使用に先立って、外気情報変換器1aからのその時点の外気温度および1日24時間の最高気温,最低気温を表わす信号を入力層の各ニューロンに受け、出力層の各ニューロンに上記時点に応じて与えられる着衣量に関する教師データに基づき、着衣量推定値である出力データと教師データの差を減らすように、自己のネットワークの結合の強さを変化させる入力処理と重み学習を行う。そして、多数の入力データについて学習を繰り返して、最適の着衣量推論値を出力できる状態にしている。
【0025】
また、上記室内PMV算出部2は、予め室内の居住者の位置が定められた室内モデルにおいて、この空気調和機の風量と風向に基づいて、上記室内モデルの居住者のいる位置の気流速を表わす気流速推定値を推定する気流速推定部2aと、赤外線センサ14からの赤外線の変化を表わす信号に基づいて、在室者の活動量を推定する活動量推定部2bと、室内の快適度を表わす室内PMV値を算出する室内PMV算出器2cを有している。なお、上記気流速推定部2aは、この制御装置20が制御する図示しないファンモータの回転数とフラップの角度から風量と風向を求めて、その風量と風向に基づいて気流速を推定している。また、上記室内PMV算出器2cは、室内温度センサ11からの室内温度検出値を表わす信号と、室内輻射温度センサ12からの室内輻射温度検出値を表わす信号と、室内湿度センサ13からの室内湿度検出値を表わす信号と、気流速推定部2aからの気流速推定値を表わす信号と、活動量推定部2bの活動量推定値を表わす信号および着衣量推定部1からの着衣量推定値を表わす信号を受けて、上記室内PMV値を算出する。
【0026】
図3は上記制御装置20の室外PMV算出部3のブロック図であり、上記室外PMV算出部3は、在室者が室内着のまま室外に出たときの快適度を表わす室外PMV値を算出する室外PMV算出器3aを有している。上記室外PMV算出器3aは、室外湿度の代わりとしての室内湿度センサ13からの室内湿度検出値を表わす信号と、室外での気流速を無風(=0.1m/sec)とする気流速推定値を表わす信号と、室外での活動量を1.2Met(着座状態)とする活動量推定値を表わす信号と、外気温度センサ15からの室外温度検出値を表わす信号と、室外輻射温度(=室外温度)を表わす信号と、着衣量推定部1からの着衣量推定値を表わす信号とを受けて、上記室外PMV値を算出する。上記室外湿度,気流速推定値,活動量推定値および室外輻射温度は、室外用の各種センサが必要であったり、測定が困難であるため、室外湿度に室内湿度を用い、室外の標準的な環境要素として気流速推定値,活動量推定値および室外輻射温度の所定値を定めている。
【0027】
図4は上記制御装置20の運転モード判定部4のブロック図であり、上記運転モード判定部4は、室内PMV算出部2からの室内PMV値を表わす信号と、室外PMV算出部3からの室外PMV値を表わす信号および着衣量推定部1からの着衣量推定値を表わす信号とを受けて、後述のファジィ推論規則に従って運転モードを判定するファジィ推論部4aを有している。
【0028】
上記構成の空気調和機の制御装置20において、上記リモコン10による運転開始操作がされて、空調運転を行うと、室内PMV算出部2により算出された室内PMV値に基づいて、運転モード判定部4のファジィ推論部4aは、まず前件部で室外PMV値の入力に対してファジィ変数の適合度を求める。図5(A)に示すように、上記室内PMV値が−3.0〜3.0の区間において、室内の温冷感を表わす5個のファジィ変数(室内PMV値が−3.0から順に[寒い],[涼しい],[ちょうど良い],[暖かい],[暑い])を定義している。
【0029】
また、上記室外PMV算出部3により算出された室外PMV値に基づいて、運転モード判定部4のファジィ推論部4aは、前件部で室外PMV値の入力に対してファジィ変数の適合度を求める。図5(B)に示すように、上記室外PMV値が−3.0〜3.0の区間において、室外の温冷感を表わす5個のファジィ変数(室外PMV値が−3.0から順に[寒い],[涼しい],[ちょうど良い],[暖かい],[暑い])を定義している。
【0030】
また、上記着衣量推定部1により推定された着衣量推定値に基づいて、運転モード判定部4のファジィ推論部4aは、前件部で着衣量推定値の入力に対してファジィ変数の適合度を求める。図5(C)に示すように、上記着衣量推定値が.0.0〜1.0の区間において、季節感を表わす4個のファジィ変数(室内PMV値が0.0から順に[夏],[秋],[春],[冬])を定義している。
【0031】
次に、上記ファジィ推論部4aの前件部で得られた室内,室外における快適感を表わすファジィ変数と季節感を表わすファジィ変数との夫々の適合度に応じて、冬のファジィ推論規則(図7(A)に示す)、春のファジィ推論規則(図7(B)に示す)、秋のファジィ推論規則(図8(A)に示す)、夏のファジィ推論規則(図8(B)に示す)に従って推論を行う。そして、図6の上段に示す運転状態を表わす6個のファジィ変数([普通に冷やす],[少し冷やす],[涼しくする],[なにもしない],[少し暖める],[普通に暖める])のうちから、上記前件部で得られた室内,室外における快適感を表わすファジィ変数と季節感を表わすファジィ変数との夫々の適合度に応じた推論結果を求める。次に、上記推論結果を総合してファジィ集合を求め、そのファジィ集合の重心座標を求める。そして、上記ファジィ推論部4aの後件部において、図6の下段に示すように、上記重心座標に対応する運転モードを判定する。すなわち、7つの運転モードに対応する区間0〜7において、区間0〜1.5では[冷房]、区間1.5〜2.5では[弱冷房]、区間2.5〜3.5では[送風,ドライ]、区間3.5〜4.5では[待機]、区間4.5〜5.5では[弱暖房]、区間5.5〜7では[暖房]としている。なお、上記弱暖房モードは、軽負荷時に能力を抑えると共に温風が室内全体に行き渡るようにする運転モードである。また、上記弱冷房モードは、軽負荷時に能力を抑えると共に冷風が室内全体に行き渡るようにする運転モードである。また、上記送風,ドライモードは、一つの運転モードとして扱い、高い湿度の場合はドライ運転を行い、低い湿度の場合は送風運転を行う。また、上記待機モードは、強制的に圧縮機を停止して、送風のみを行うサーモオフ状態とする運転モードである。
【0032】
このように、在室者の現在の温冷感に基づいて、運転モードをリアルタイムに判定して、その運転モードで制御装置20は運転を制御するので、過去の運転状態に影響を受けることなく、常に現在の温熱環境に最適な運転モードで空調運転をすることができる。また、外気温度と最高温度,最低温度に基づいて推定された着衣量によって、リアルタイムに運転モードが判定されるので、外気の急激な温度変化に対応でき、1日の温冷感の格差が大きい場合でも、快適な温熱環境を実現することができる。
【0033】
また、室内と室外の温熱環境の差による熱負荷を考慮した運転モードになるように、人の経験に基づいてファジィ推論規則を設定することによって、在室者の快適度と室内,室外の温熱環境に応じた最適な運転モードで空調運転することができる。
【0034】
また、カレンダーから季節を推定するのでなく、室外温度と最高温度,最低温度に基づいて季節感を表わす着衣量を推定するので、冷夏,暖冬,初夏の陽気等の季節感の差や、寒冷な地域と温暖な地域との差を補正して、最適な運転モードで空調運転することができる。
【0035】
(第2実施例)
図9はこの発明の第2実施例の空気調和機の制御装置の運転モード判定部5のブロック図を示している。なお、上記運転モード判定部5以外は、第1実施例と同一の構成をしており、同一構成部は同一参照番号を付して説明を省略する。上記運転モード判定部5は、リモコン10からの使用者の温冷感に基づく補正指令信号としての室内PMV補正値を表わす信号と、室内PMV算出部2からの室内PMV値を表わす信号とを受けて、室内PMV値を室内PMV補正値に基づいて補正する室内PMV補正部5aと、上記室内PMV補正部5aからの補正後の室内PMV値を表わす信号と、室外PMV算出部3からの室外PMV値を表わす信号と、外気温度に基づいて着衣量推定部1により推定された着衣量推定値を表わす信号とを受けて、運転モードを判定するファジィ推論部5bとを有している。なお、上記ファジィ推論部5bは、第1実施例のファジィ推論部3aと同一のファジィ変数とファジィ推論規則により運転モードを判定する。
【0036】
上記構成の空気調和機の制御装置では、空調運転中に在室者が寒いと感じて、リモコン10の“寒い”ボタンを1回操作すると、室内PMV補正値を例えば−1.0にし、室内PMV補正部5aは室内PMV値を−1.0補正する。したがって、補正後の室内PMV値は、ファジィ推論部5bの前件部のファジィ変数[寒い]側に−1.0だけ移行する。一方、空調運転中に在室者が暑いと感じて、リモコン10の“暑い”ボタンを1回操作すると、室内PMV補正値を例えば+1.0にし、室内PMV補正部5aは室内PMV値を+1.0補正する。したがって、補正後の室内PMV値は、ファジィ推論部5bの前件部のファジィ変数[暑い]側に室内PMV値を+1.0だけ移行する。
【0037】
このように、在室者の温冷感に従ってリモコン10の“寒い”,“暑い”ボタンを操作することによって、室内PMV値を補正して、その補正された室内PMV値を用いて、運転モード判定部5が運転モードを判定するので、在室者の温冷感の個人差を補正することができる。
【0038】
(第3実施例)
図10はこの発明の第3実施例の空気調和機の制御装置の就寝時着衣量推定部31と就寝時室内PMV算出部32のブロック図を示し、図11は上記制御装置の就寝時室外PMV算出部33のブロック図を示し、図12は上記制御装置の就寝時運転モード判定部34のブロック図を示している。なお、各種センサ,着衣量推定部,室内PMV算出部,室外PMV算出部および運転モード判定部は、第1実施例と同一の構成をしており、同一構成部は同一参照番号を付して説明を省略する。
【0039】
図10に示すように、上記就寝時着衣量推定部31は、外気温度センサ15からの外気温度を表わす信号を受けて、その外気温度を表わす信号と、1日24時間の外気温度の最高温度,最低温度を夫々表わす信号とを出力する外気情報変換器31aと、外気情報変換器31aからの外気温度,最高温度および最低温度を夫々表わす信号に基づいて、着衣量推定値を表わす信号を出力するニューラルネットワーク31bとを有している。上記ニューラルネットワーク31bは、就寝時における季節に応じた着衣量を推定するように、予め学習されている。
【0040】
また、上記就寝時室内PMV算出部32は、予め室内の居住者の位置が決められた室内モデルにおいて、この空気調和機の風量と風向に基づいて、上記室内モデルの居住者のいる位置の気流速を表わす気流速推定値を推定する気流速推定部32aと、室内の快適度を表わす室内PMV値を算出する室内PMV算出器32bを有している。上記室内PMV算出器32bは、室内温度センサ11からの室内温度検出値を表わす信号と、室内輻射温度センサ12からの室内輻射温度検出値を表わす信号と、室内湿度センサ13からの室内湿度検出値を表わす信号と、気流速推定部32aからの気流速推定値を表わす信号および活動量を0.8Met(就寝状態)とする活動量推定値を表わす信号に基づいて、就寝時の室内PMV値を算出する。なお、上記就寝時の室内PMV値を求める関数Fは、熱環境(室内温度,室内湿度,輻射温度および気流速)が一定の場合、
就寝時の室内PMV値 = F(x,y)
x:活動量を就寝状態の0.8Metとした場合の快適度(PMV値)
y:布団等を考慮した就寝時の着衣量
で表される。
【0041】
