JP2002039596A - Air-conditioning controller - Google Patents

Air-conditioning controller

Info

Publication number
JP2002039596A
JP2002039596A JP2000222744A JP2000222744A JP2002039596A JP 2002039596 A JP2002039596 A JP 2002039596A JP 2000222744 A JP2000222744 A JP 2000222744A JP 2000222744 A JP2000222744 A JP 2000222744A JP 2002039596 A JP2002039596 A JP 2002039596A
Authority
JP
Japan
Prior art keywords
person
room
thermal environment
air
health
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000222744A
Other languages
Japanese (ja)
Inventor
Miyo Mochizuki
美代 望月
Yosuke Taniguchi
洋介 谷口
Katsuya Ibaraki
克也 茨木
Koichi Kurazono
功一 藏薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000222744A priority Critical patent/JP2002039596A/en
Publication of JP2002039596A publication Critical patent/JP2002039596A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control air conditioning of a room, where normally it is occupied by no one, so that a person entering from an exterior will not ruin his health according to thermal environmental gap from outdoor. SOLUTION: An air-conditioning controller infers sweating, blood flow, heart beat and blood pressure of each of body's respective parts by a human body physiological model 3, based on detection signals of a first thermal environment detecting means 1 installed in the room where a person is normally present; infers the level of person's health from the behavior of air temperature of sweating, blood flow, heart beet and blood pressure inferred by the model 3 by a health degree inferring means 4 regarding the health degree of the person, when the person enters the room where no person is normally present; and sets a health temperature range as a target thermal environment to a control signal generating means 5. The air conditioner 6 is controlled, based on the signal from a second thermal environment detecting means 2 installed in the room where no person is normally present, so that the condition approaches health temperature range to which the indoor temperature is set in the room, where no person is normally present.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空調制御装置に関
し、特に、リビング等の常時人が存在する室内からトイ
レ、浴室等の常時は人が存在しない室内に移動した場合
の人間の健康度を推定し、推定された健康度に応じて設
定された目標温熱環境に近づくように常時は人が存在し
ない室内の空調を制御する空調制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-conditioning control device, and more particularly, to the degree of human health when moving from a room, such as a living room, where people are always present to a room, such as a toilet or a bathroom, where people are not always present. The present invention relates to an air-conditioning control device that estimates air-conditioning and controls air-conditioning in a room where no person is present at all times so as to approach a target thermal environment set according to the estimated degree of health.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
空気調和機の制御においては、快適性が重視され、快適
感を損なわないように空気調和