図11に示すように、上記就寝時室外PMV算出部33は、就寝するべき在室者が就寝時と同等の着衣量で室外に出たときの快適度を表わす室外PMV値を算出する室外PMV算出器33aを有している。上記室外PMV算出器33aは、室外湿度としての室内湿度センサ13からの室内湿度検出値を表わす信号と、気流速を無風(=0.1m/sec)とする気流速推定値を表わす信号と、室外での活動量を0.8Met(就寝状態)とする活動量推定値を表わす信号と、外気温度センサ15からの室外温度検出値を表わす信号と、室外輻射温度(=室外温度)を表わす信号と、就寝時着衣量推定部31からの就寝時着衣量推定値を表わす信号とを受けて、就寝時の室外PMV値を算出する。上記室外湿度,気流速推定値,活動量推定値および室外輻射温度は、室外用の各種センサが必要であったり、測定が困難であるため、室外湿度に室内湿度を用い、室外の標準的な環境要素として気流速推定値,活動量推定値および室外輻射温度の所定値を定めている。
【0042】
図12に示すように、上記就寝時運転モード判定部34は、上記就寝時PMV算出部32からの就寝時の室内PMV値を表わす信号と、就寝時室外PMV算出部33からの就寝時の室外PMV値を表わす信号および就寝時着衣量推定部31からの就寝時着衣量推定値を表わす信号とを受けて、後述するファジィ推論規則に従って運転モードを判定するファジィ推論部34aを有している。なお、上記ファジィ推論部34aは、第1実施例のファジィ推論部3aと同一のファジィ変数とファジィ推論規則により運転モードを推定する。
【0043】
上記構成の空気調和機の制御装置において、就寝時室内PMV算出部32により算出された就寝時の室内PMV値に基づき、運転モード判定部34のファジィ推論部34aは、まず前件部で就寝時の室内PMV値の入力に対してファジィ変数の適合度を求める。図13(A)に示すように、上記就寝時の室内PMV値が−3.0〜3.0の区間において、室内の温冷感を表わす5個のファジィ変数(室内PMV値が−3.0から順に[寒い],[涼しい],[ちょうど良い],[暖かい],[暑い])を定義している。
【0044】
また、上記就寝時室外PMV算出部33により算出された就寝時の室外PMV値に基づき、運転モード判定部34のファジィ推論部34aは、前件部で就寝時の室外PMV値の入力に対してファジィ変数の適合度を求める。図13(B)に示すように、上記就寝時の室外PMV値が−3.0〜3.0の区間において、室外の温冷感を表わす5個のファジィ変数(室外PMV値が−3.0から順に[寒い],[涼しい],[ちょうど良い],[暖かい],[暑い])を定義している。
【0045】
また、上記就寝時着衣量推定部31により推定された就寝時着衣量推定値は、就寝時運転モード判定部34のファジィ推論部34aは、前件部で就寝時着衣量推定値の入力に対してファジィ変数の適合度を求める。図13(C)に示すように、上記着衣量推定値が.0.0〜5.0の区間において、季節感を表わす4個のファジィ変数(着衣量推定値が0.0から順に[夏],[秋],[春],[冬])を定義している。つまり、就寝時は布団等により着衣量が昼間の活動時より多くなるのである。
【0046】
次に、上記ファジィ推論部34aの前件部で得られたファジィ変数の夫々の適合度に応じて、第1実施例と同一の冬,春,秋,夏のファジィ推論規則(図7(A),(B)と図8(A),(B)に示す)に従って推論を行う。そして、図6の上段に示す運転状態を表わす6個のファジィ変数([普通に冷やす],[少し冷やす],[涼しくする],[なにもしない],[少し暖める],[普通に暖める])のうちから上記前件部で得られたファジィ変数の夫々の適合度に応じた推論結果を求める。次に、上記推論結果を総合してファジィ集合を求め、そのファジィ集合の重心座標を求める。そして、図6に示すように、上記ファジィ推論部34aの後件部で上記重心座標に対応する運転モードを決定する。
【0047】
したがって、上記就寝時の室内PMV値,室外PMV値および着衣量推定値によって、就寝時の室内,室外の温熱環境と在室者の温冷感とを正確に判断して、運転モードを判定することができる。つまり、就寝時に暖房運転する場合は、例えば冬は布団等が厚くなり着衣量が多くなるので、昼間の活動時よりも室内の目標設定温度を低めにする一方、夏は薄着で布団等も少なくなり着衣量が少なくなると共に、活動量も少ないので、昼間の活動時よりも室内の目標設定温度を高めにするのである。したがって、就寝時の環境に適した空調運転を行うことができる。
【0048】
(第4実施例)
図14はこの発明の第4実施例の空気調和機の制御装置の就寝時運転モード判定部40のブロック図を示しており、就寝時運転モード判定部40以外は、第4実施例と同一の構成をしており、図と説明を省略する。
【0049】
図14において、上記就寝時運転モード判定部40は、上記就寝時PMV算出器40aからの就寝時の室内PMV値を表わす信号と、リモコン10からの使用者の温冷感情報である室内PMV補正値を表わす信号とを受けて、室内PMV値を室内PMV補正値に基づいて補正する室内PMV補正部40aを有すると共に、上記室内PMV補正部40aからの補正後の室内PMV値を表わす信号と、就寝時室外PMV算出部33からの就寝時の室外PMV値を表わす信号および就寝時着衣量推定部31からの就寝時着衣量推定値を表わす信号とを受けて、ファジィ推論規則に従って運転モードを判定するファジィ推論部40bを有している。なお、上記ファジィ推論部40bは、第1実施例のファジィ推論部3aと同一のファジィ変数とファジィ推論規則とする。
【0050】
上記構成の空気調和機の制御装置では、空調運転中に在室者が寒いと感じて、リモコン10の“寒い”ボタンを1回操作すると、室内PMV補正値を例えば−1.0にし、室内PMV補正部40aは室内PMV値を−1.0補正する。したがって、補正後の室内PMV値は、ファジィ推論部40bの前件部のファジィ変数[寒い]側に室内PMV値を−1.0だけ移行する。一方、空調運転中に在室者が暑いと感じて、リモコン10の“暑い”ボタンを1回操作すると、室内PMV補正値を例えば+1.0にし、室内PMV補正部40aは室内PMV値を+1.0補正する。したがって、補正後の室内PMV値は、ファジィ推論部40bの前件部のファジィ変数[暑い]側に室内PMV値を+1.0だけ移行する。
【0051】
このように、就寝時に、在室者の温冷感に従ってリモコン10を操作することによって、室内PMV値を補正して、その補正された室内PMV値を用いて運転モード判定部5が運転モードを判定するので、在室者の温冷感の個人差を補正することができる。
【0052】
上記第1,第2,第3,第4実施例では、運転モード判定部4,5と就寝時運転モード判定部34,40にファジィ推論部4a,5b,34a,40bを用いて、運転モードの判定を行ったが、運転モード判定手段と就寝時運転モード判定手段はファジィ推論手段を用いずに、他の手段により運転モードを判定してもよい。例えば、上記室内PMV値,室外PMV値および着衣量と運転モードとの関係を数式で表し、その数式を用いて演算により運転モードを求めてもよい。
【0053】
また、上記第1,第2,第3,第4実施例では、着衣量推定手段としての着衣量推定部1と就寝時着衣量推定手段としての就寝時着衣量推定部31にニューラルネットワーク1b,31bを用いたが、着衣量推定手段と就寝時着衣量推定手段は、ニューラルネットワークを用いずに着衣量を推定してもよい。また、上記着衣量推定部1と就寝時着衣量推定部31は、外気温度と最高温度および最低温度に基づいて着衣量を推定したが、これに限らず、着衣量推定手段は、外気温度に関する信号(例えば外気温度と平均温度等)に基づいて着衣量を推定してもよい。
【0054】
また、上記第2,第4実施例では、室内快適度補正手段としての室内PMV補正部5a,40aにより室内PMV値を補正したが、室内快適度補正手段はなくともよい。
【0055】
また、上記第3,第4実施例では、着衣量推定手段としての着衣量推定部1と就寝時着衣量推定手段としての就寝時着衣量推定部31を別々に設けたが、一つの着衣量推定手段のニューラルネットワークに就寝時か否かの情報を入力して、就寝時でないときは昼間の活動時の着衣量を推定する一方、就寝時のときは就寝時の着衣量を推定するようにニューラルネットワークを学習させてもよい。
【0056】
また、上記第3,第4実施例では、室内快適度算出手段としての室内PMV算出部2と就寝時室内快適度算出手段としての就寝時室内PMV算出部32を別々に設けたが、一つの室内快適度算出手段で室内の快適度と就寝時の室内の快適度とを求めるようにしてもよい。さらに、上記室外快適度算出手段としての室外PMV算出部3と就寝時室外快適度算出手段としての就寝時室外PMV算出部33を別々に設けたが、一つの室外快適度算出手段で室外の快適度と就寝時の室外の快適度とを求めるようにしてもよい。この場合、上記運転モード判定手段は、就寝時運転モード判定手段を兼ねる。
【0057】
【発明の効果】
以上より明らかなように、請求項1の発明の空気調和機の制御装置は、少なくとも冷房と暖房の運転モードを切り替える空気調和機の制御装置において、室内の温度,湿度,輻射温度,気流速度および在室者の活動量を夫々表わす信号と在室者の着衣量を表わす信号とに基づいて、室内快適度算出手段により室内の快適度を算出し、室外の温度,湿度,輻射温度,気流速度および上記在室者が室外に出たときの活動量を夫々表わす信号と在室者の着衣量を表わす信号とに基づいて、室外快適度算出手段により室外の快適度を算出し、外気温度に関する信号に基づいて、着衣量推定手段により在室者の着衣量を推定すると共に、室内快適度算出手段により算出された室内の快適度と室外快適度算出手段により算出された室外の快適度および着衣量推定手段により推定された着衣量に基づいて、運転モード判定手段により運転モードを判定するものである。
【0058】
したがって、請求項1の発明の空気調和機の制御装置によれば、上記着衣量推定手段により推定された着衣量は、在室者が感じるいわゆる季節感を表しており、春夏秋冬の夫々の季節により変化する人の温冷感に応じて着衣量を推定する。すなわち、夏であれば、薄着となって着衣量が少なくなり、冬であれば厚着となって着衣量が多くなるのである。そして、上記室内快適度算出手段により算出された室内の快適度と、室外快適度算出手段により算出された室外の快適度および着衣量推定手段により推定された着衣量に基づいて、運転モード判定手段は、冷房運転や暖房運転等の運転を切り替えるための運転モードを判定する。
【0059】
したがって、上記運転モード判定手段は、室内の快適度,室外の快適度および季節感を表わす着衣量によって、在室者の現在の温冷感を正確に判断して運転モードを判定する。したがって、過去の運転状態に関わりなく、現在の温熱環境に最適な運転モードを判定でき、その運転モードで空調運転を行うことができる。また、外気温度に関する信号に基づいて推定された着衣量を用いて、リアルタイムに運転モードが判定されるので、天候の急激な変化に対応することができ、1日の温冷感の格差が大きい場合でも、快適な温熱環境を実現することができる。
【0060】
また、請求項2の発明の空気調和機の制御装置は、請求項1の空気調和機の制御装置において、上記運転モード判定手段のファジィ推論手段は、ファジィ推論規則によって運転モードを判定するものである。
【0061】
したがって、請求項2の発明の空気調和機の制御装置によれば、上記運転モード判定手段が運転モードを判定するとき、室内,室外の温熱環境の差による熱負荷を考慮した運転モードになるように、人の経験に基づいてファジィ推論規則を設定することによって、ファジィ推論手段により室内,室外の温熱環境に応じた運転モードの判定を行うことができる。
【0062】
また、請求項3の発明の空気調和機の制御装置は、請求項1または2の空気調和機の制御装置において、上記着衣量推定手段のニューラルネットワークは、外気温度を表わす信号と所定期間における上記外気温度の最高温度,最低温度を夫々表わす信号とに基づいて、上記着衣量を推定するものである。
【0063】
したがって、請求項3の発明の空気調和機の制御装置によれば、冷夏,暖冬等の季節差や寒冷な地域と温暖な地域との差なしに、季節感を表わす着衣量を得ることができる。
【0064】
また、請求項4の発明の空気調和機の制御装置は、請求項1乃至3のいずれか一つの空気調和機の制御装置において、上記在室者の温冷感に基づく補正指令信号を受けて、室内快適度補正手段は、上記室内快適度算出手段により算出された上記室内の快適度を補正するものである。
【0065】
したがって、請求項4の発明の空気調和機の制御装置によれば、在室者の現在の温冷感の“寒い”“暑い”等を表わす補正指令信号に基づいて補正された室内の快適度と、室外の快適度および着衣量に基づいて、上記運転モード判定手段が運転モードを判定するので、在室者の温冷感の個人差を補正することができる。
【0066】
また、請求項5の発明の空気調和機の制御装置は、請求項1乃至4のいずれか一つの空気調和機の制御装置において、上記在室者が就寝中の室内の温度,湿度,輻射温度,気流速度および在室者の活動量を夫々表わす信号と就寝時の在室者の着衣量を表わす信号とに基づいて、就寝時室内快適度算出手段により就寝時における室内の快適度を算出し、上記在室者が就寝中の室外の温度,湿度,輻射温度,気流速度および上記在室者の活動量を夫々表わす信号と就寝時の在室者の着衣量を表わす信号とに基づいて、就寝時室外快適度算出手段により就寝時の室外の快適度を算出し、外気温度に関する信号に基づいて、就寝時着衣量推定手段により在室者の就寝時の着衣量を推定すると共に、就寝時室内快適度算出手段により算出された就寝時の室内の快適度と就寝時室外快適度算出手段により算出された就寝時の室外の快適度および就寝時着衣量推定手段により推定された就寝時の着衣量に基づいて、就寝時運転モード判定手段により運転モードを判定するものである。
【0067】
したがって、請求項5の発明の空気調和機の制御装置によれば、上記就寝時の室内の快適度,室外の快適度および着衣量によって、就寝時の室内,室外の温熱環境と在室者の温冷感とを正確に判断して、運転モードを判定することができ、就寝時の環境に適した空調運転を行うことができる。
【0068】
また、請求項6の発明の空気調和機の制御装置は、請求項5の空気調和機の制御装置において、上記就寝時運転モード判定手段の就寝時ファジィ推論手段は、ファジィ推論規則によって運転モードを判定するものである。
【0069】
したがって、請求項6の発明の空気調和機の制御装置によれば、上記就寝時運転モード判定手段が運転モードを判定するとき、就寝時の室内,室外の温熱環境の差による熱負荷を考慮した運転モードになるように、人の経験に基づいてファジィ推論規則を設定することによって、就寝時ファジィ推論手段により就寝時の室内,室外の温熱環境に応じた運転モードの判定を行うことができる。
【図面の簡単な説明】
【図1】図1はこの発明の第1実施例の空気調和機の制御装置の要部ブロック図である。
【図2】図2は上記制御装置の着衣量推定部と室内PMV算出部のブロック図である。
【図3】図3は上記制御装置の室外PMV算出部のブロック図である。
【図4】図4は上記制御装置の運転モード判定部のブロック図である。
【図5】図5(A)〜(C)は上記運転モード判定部のファジィ推論部の前件部のファジィ変数を示す図である。
【図6】図6は上記運転モード判定部のファジィ推論部の後件部のファジィ変数を示す図である。
【図7】図7(A)は上記ファジィ推論部の冬におけるファジィ推論規則を示す図であり、図7(B)は上記ファジィ推論部の春におけるファジィ推論規則を示す図である。
【図8】図8(A)は上記ファジィ推論部の秋におけるファジィ推論規則を示す図であり、図8(B)は上記ファジィ推論部の夏におけるファジィ推論規則を示す図である。
【図9】図9はこの発明の第2実施例の空気調和機の制御装置の運転モード判定部のブロック図である。
【図10】図10はこの発明の第3実施例の空気調和機の制御装置の就寝時着衣量推定部と就寝時室内PMV算出部のブロック図である。
【図11】図11は上記制御装置の就寝時室外PMV算出部のブロック図である。
【図12】図12は上記制御装置の就寝時運転モード判定部のブロック図である。
【図13】図13(A)〜(C)は上記就寝時運転モード判定部のファジィ推論部の前件部のファジィ変数を示す図である。
【図14】図14はこの発明の第4実施例の空気調和機の制御装置の就寝時運転モード判定部のブロック図である。
【符号の説明】
1…着衣量推定部、1a…外気情報変換器、
1b…ニューラルネットワーク、
2…室内PMV算出部、2a…気流速推定部、
2b…活動量推定部、2c…室内PMV算出器、
3…室外PMV算出部、3a…室外PMV算出器、
4…運転モード判定部、4a…ファジィ推論部、
10…リモコン、11…室内温度センサ、
12…室内輻射温度センサ、13…室内湿度センサ、
14…赤外線センサ、15…外気温度センサ、20…制御装置。
[0001]
[Industrial applications]
The present invention relates to a control device for an air conditioner that automatically switches operation modes such as cooling and heating.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a control device of an air conditioner, there is a control device described in JP-A-6-185785. The control device of the air conditioner includes a criterion (set temperature) for determining an operation mode of a cooling operation or a heating operation at the start of operation, and a re-determination criterion during operation (a cooling set value for performing a cooling operation and a heating operation). By changing the difference with the heating set value according to the season, the air-conditioning operation can be controlled in accordance with the seasonal comfort of the occupant that changes according to the season. That is, if the air conditioning operation is performed or the thermal load changes after the operation starts, the thermal environment changes, so that the operation mode desired by the occupants differs from the actual operation mode. The operation mode is re-determined based on a re-determination criterion different from the criterion at the time.
[0003]
[Problems to be solved by the invention]
By the way, in order to prevent the erroneous determination of the operation mode, the control device for the air conditioner needs to allow a margin for the difference between the re-determination criterion and the determination criterion. For example, since the room temperature is lower than the reference temperature at the start of the operation, the heating operation is performed to increase the room temperature. When the operation mode is re-determined after the room temperature reaches the region where the heating operation region and the cooling operation region overlap with each other, if the cooling set temperature of the re-determination reference is low, the operation mode may be erroneously switched to the cooling operation. . Further, since the room temperature is higher than the determination reference temperature at the start of the operation, the cooling operation is performed to lower the room temperature. When the operation mode is re-determined after the indoor temperature reaches the region where the heating operation region and the cooling operation region overlap with each other, if the heating setting temperature based on the re-determination reference is high, the operation mode may be erroneously switched to the heating operation. . Therefore, in order to prevent the erroneous determination at the time of the above-described re-determination, the re-determination criterion is set to have a certain difference from the determination criterion at the time of starting the operation. There is a drawback that a time delay occurs until they match, and comfort is impaired.
[0004]
In addition, when the operation of restarting the operation after the operation is stopped, when determining the operation mode of the cooling operation and the heating operation, it is not known how much the thermal environment has changed due to the past operation. There is a problem that it is difficult to determine which of the determination criteria and the re-determination criteria determines the operation mode.
[0005]
Therefore, an object of the present invention is to switch the driving mode according to the indoor comfort level of the occupants, the outdoor comfort level, and the clothing amount representing the seasonal feeling, and always maintain the current thermal environment regardless of the past driving conditions. An object of the present invention is to provide an air conditioner control device capable of performing an optimal air conditioning operation.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a control device for an air conditioner according to claim 1 is a control device for an air conditioner that switches between a cooling operation mode and a heating operation mode. Indoor comfort calculating means for calculating the indoor comfort based on the signal indicating the amount of activity of the occupant and the signal indicating the amount of clothing of the occupant, and outdoor temperature, humidity, radiation temperature, airflow velocity, Outdoor comfort calculating means for calculating the outdoor comfort based on a signal indicating the amount of activity when the occupant leaves the room and a signal indicating the amount of clothing of the occupant, and an outside air temperature A clothing amount estimating unit for estimating the clothing amount of the occupant based on the signal relating to the room, the indoor comfort calculated by the indoor comfort calculating unit, and the outdoor calculated by the outdoor comfort calculating unit. Comfort And based on the clothing amount estimated by the amount of clothing estimating means it is characterized by comprising a drive mode judging means for judging operation mode.
[0007]
The control device for an air conditioner according to a second aspect is the control device for an air conditioner according to the first aspect, wherein the operation mode determination means includes fuzzy inference means for determining an operation mode according to a fuzzy inference rule. And
[0008]
According to a third aspect of the present invention, there is provided the air conditioner control device according to the first or second aspect, wherein the clothing amount estimating means includes a signal representing an outside air temperature and a maximum temperature of the outside air temperature in a predetermined period. , A neural network that outputs a signal representing the amount of clothes based on a signal representing the lowest temperature.
[0009]
The control device for an air conditioner according to claim 4 is the control device for an air conditioner according to any one of claims 1 to 3, wherein the control device receives a correction command signal based on a thermal sensation of the occupant, and An indoor comfort level correcting means for correcting the indoor comfort level calculated by the indoor comfort level calculating means is provided.
[0010]
The control device for an air conditioner according to claim 5 is the control device for an air conditioner according to any one of claims 1 to 4, wherein the room temperature, humidity, radiation temperature, and air flow while the occupant is sleeping. A bedtime indoor comfort degree calculating means for calculating a degree of indoor comfort at bedtime based on a signal representing the speed and a signal representing the activity amount of the occupant and a signal representing the amount of clothing of the occupant at bedtime, Sleeping is performed based on the signal indicating the outdoor temperature, humidity, radiation temperature, airflow velocity, and the activity amount of the occupant while the occupant is sleeping, and the signal indicating the amount of clothing of the occupant when sleeping. A sleeping outdoor comfort degree calculating means for calculating the outdoor comfort level at the time of sleeping, and a bedtime clothing amount estimating means for estimating the clothing amount of the occupant at bedtime based on a signal relating to the outside air temperature; and The room at the time of bedtime calculated by the indoor comfort level calculation means The driving mode is determined based on the comfort level and the outdoor comfort level at the time of sleeping calculated by the sleeping outdoor comfort level calculating means and the bedtime clothing amount estimated by the bedtime clothing amount estimating means. A bedtime driving mode determining means.
[0011]
The control device for an air conditioner according to claim 6 is the control device for an air conditioner according to claim 5, wherein the bedtime operation mode determination means includes a bedtime fuzzy inference means for determining an operation mode according to a fuzzy inference rule. It is characterized by having.
[0012]
[Action]
According to the control device for an air conditioner of the first aspect, a signal representing the indoor temperature, humidity, radiation temperature, airflow velocity, and the amount of activity of the occupant is based on the signal representing the amount of clothing of the occupant. Then, the indoor comfort level of the occupant is calculated by the indoor comfort level calculating means. The outdoor comfort level is calculated based on a signal representing the outdoor temperature, humidity, radiation temperature, airflow velocity, and a signal representing the amount of activity when the occupant goes out of the room, and a signal representing the amount of clothing of the occupant. The outdoor comfort level is calculated by the means. The clothing amount is estimated by the clothing amount estimation means based on the signal relating to the outside air temperature. The clothing amount estimated by the clothing amount estimation means represents a so-called seasonal feeling felt by the occupants, and the clothing amount is estimated in accordance with the thermal sensation of the person that changes according to the respective seasons of spring, summer, autumn and winter. That is, in summer, the clothes become lightly worn and the amount of clothing decreases, and in winter, the clothes become thick and the amount of clothing increases. And a driving mode determining means based on the indoor comfort calculated by the indoor comfort calculating means, the outdoor comfort calculated by the outdoor comfort calculating means, and the clothing amount estimated by the clothing amount estimating means. Determines an operation mode for switching operations such as cooling operation and heating operation.
[0013]
Therefore, the current indoor and outdoor thermal environments and the current thermal sensation of the occupants are accurately determined based on the indoor comfort, outdoor comfort, and the amount of clothes to determine the operation mode. Irrespective of the operation state of the air conditioner, the air conditioning operation can be performed in the operation mode most suitable for the current thermal environment. In addition, since the operation mode is determined in real time using the clothing amount estimated based on the signal related to the outside air temperature, it is possible to cope with a rapid temperature change of the outside air, and the difference in thermal sensation of the day is reduced. Even when large, a comfortable thermal environment can be realized.
[0014]
According to the control device for an air conditioner of the second aspect, when the operation mode determination means determines the operation mode, the difference between the indoor and outdoor thermal environments is determined. By setting a fuzzy inference rule based on human experience so that the operation mode takes into account the heat load of the vehicle, the operation mode can be determined according to the indoor and outdoor thermal environment.
[0015]
According to the control device of the air conditioner of the third aspect, in the control device of the air conditioner of the first or second aspect, the clothing amount estimating means includes a signal representing the outside air temperature and the outside air temperature during a predetermined period. The amount of clothing is estimated by a neural network based on the signals representing the maximum temperature and the minimum temperature, respectively, so that the seasonal feeling can be obtained without errors due to seasonal differences such as cold summer and warm winter and differences between cold and warm regions. Can be obtained.
[0016]
According to the control device for an air conditioner of the fourth aspect, in the control device of the air conditioner of the first to third aspects, the correction command signal based on the thermal sensation from the occupant is received, and The indoor comfort correction means corrects the indoor comfort calculated by the indoor comfort calculation means. For example, the occupant instructs whether the current thermal sensation is “cold” or “hot” by operating a remote controller or the like, and when “cold”, the comfort level in the room is corrected to the cold side, When it is "hot", the comfort level in the room is corrected to the cold side. Then, the driving mode determination means determines the driving mode based on the corrected indoor comfort level, the outdoor comfort level, and the amount of clothing, so that individual differences in the thermal sensation of the occupants are corrected. Can be.
[0017]
Further, according to the control device for an air conditioner of the fifth aspect, a signal representing the temperature, humidity, radiation temperature, airflow velocity, and the amount of activity of the occupant while the occupant is sleeping and the signal at the time of sleeping are provided. Based on the signal representing the amount of clothes of the occupants, the comfort level in the room at the time of sleeping is calculated by the sleeping room comfort level calculating means. In addition, based on the signal indicating the outdoor temperature, humidity, radiation temperature, airflow velocity, and the amount of activity when the occupant goes out of the room, and the signal indicating the amount of clothing of the occupant when going to bed, the sleeping time is determined. The outdoor comfort level at the time of sleeping is calculated by the outdoor comfort level calculating means. Based on the signal relating to the outside air temperature, the bedtime clothing amount estimating means estimates the clothing amount of the occupant at bedtime. Then, the indoor comfort at bedtime calculated by the bedtime indoor comfort calculating means, the outdoor comfort at bedtime calculated by the bedtime outdoor comfort calculating means, and the bedtime clothing estimation are calculated. The bedtime operation mode determination means determines an operation mode for switching between a cooling operation, a heating operation, and the like, based on the clothing amount at bedtime estimated by the means.
[0018]
Therefore, the driving mode is determined by accurately determining the indoor and outdoor thermal environment at the time of sleeping and the thermal sensation of the occupant at the time of sleeping based on the indoor comfort level at the time of sleeping, the outdoor comfort level, and the clothing amount. be able to. In other words, in the case of heating operation at bedtime, for example, the futons become thicker in winter and the amount of clothes increases, so the target set temperature in the room is set lower than during daytime activities, while the futons etc. are lighter in summer and less Since the amount of clothes and the amount of activity are small, the target set temperature in the room is set higher than during daytime activities. Therefore, the air-conditioning operation suitable for the sleeping environment can be performed.
[0019]
According to the air conditioner control device of the sixth aspect, in the air conditioner control device of the fifth aspect, when the bedtime operation mode determination means determines the operation mode, the indoor and outdoor thermal environment is determined. By setting the fuzzy inference rules based on human experience so that the operation mode takes into account the heat load due to the difference in temperature, it is possible to determine the operation mode according to the indoor and outdoor thermal environment at bedtime it can.
[0020]
【Example】
Hereinafter, an air conditioner control device according to the present invention will be described in detail with reference to embodiments.
[0021]
(First embodiment)
FIG. 1 is a block diagram of a main part of a control device 20 of an air conditioner according to a first embodiment of the present invention, wherein 1 is a clothing amount estimating unit as clothing amount estimating means for estimating a clothing amount estimation value, and 2 is an indoor An indoor PMV calculation unit as an indoor comfort level calculation unit for calculating an indoor PMV (Predicted Mean Vote) value as a comfort level, and an outdoor PMV as an outdoor comfort level calculation means for calculating an outdoor PMV value as an outdoor comfort level The calculation unit 4 calculates the clothing amount estimated value calculated by the clothing amount estimation unit 1 and the indoor PMV value calculated by the indoor PMV calculation unit 2 and the outdoor PMV value calculated by the outdoor PMV calculation unit 3. An operation mode determination unit as operation mode determination means for determining an operation mode based on the operation mode. The control device 20 includes a remote controller (hereinafter, referred to as a remote controller) 10, an indoor temperature sensor 11, an indoor radiation temperature sensor 12 for detecting a radiation temperature based on indoor infrared radiation, an indoor humidity sensor 13, and an indoor humidity sensor 13. An infrared sensor 14 for detecting a change in infrared radiation of the infrared ray and an outside air temperature sensor 15 are connected.
[0022]
The indoor PMV calculating unit 2 and the outdoor PMV calculating unit 3 are based on the temperature, humidity, radiation temperature, air flow velocity (hereinafter referred to as air flow velocity), the activity of the occupants, and the amount of clothes based on the indoor standardization mechanism. An indoor PMV value and an outdoor PMV value are respectively calculated by an arithmetic expression described in International Standard ISO-7730 defined by (International Organization for Standardization; ISO). The indoor PMV value and the outdoor PMV value are thermal sensation scales (so-called thermal sensation) felt by the occupants in the room. For example, +3: hot, +2: warm, +1: slightly warm, 0: just good, -1: slightly cool, -2: cool, -3: cold, etc.
[0023]
FIG. 2 is a block diagram of the clothing amount estimating unit 1 and the indoor PMV calculating unit 2 of the control device 20. The clothing amount estimating unit 1 receives a signal indicating the outside air temperature from the outside air temperature sensor 15, and An outside air information converter 1a for outputting a signal representing the temperature and a signal representing the maximum and minimum of the outside air temperature for 24 hours a day, and the outside air temperature, the maximum temperature and the minimum temperature from the outside air information converter 1a. And a neural network 1b for outputting a signal representing the estimated amount of clothing based on the estimated value.
[0024]
The neural network 1b is learned in advance so as to estimate the amount of clothing according to the season based on the outside air temperature, the maximum temperature, and the minimum temperature. That is, prior to use, the neural network 1b receives signals representing the current outside air temperature and the maximum and minimum temperatures for 24 hours a day from the outside air information converter 1a to each neuron of the input layer, and outputs the signals to the output layer. Input processing that changes the strength of the connection of its own network so as to reduce the difference between the output data, which is the estimated amount of clothing, and the teacher data, based on the clothing data given to each neuron according to the above-mentioned time point. And weight learning. Then, learning is repeated for a large number of input data, so that an optimum clothing amount inference value can be output.
[0025]
Further, the indoor PMV calculation unit 2 calculates the air flow velocity at the position where the occupant of the indoor model is located, based on the air volume and the wind direction of the air conditioner, in the indoor model in which the position of the occupant in the room is determined in advance. An airflow velocity estimating unit 2a for estimating an airflow estimated value to be represented; an activity amount estimating unit 2b for estimating an activity amount of a room occupant based on a signal representing a change in infrared rays from the infrared sensor 14; Indoor PMV calculator 2c for calculating an indoor PMV value representing The airflow velocity estimating unit 2a obtains the airflow and the wind direction from the rotation speed of the fan motor (not shown) and the angle of the flap controlled by the controller 20, and estimates the airflow velocity based on the airflow and the wind direction. . Further, the indoor PMV calculator 2c calculates a signal indicating the detected indoor temperature value from the indoor temperature sensor 11, a signal indicating the detected indoor radiant temperature value from the indoor radiant temperature sensor 12, and the indoor humidity from the indoor humidity sensor 13. A signal representing the detected value, a signal representing the airflow velocity estimation value from the airflow velocity estimation section 2a, a signal representing the activity estimation value of the activity estimation section 2b, and a clothing amount estimation value from the clothing estimation section 1. Upon receiving the signal, the indoor PMV value is calculated.
[0026]
FIG. 3 is a block diagram of the outdoor PMV calculation unit 3 of the control device 20. The outdoor PMV calculation unit 3 calculates an outdoor PMV value indicating a degree of comfort when the occupant goes out of the room while wearing the room. An outdoor PMV calculator 3a is provided. The outdoor PMV calculator 3a calculates a signal representing the detected indoor humidity value from the indoor humidity sensor 13 as a substitute for the outdoor humidity, and an estimated airflow velocity at which the outdoor airflow velocity is zero (= 0.1 m / sec). , A signal indicating an estimated activity amount that sets the outdoor activity amount to 1.2 Met (seated state), a signal indicating an outdoor temperature detection value from the outdoor air temperature sensor 15, and an outdoor radiation temperature (= outdoor outdoor temperature). Temperature) and a signal representing the estimated amount of clothing from the clothing amount estimating unit 1, and calculates the outdoor PMV value. The outdoor humidity, the estimated value of the air flow velocity, the estimated value of the activity amount, and the outdoor radiation temperature require various outdoor sensors or are difficult to measure. As environmental factors, predetermined values of an airflow velocity estimated value, an activity amount estimated value, and an outdoor radiation temperature are defined.
[0027]
FIG. 4 is a block diagram of the operation mode determination unit 4 of the control device 20. The operation mode determination unit 4 includes a signal indicating the indoor PMV value from the indoor PMV calculation unit 2 and an outdoor signal from the outdoor PMV calculation unit 3. It has a fuzzy inference unit 4a that receives a signal representing a PMV value and a signal representing a clothing amount estimation value from the clothing amount estimation unit 1 and determines an operation mode according to a fuzzy inference rule described later.
[0028]
In the air conditioner control device 20 having the above configuration, when the operation start operation is performed by the remote controller 10 and the air conditioning operation is performed, the operation mode determination unit 4 is performed based on the indoor PMV value calculated by the indoor PMV calculation unit 2. First, the fuzzy inference unit 4a obtains the degree of fitness of the fuzzy variable with respect to the input of the outdoor PMV value in the antecedent part. As shown in FIG. 5 (A), in the section where the indoor PMV value is -3.0 to 3.0, five fuzzy variables representing the indoor thermal sensation (the indoor PMV value is sequentially from -3.0 to -3.0). [Cold], [cool], [just right], [warm], [hot]).
[0029]
Further, based on the outdoor PMV value calculated by the outdoor PMV calculation unit 3, the fuzzy inference unit 4a of the operation mode determination unit 4 calculates the degree of conformity of the fuzzy variable to the input of the outdoor PMV value in the antecedent unit. . As shown in FIG. 5B, in the section where the outdoor PMV value is -3.0 to 3.0, five fuzzy variables representing the outdoor thermal sensation (the outdoor PMV value is sequentially from -3.0 to -3.0). [Cold], [cool], [just right], [warm], [hot]).
[0030]
Further, based on the clothing amount estimation value estimated by the clothing amount estimation unit 1, the fuzzy inference unit 4 a of the driving mode determination unit 4 determines the degree of conformity of the fuzzy variable to the input of the clothing amount estimation value in the antecedent unit. Ask for. As shown in FIG. 5 (C), the estimated clothing amount is. In the section from 0.0 to 1.0, four fuzzy variables representing the feeling of season (indoor PMV values in order from 0.0 [Summer], [Autumn], [Spring], [Winter]) are defined. I have.
[0031]
Next, the fuzzy inference rules for winter (see FIG. 4) are determined according to the degree of conformity of the fuzzy variables representing the sense of comfort indoors and outdoors and the fuzzy variables representing the sense of season obtained in the antecedent part of the fuzzy inference unit 4a. 7 (A)), spring fuzzy inference rules (shown in FIG. 7 (B)), autumn fuzzy inference rules (shown in FIG. 8 (A)), summer fuzzy inference rules (shown in FIG. 8 (B)) Inferences are made according to Then, six fuzzy variables representing the operating state shown in the upper part of FIG. 6 ([normally cool], [slightly cool], [cool down], [do nothing], [slightly warm], [normally warm up] ]), An inference result is obtained in accordance with the degree of conformity between the fuzzy variables representing the sense of comfort indoors and outdoors and the fuzzy variables representing the sense of season obtained in the antecedent part. Next, a fuzzy set is obtained by integrating the above inference results, and the barycentric coordinates of the fuzzy set are obtained. Then, in the consequent part of the fuzzy inference unit 4a, as shown in the lower part of FIG. 6, an operation mode corresponding to the barycentric coordinates is determined. That is, in sections 0 to 7 corresponding to the seven operation modes, [cooling] is performed in sections 0 to 1.5, [weak cooling] is performed in sections 1.5 to 2.5, and [cooling] is performed in sections 2.5 to 3.5. Blowing and drying], [Standby] in sections 3.5 to 4.5, [Low heating] in sections 4.5 to 5.5, and [Heating] in sections 5.5 to 7. The weak heating mode is an operation mode in which the capacity is suppressed at the time of a light load and the warm air is distributed throughout the room. The weak cooling mode is an operation mode in which the capacity is suppressed at the time of light load and the cool air is distributed throughout the room. The air blowing and dry modes are treated as one operation mode. Dry operation is performed when the humidity is high, and air blowing operation is performed when the humidity is low. The standby mode is an operation mode in which the compressor is forcibly stopped and a thermo-off state in which only the air is blown is performed.
[0032]
As described above, the operation mode is determined in real time based on the current thermal sensation of the occupant, and the control device 20 controls the operation in the operation mode, so that the operation is not affected by the past operation state. The air conditioning operation can always be performed in an operation mode most suitable for the current thermal environment. Further, since the operation mode is determined in real time based on the outside air temperature and the amount of clothing estimated based on the maximum temperature and the minimum temperature, it is possible to cope with a rapid change in the temperature of the outside air, and there is a large difference in thermal sensation during the day. Even in this case, a comfortable thermal environment can be realized.
[0033]
In addition, by setting a fuzzy inference rule based on human experience so that the operation mode takes into account the heat load due to the difference between the indoor and outdoor thermal environments, the comfort level of the occupants and the indoor and outdoor thermal Air-conditioning operation can be performed in an optimal operation mode according to the environment.
[0034]
Also, instead of estimating the season from the calendar, the clothing amount indicating the seasonal feeling is estimated based on the outdoor temperature, the maximum temperature, and the minimum temperature. The air conditioning operation can be performed in the optimal operation mode by correcting the difference between the region and the warm region.
[0035]
(Second embodiment)
FIG. 9 is a block diagram of the operation mode determination unit 5 of the control device for the air conditioner according to the second embodiment of the present invention. Except for the operation mode determination unit 5, the configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted. The operation mode determination unit 5 receives a signal indicating a room PMV correction value as a correction command signal based on a user's thermal sensation from the remote controller 10 and a signal indicating a room PMV value from the room PMV calculation unit 2. The indoor PMV correction unit 5a that corrects the indoor PMV value based on the indoor PMV correction value, a signal representing the corrected indoor PMV value from the indoor PMV correction unit 5a, and the outdoor PMV from the outdoor PMV calculation unit 3. A fuzzy inference unit 5b that receives a signal representing the value and a signal representing the estimated clothing amount estimated by the clothing amount estimating unit 1 based on the outside air temperature and determines the operation mode is provided. The fuzzy inference unit 5b determines the operation mode based on the same fuzzy variables and fuzzy inference rules as the fuzzy inference unit 3a of the first embodiment.
[0036]
In the control device of the air conditioner having the above configuration, the occupant feels cold during the air-conditioning operation, and operates the "cold" button of the remote controller 10 once to set the indoor PMV correction value to, for example, -1.0, and to set the indoor PMV correction value to -1.0. The PMV correction unit 5a corrects the indoor PMV value by -1.0. Therefore, the corrected room PMV value shifts by -1.0 to the fuzzy variable [cold] side of the antecedent part of the fuzzy inference unit 5b. On the other hand, when the occupant feels hot during the air-conditioning operation and operates the "hot" button of the remote controller 10 once, the indoor PMV correction value is set to, for example, +1.0, and the indoor PMV correction unit 5a sets the indoor PMV value to +1. .0 correction. Therefore, the corrected room PMV value is shifted by +1.0 to the fuzzy variable [hot] side of the antecedent part of the fuzzy inference unit 5b.
[0037]
As described above, the indoor PMV value is corrected by operating the “cold” and “hot” buttons of the remote controller 10 in accordance with the sense of warmth and cold of the room occupant, and the operation mode is set using the corrected indoor PMV value. Since the determination unit 5 determines the driving mode, it is possible to correct individual differences in the thermal sensation of the occupants.
[0038]
(Third embodiment)
FIG. 10 is a block diagram of a bedtime clothing amount estimating unit 31 and a bedtime indoor PMV calculating unit 32 of a control device for an air conditioner according to a third embodiment of the present invention, and FIG. 11 is a bedtime outdoor PMV of the control device. FIG. 12 is a block diagram of the calculation unit 33, and FIG. 12 is a block diagram of the bedtime driving mode determination unit 34 of the control device. The various sensors, the clothing amount estimating unit, the indoor PMV calculating unit, the outdoor PMV calculating unit, and the operation mode determining unit have the same configuration as in the first embodiment, and the same components are denoted by the same reference numerals. Description is omitted.
[0039]
As shown in FIG. 10, the bedtime clothing amount estimating unit 31 receives the signal indicating the outside air temperature from the outside air temperature sensor 15, and outputs the signal indicating the outside air temperature and the maximum temperature of the outside air temperature for 24 hours a day. , An outside air information converter 31a for outputting a signal representing the minimum temperature, and a signal representing the estimated amount of clothing based on the signals representing the outside air temperature, the maximum temperature, and the minimum temperature from the outside air information converter 31a. And a neural network 31b. The neural network 31b has been learned in advance so as to estimate the amount of clothing according to the season at bedtime.
[0040]
Further, the sleeping room PMV calculation unit 32 determines the position of the occupant of the indoor model based on the air volume and wind direction of the air conditioner in the indoor model in which the position of the occupant in the room is determined in advance. It has an airflow velocity estimating unit 32a for estimating an airflow velocity estimated value representing a flow velocity, and an indoor PMV calculator 32b for calculating an indoor PMV value representing an indoor comfort level. The indoor PMV calculator 32b includes a signal indicating a detected indoor temperature value from the indoor temperature sensor 11, a signal indicating a detected indoor radiation temperature value from the indoor radiation temperature sensor 12, and a detected indoor humidity value from the indoor humidity sensor 13. The indoor PMV value at the time of going to sleep is determined based on the signal indicating the airflow velocity estimated value from the airflow velocity estimating unit 32a and the signal indicating the estimated activity amount with the activity amount set to 0.8 Met (sleep state). calculate. Note that the function F for obtaining the indoor PMV value at bedtime is defined as follows when the thermal environment (indoor temperature, indoor humidity, radiation temperature, and air flow rate) is constant.
Indoor PMV value at bedtime = F (x, y)
x: comfort level (PMV value) when the amount of activity is 0.8 Met in the sleeping state
y: Amount of clothing at bedtime considering futons, etc.
It is represented by
[0041]
As shown in FIG. 11, the bedtime outdoor PMV calculation unit 33 calculates an outdoor PMV value indicating a degree of comfort when the occupant who goes to bed goes out of the room with the same amount of clothes as when sleeping. It has a calculator 33a. The outdoor PMV calculator 33a outputs a signal indicating a detected indoor humidity value from the indoor humidity sensor 13 as an outdoor humidity, a signal indicating an estimated airflow velocity at which the airflow velocity is no wind (= 0.1 m / sec), A signal indicating an estimated activity amount that sets the outdoor activity amount to 0.8 Met (sleeping state), a signal indicating an outdoor temperature detection value from the outdoor air temperature sensor 15, and a signal indicating an outdoor radiation temperature (= outdoor temperature) And a signal representing the estimated value of the amount of clothing at bedtime from the clothing amount estimator 31 at bedtime, and calculates the outdoor PMV value at bedtime. The outdoor humidity, the estimated value of the air flow velocity, the estimated value of the activity amount, and the outdoor radiation temperature require various outdoor sensors or are difficult to measure. As environmental factors, predetermined values of an airflow velocity estimated value, an activity amount estimated value, and an outdoor radiation temperature are defined.
[0042]
As shown in FIG. 12, the bedtime driving mode determination unit 34 includes a signal indicating the bedtime indoor PMV value from the bedtime PMV calculation unit 32, and a bedtime outdoor PMV value from the bedtime outdoor PMV calculation unit 33. It has a fuzzy inference unit 34a that receives a signal representing the PMV value and a signal representing the estimated amount of bedtime clothing amount from the bedtime clothing amount estimation unit 31 and determines the operation mode according to a fuzzy inference rule described later. The fuzzy inference unit 34a estimates the operation mode using the same fuzzy variables and fuzzy inference rules as the fuzzy inference unit 3a of the first embodiment.
[0043]
In the control device of the air conditioner having the above-described configuration, the fuzzy inference unit 34a of the operation mode determination unit 34 first determines whether or not to sleep in the antecedent unit based on the bedtime indoor PMV value calculated by the bedtime indoor PMV calculation unit 32. Of the fuzzy variable with respect to the input of the indoor PMV value. As shown in FIG. 13 (A), in the section where the indoor PMV value at bedtime is -3.0 to 3.0, five fuzzy variables representing the indoor thermal sensation (the indoor PMV value is -3.0. [Cold], [Cool], [Just good], [Warm], [Hot]) are defined in order from 0.
[0044]
Further, based on the bedtime outdoor PMV value calculated by the bedtime outdoor PMV calculation unit 33, the fuzzy inference unit 34a of the driving mode determination unit 34 responds to the input of the bedtime outdoor PMV value in the antecedent unit. Find the fitness of fuzzy variables. As shown in FIG. 13B, in the section where the outdoor PMV value at bedtime is -3.0 to 3.0, five fuzzy variables representing the outdoor thermal sensation (the outdoor PMV value is -3. From 0, [cold], [cool], [just right], [warm], [hot]) are defined.
[0045]
The bedtime clothing amount estimation value estimated by the bedtime clothing amount estimation unit 31 is calculated by the fuzzy inference unit 34a of the bedtime driving mode determination unit 34 in response to the input of the bedtime clothing amount estimation value in the antecedent unit. To determine the fitness of the fuzzy variables. As shown in FIG. 13C, the estimated clothing amount is. In the section from 0.0 to 5.0, four fuzzy variables indicating the feeling of season (summary value of clothing amount [summer], [autumn], [spring], [winter] in order from 0.0) are defined. ing. That is, at bedtime, the amount of clothes is increased by a futon or the like as compared with daytime activities.
[0046]
Next, the same fuzzy inference rules for winter, spring, autumn, and summer as in the first embodiment (FIG. 7 (A)) are used in accordance with the fitness of each of the fuzzy variables obtained in the antecedent part of the fuzzy inference unit 34a. ), (B) and FIGS. 8A and 8B). Then, six fuzzy variables representing the operating state shown in the upper part of FIG. 6 ([normally cool], [slightly cool], [cool down], [do nothing], [slightly warm], [normally warm up] ]), An inference result corresponding to each degree of fitness of the fuzzy variables obtained in the antecedent is obtained. Next, a fuzzy set is obtained by integrating the above inference results, and the barycentric coordinates of the fuzzy set are obtained. Then, as shown in FIG. 6, the consequent part of the fuzzy inference unit 34a determines an operation mode corresponding to the barycentric coordinates.
[0047]
Therefore, the indoor and outdoor thermal environment and the thermal sensation of the occupant at the time of sleeping are accurately determined based on the indoor PMV value, the outdoor PMV value, and the estimated clothing amount at the time of sleeping, and the driving mode is determined. be able to. In other words, in the case of heating operation at bedtime, for example, the futons become thicker in winter and the amount of clothes increases, so the target set temperature in the room is set lower than during daytime activities, while the futons etc. are lighter in summer and less Since the amount of clothes and the amount of activity are small, the target set temperature in the room is set higher than during daytime activities. Therefore, the air-conditioning operation suitable for the sleeping environment can be performed.
[0048]
(Fourth embodiment)
FIG. 14 is a block diagram of a bedtime operation mode determination unit 40 of the control device for an air conditioner according to the fourth embodiment of the present invention, and is the same as the fourth embodiment except for the bedtime operation mode determination unit 40. It has a configuration, and the illustration and description are omitted.
[0049]
In FIG. 14, the bedtime driving mode determination unit 40 includes a signal indicating the bedtime indoor PMV value from the bedtime PMV calculator 40 a, and an indoor PMV correction that is the user's thermal sensation information from the remote controller 10. A signal representing the corrected indoor PMV value from the indoor PMV correction unit 40a, the signal having the indoor PMV correction unit 40a for receiving the signal representing the value and correcting the indoor PMV value based on the indoor PMV correction value; Receiving the signal representing the outdoor PMV value at the time of sleeping from the bedtime outdoor PMV calculation unit 33 and the signal representing the estimated value of the bedtime clothing amount from the bedtime clothing amount estimating unit 31, the operation mode is determined according to the fuzzy inference rules. A fuzzy inference unit 40b is provided. The fuzzy inference unit 40b uses the same fuzzy variables and fuzzy inference rules as the fuzzy inference unit 3a of the first embodiment.
[0050]
In the control device of the air conditioner having the above configuration, the occupant feels cold during the air-conditioning operation, and operates the "cold" button of the remote controller 10 once to set the indoor PMV correction value to, for example, -1.0, and to set the indoor PMV correction value to -1.0. The PMV correction unit 40a corrects the indoor PMV value by -1.0. Therefore, the corrected room PMV value shifts the room PMV value by -1.0 to the fuzzy variable [cold] side of the antecedent part of the fuzzy inference unit 40b. On the other hand, when the occupant feels hot during the air-conditioning operation and operates the “hot” button of the remote controller 10 once, the indoor PMV correction value is set to, for example, +1.0, and the indoor PMV correction unit 40a sets the indoor PMV value to +1. .0 correction. Therefore, the room PMV value after correction shifts the room PMV value by +1.0 to the fuzzy variable [hot] side of the antecedent part of the fuzzy inference unit 40b.
[0051]
As described above, at bedtime, the indoor PMV value is corrected by operating the remote controller 10 in accordance with the thermal sensation of the occupant, and the operation mode determination unit 5 determines the operation mode using the corrected indoor PMV value. Since the determination is made, it is possible to correct individual differences in the thermal sensation of the occupants.
[0052]
In the first, second, third, and fourth embodiments, the driving mode determination units 4 and 5 and the bedtime driving mode determination units 34 and 40 use the fuzzy inference units 4a, 5b, 34a, and 40b to set the driving mode. However, the driving mode determining means and the bedtime driving mode determining means may determine the driving mode by other means without using the fuzzy inference means. For example, the relationship between the indoor PMV value, the outdoor PMV value, the clothing amount, and the operation mode may be represented by a mathematical expression, and the operational mode may be obtained by calculation using the mathematical expression.
[0053]
In the first, second, third, and fourth embodiments, the neural network 1b, the sleeping amount estimating unit 31 as the sleeping amount estimating unit 31 and the sleeping amount estimating unit 31 as the sleeping amount estimating unit are used. Although 31b is used, the clothing amount estimating means and the sleeping clothing amount estimating means may estimate the clothing amount without using the neural network. The clothing amount estimating unit 1 and the sleeping clothing amount estimating unit 31 estimate the clothing amount based on the outside air temperature, the maximum temperature, and the minimum temperature. However, the present invention is not limited thereto. The clothing amount may be estimated based on a signal (for example, the outside air temperature and the average temperature).
[0054]
In the second and fourth embodiments, the indoor PMV value is corrected by the indoor PMV correction units 5a and 40a as the indoor comfort correction means. However, the indoor comfort correction means may not be provided.
[0055]
In the third and fourth embodiments, the clothing amount estimating unit 1 as the clothing amount estimating unit and the sleeping clothing amount estimating unit 31 as the sleeping amount estimating unit are separately provided. In the neural network of the estimating means, information on whether or not to sleep is input, and when not sleeping, the amount of clothing during daytime activities is estimated, while when sleeping, the amount of clothing at bedtime is estimated. You may make a neural network learn.
[0056]
In the third and fourth embodiments, the indoor PMV calculator 2 as the indoor comfort calculator and the sleeping PMV calculator 32 as the sleeping indoor comfort calculator are provided separately. The indoor comfort level and the indoor comfort level at bedtime may be obtained by the indoor comfort level calculating means. Further, the outdoor PMV calculating section 3 as the outdoor comfort degree calculating means and the bedtime outdoor PMV calculating section 33 as the sleeping outdoor comfort degree calculating means are separately provided, but one outdoor comfort degree calculating means provides the outdoor comfort. The degree and the outdoor comfort at bedtime may be obtained. In this case, the driving mode determining means also functions as the bedtime driving mode determining means.
[0057]
【The invention's effect】
As is clear from the above, the control device for an air conditioner according to the first aspect of the present invention is a control device for an air conditioner that switches between a cooling operation mode and a heating operation mode. The indoor comfort level is calculated by the indoor comfort level calculating means on the basis of the signal indicating the activity amount of the occupant and the signal indicating the clothing amount of the occupant, and the temperature, humidity, radiation temperature, and air flow velocity of the outdoor And, based on the signal representing the amount of activity when the occupant leaves the room and the signal representing the amount of clothing of the occupant, the outdoor comfort calculating means calculates the outdoor comfort level, and Based on the signal, the amount of clothing of the occupant is estimated by the clothing amount estimation means, and the indoor comfort and the outdoor comfort calculated by the indoor comfort calculation means and the outdoor comfort and clothing calculated by the outdoor comfort calculation means are calculated. Based on the clothing amount estimated by the estimating means is configured to determine the operation mode by the operation mode determining means.
[0058]
Therefore, according to the control device of the air conditioner of the first aspect of the present invention, the clothing amount estimated by the clothing amount estimating means represents a so-called seasonal feeling felt by the occupants, and the respective clothing amounts of spring, summer, autumn and winter The clothing amount is estimated according to the thermal sensation of the person that changes with the season. That is, in summer, the clothes become lightly worn and the amount of clothing decreases, and in winter, the clothes become thick and the amount of clothing increases. And a driving mode determining means based on the indoor comfort calculated by the indoor comfort calculating means, the outdoor comfort calculated by the outdoor comfort calculating means, and the clothing amount estimated by the clothing amount estimating means. Determines an operation mode for switching operations such as cooling operation and heating operation.
[0059]
Therefore, the driving mode determining means determines the driving mode by accurately determining the current thermal sensation of the occupant based on the indoor comfort level, the outdoor comfort level, and the amount of clothes representing the sense of the season. Therefore, the optimum operation mode for the current thermal environment can be determined regardless of the past operation state, and the air conditioning operation can be performed in the operation mode. In addition, since the driving mode is determined in real time using the clothing amount estimated based on the signal regarding the outside air temperature, it is possible to cope with a sudden change in the weather, and there is a large difference in thermal sensation during the day. Even in this case, a comfortable thermal environment can be realized.
[0060]
According to a second aspect of the present invention, in the control apparatus for an air conditioner of the first aspect, the fuzzy inference means of the operation mode determination means determines an operation mode according to a fuzzy inference rule. is there.
[0061]
Therefore, according to the air conditioner control device of the second aspect of the present invention, when the operation mode determination means determines the operation mode, the operation mode is set in consideration of the heat load due to the difference between the indoor and outdoor thermal environments. By setting a fuzzy inference rule based on human experience, the fuzzy inference means can determine the operation mode according to the indoor and outdoor thermal environment.
[0062]
According to a third aspect of the present invention, in the control device for an air conditioner according to the first or second aspect, the neural network of the clothing amount estimating means includes a signal indicating an outside air temperature and a signal representing the outside air temperature during a predetermined period. The clothing amount is estimated on the basis of signals indicating the maximum temperature and the minimum temperature of the outside air temperature.
[0063]
Therefore, according to the control device for an air conditioner of the third aspect of the present invention, it is possible to obtain the amount of clothing that shows a sense of season without seasonal differences such as cold summer and warm winter, and differences between cold and warm regions. .
[0064]
According to a fourth aspect of the present invention, there is provided the air conditioner control device according to any one of the first to third aspects, wherein the control device receives the correction command signal based on the thermal sensation of the occupant. The indoor comfort correction means corrects the indoor comfort calculated by the indoor comfort calculation means.
[0065]
Therefore, according to the control device for an air conditioner of the invention of claim 4, the indoor comfort level corrected based on the correction command signal representing the current thermal sensation of the occupant, such as "cold" or "hot". Since the driving mode determining means determines the driving mode based on the outdoor comfort level and the amount of clothes, the individual difference in the thermal sensation of the occupants can be corrected.
[0066]
According to a fifth aspect of the present invention, there is provided the air conditioner control device according to any one of the first to fourth aspects, wherein the temperature, humidity, and radiation temperature of the room in which the occupant is sleeping. The sleeping room comfort calculating means calculates the indoor comfort level at bedtime based on the signal representing the airflow velocity and the activity amount of the occupant and the signal representing the clothing amount of the occupant at bedtime. Based on a signal representing the outdoor temperature, humidity, radiation temperature, airflow velocity and the activity amount of the occupant while the occupant is sleeping and a signal representing the amount of clothing of the occupant at bedtime, The sleeping outdoor comfort degree calculating means calculates the outdoor comfort level at the time of sleeping, and based on the signal relating to the outside air temperature, the bedtime clothing amount estimating means estimates the sleeping clothes of the occupants at the time of sleeping. At bedtime calculated by the indoor comfort level calculation means On the basis of the indoor comfort level and the sleeping comfort level calculated by the sleeping outdoor comfort level calculating means and the bedtime clothing amount estimated by the bedtime clothing amount estimating means, the bedtime driving mode determining means. The operation mode is determined.
[0067]
Therefore, according to the control apparatus for an air conditioner of the fifth aspect of the present invention, the indoor and outdoor thermal environments at the time of sleeping and the occupant's occupants are determined by the indoor comfort, the outdoor comfort, and the amount of clothes when sleeping. The operating mode can be determined by accurately determining the thermal sensation, and the air-conditioning operation suitable for the sleeping environment can be performed.
[0068]
The control device for an air conditioner according to a sixth aspect of the present invention is the control device for an air conditioner according to the fifth aspect, wherein the bedtime fuzzy inference means of the bedtime operation mode determination means changes the operation mode according to a fuzzy inference rule. It is to judge.
[0069]
Therefore, according to the control device for an air conditioner of the present invention, when the bedtime operation mode determination means determines the operation mode, the heat load due to the difference between the indoor and outdoor thermal environments at bedtime is taken into account. By setting a fuzzy inference rule based on human experience so as to be in the operation mode, the fuzzy inference means at bedtime can determine the operation mode according to the indoor and outdoor thermal environment at bedtime.
[Brief description of the drawings]
FIG. 1 is a main block diagram of a control device for an air conditioner according to a first embodiment of the present invention.
FIG. 2 is a block diagram of a clothing amount estimating unit and an indoor PMV calculating unit of the control device.
FIG. 3 is a block diagram of an outdoor PMV calculation unit of the control device.
FIG. 4 is a block diagram of an operation mode determination unit of the control device.
5 (A) to 5 (C) are diagrams showing fuzzy variables of an antecedent part of a fuzzy inference unit of the operation mode determination unit.
FIG. 6 is a diagram showing fuzzy variables in a consequent part of the fuzzy inference unit of the operation mode determination unit.
7A is a diagram showing a fuzzy inference rule in winter of the fuzzy inference unit, and FIG. 7B is a diagram showing a fuzzy inference rule in spring of the fuzzy inference unit.
FIG. 8A is a diagram showing a fuzzy inference rule of the fuzzy inference unit in autumn, and FIG. 8B is a diagram showing a fuzzy inference rule of the fuzzy inference unit in summer.
FIG. 9 is a block diagram of an operation mode determination unit of the control device for the air conditioner according to the second embodiment of the present invention.
FIG. 10 is a block diagram of a bedtime clothing amount estimating unit and a bedtime indoor PMV calculating unit of a control device of an air conditioner according to a third embodiment of the present invention.
FIG. 11 is a block diagram of a bedtime outdoor PMV calculation unit of the control device.
FIG. 12 is a block diagram of a bedtime driving mode determination unit of the control device.
FIGS. 13A to 13C are diagrams showing fuzzy variables of an antecedent part of the fuzzy inference unit of the bedtime driving mode determination unit.
FIG. 14 is a block diagram of a bedtime operation mode determination unit of the control device for the air conditioner according to the fourth embodiment of the present invention.
[Explanation of symbols]
1 ... clothing amount estimation unit, 1a ... outside air information converter,
1b: Neural network,
2: indoor PMV calculation unit, 2a: air flow velocity estimation unit,
2b: activity amount estimating unit, 2c: indoor PMV calculator,
3 outdoor PMV calculator, 3a outdoor PMV calculator,
4 ... operation mode determination unit, 4a ... fuzzy inference unit,
10 remote control, 11 indoor temperature sensor,
12 indoor radiation temperature sensor, 13 indoor humidity sensor
14 ... infrared sensor, 15 ... outside air temperature sensor, 20 ... control device.

Claims (6)

少なくとも冷房と暖房の運転モードを切り替える空気調和機の制御装置において、
室内の温度,湿度,輻射温度,気流速度および在室者の活動量を夫々表わす信号と上記在室者の着衣量を表わす信号とに基づいて、室内の快適度(PMV)を算出する室内快適度算出手段(2)と、
室外の温度,湿度,輻射温度,気流速度および上記在室者が室外に出たときの活動量を夫々表わす信号と上記在室者の着衣量を表わす信号とに基づいて、上記室外の快適度(PMV)を算出する室外快適度算出手段(3)と、
外気温度に関する信号に基づいて、上記在室者の着衣量を推定する着衣量推定手段(1)と、
上記室内快適度算出手段(2)により算出された上記室内の快適度(PMV)と上記室外快適度算出手段(3)により算出された上記室外の快適度(PMV)および上記着衣量推定手段(1)により推定された上記着衣量に基づいて、運転モードを判定する運転モード判定手段(4)とを備えたことを特徴とする空気調和機の制御装置。
At least in the control device of the air conditioner switching the operation mode of cooling and heating,
Room comfort calculating a room comfort level (PMV) based on signals representing the indoor temperature, humidity, radiation temperature, airflow velocity, and the amount of activity of the occupants, respectively, and the signal representing the amount of clothes of the occupants. Degree calculating means (2);
The outdoor comfort level based on a signal representing the outdoor temperature, humidity, radiation temperature, airflow velocity, and a signal representing the amount of activity when the occupant leaves the room and a signal representing the amount of clothing of the occupant, respectively. An outdoor comfort level calculating means (3) for calculating (PMV);
A clothing amount estimating means (1) for estimating the clothing amount of the occupant based on a signal relating to the outside air temperature;
The indoor comfort level (PMV) calculated by the indoor comfort level calculating means (2), the outdoor comfort level (PMV) calculated by the outdoor comfort level calculating means (3), and the clothing amount estimating means ( A control device for an air conditioner, comprising: an operation mode determining means (4) for determining an operation mode based on the clothing amount estimated in 1).
請求項1に記載の空気調和機の制御装置において、上記運転モード判定手段(4)は、ファジィ推論規則によって運転モードを判定するファジィ推論手段(4a)を有することを特徴とする空気調和機の制御装置。The control device for an air conditioner according to claim 1, wherein the operation mode determining means (4) includes fuzzy inference means (4a) for determining an operation mode according to a fuzzy inference rule. Control device. 請求項1または2に記載の空気調和機の制御装置において、上記着衣量推定手段(1)は、外気温度を表わす信号と所定期間における上記外気温度の最高温度,最低温度を夫々表わす信号とに基づいて、上記着衣量を表わす信号を出力するニューラルネットワーク(1b)を有することを特徴とする空気調和機の制御装置。3. The control device for an air conditioner according to claim 1, wherein the clothing amount estimating means includes a signal representing an outside air temperature and a signal representing a maximum temperature and a minimum temperature of the outside air temperature in a predetermined period. A control device for an air conditioner, comprising: a neural network (1b) for outputting a signal representing the amount of clothing based on the amount of clothing. 請求項1乃至3のいずれか一つに記載の空気調和機の制御装置において、上記在室者の温冷感に基づく補正指令信号を受けて、上記室内快適度算出手段(2)により算出された上記室内の快適度(PMV)を補正する室内快適度補正手段(5a)を備えたことを特徴とする空気調和機の制御装置。4. The control device for an air conditioner according to claim 1, wherein the control unit receives the correction command signal based on a thermal sensation of the occupant and calculates the correction command signal by the indoor comfort level calculation unit. A control device for an air conditioner, further comprising: an indoor comfort level correcting means (5a) for correcting the indoor comfort level (PMV). 請求項1乃至4のいずれか一つに記載の空気調和機の制御装置において、上記在室者が就寝中の室内の温度,湿度,輻射温度,気流速度および在室者の活動量を夫々表わす信号と就寝時の在室者の着衣量を表わす信号とに基づいて、就寝時における室内の快適度(PMV)を算出する就寝時室内快適度算出手段(32b)と、上記在室者が就寝中の室外の温度,湿度,輻射温度,気流速度および上記在室者の活動量を夫々表わす信号と上記就寝時の在室者の着衣量を表わす信号とに基づいて、就寝時の室外の快適度(PMV)を算出する就寝時室外快適度算出手段(33a)と、外気温度に関する信号に基づいて、上記在室者の就寝時の着衣量を推定する就寝時着衣量推定手段(31)と、上記就寝時室内快適度算出手段(32)により算出された上記就寝時の室内の快適度(PMV)と上記就寝時室外快適度算出手段(33)により算出された上記就寝時の室外の快適度(PMV)および上記就寝時着衣量推定手段(31)により推定された上記就寝時の着衣量に基づいて、運転モードを判定する就寝時運転モード判定手段(34)とを備えたことを特徴とする空気調和機の制御装置。5. The control device for an air conditioner according to claim 1, wherein the room temperature, humidity, radiation temperature, airflow velocity, and activity amount of the room occupant while the occupant is sleeping are respectively represented. A sleeping room comfort calculating means (32b) for calculating a room comfort level (PMV) at the time of going to sleep based on the signal and a signal representing the amount of clothes of the room occupant at the time of going to bed; The outdoor comfort at bedtime based on the signals representing the inside temperature, humidity, radiation temperature, airflow velocity, and the activity amount of the occupant, respectively, and the signal representing the amount of clothing of the occupant at bedtime. A sleeping outside comfort degree calculating means (33a) for calculating a degree (PMV); and a sleeping clothes amount estimating means (31) for estimating the sleeping clothes of the occupants based on a signal relating to the outside air temperature. , Calculated by the bedtime indoor comfort level calculation means (32) The bedtime indoor comfort level (PMV) calculated by the bedtime indoor comfort level (PMV) and the bedtime outdoor comfort level calculation means (33) and the bedtime clothing amount estimation means (31) A) a bedtime driving mode determining means (34) for determining a driving mode based on the bedtime clothing amount estimated in step (b). 請求項5に記載の空気調和機の制御装置において、上記就寝時運転モード判定手段(34)は、ファジィ推論規則によって運転モードを判定する就寝時ファジィ推論手段(34a)を有することを特徴とする空気調和機の制御装置。The control device for an air conditioner according to claim 5, wherein the bedtime operation mode determining means (34) has a bedtime fuzzy inference means (34a) for determining an operation mode according to a fuzzy inference rule. Control device for air conditioner.
JP09928495A 1995-04-25 1995-04-25 Control device for air conditioner Expired - Fee Related JP3564583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09928495A JP3564583B2 (en) 1995-04-25 1995-04-25 Control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09928495A JP3564583B2 (en) 1995-04-25 1995-04-25 Control device for air conditioner

Publications (2)

Publication Number Publication Date
JPH08296882A JPH08296882A (en) 1996-11-12
JP3564583B2 true JP3564583B2 (en) 2004-09-15

Family

ID=14243358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09928495A Expired - Fee Related JP3564583B2 (en) 1995-04-25 1995-04-25 Control device for air conditioner

Country Status (1)

Country Link
JP (1) JP3564583B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251731A (en) * 2011-06-03 2012-12-20 Sumitomo Forestry Co Ltd Air conditioning system
JP6365967B2 (en) * 2013-11-13 2018-08-01 パナソニックIpマネジメント株式会社 Environmental control device and environmental control system
CN105020835B (en) * 2014-04-17 2019-01-29 美的集团股份有限公司 The pleasant climate method and device of air conditioner
JP6381788B2 (en) * 2015-04-14 2018-08-29 三菱電機株式会社 Outdoor environment information analysis system, outdoor environment information analysis method, and program
WO2017029722A1 (en) * 2015-08-19 2017-02-23 三菱電機株式会社 Controller, appliance control method, and program
CN105241023A (en) * 2015-10-30 2016-01-13 广东美的制冷设备有限公司 Air conditioner control method and system and clothes-wearing amount detection method and device
JP6618450B2 (en) * 2016-10-11 2019-12-11 公益財団法人鉄道総合技術研究所 Car interior air conditioning method and system
KR101905308B1 (en) * 2017-01-11 2018-10-05 인하대학교 산학협력단 Apparatus for cooling and heating control using predicted mean vote and method thereof
JP2020200999A (en) * 2019-06-12 2020-12-17 東日本旅客鉄道株式会社 Control system of air conditioning device

Also Published As

Publication number Publication date
JPH08296882A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
JPH05264086A (en) Air conditioner and controller thereof
JP3214317B2 (en) Air conditioner
JP3564583B2 (en) Control device for air conditioner
JP2522102B2 (en) Operation control device for air conditioner
JPH06257821A (en) Control device for air conditioner
JPH07198186A (en) Cooling/heating switching device for air conditioner
JP2002022238A (en) Comfortable feeling estimation device and air conditioning control device
JP3188048B2 (en) Air conditioner
JP3087446B2 (en) Comfort degree calculation device in air conditioning
JP2002039596A (en) Air-conditioning controller
JPH06347077A (en) Indoor environment control device
JPH07103547A (en) Air-conditioner
JPH04116328A (en) Controlling device for air conditioner
JP2618170B2 (en) Air conditioner
JPH08189683A (en) Controller for air conditioner
JP3235128B2 (en) Air conditioning controller
JP2948961B2 (en) Air conditioner
JPH07217962A (en) Air conditioner
JP2650825B2 (en) Air conditioner
JP3097633B2 (en) Air conditioner temperature control device
JPH08189684A (en) Controller for air conditioner
JPH0960943A (en) Air conditioner
JPH0694292A (en) Air-conditioning system accommodating feeling of warmth
JP3026583B2 (en) Air conditioning control device
JPH07332728A (en) Comfortable air conditioning controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees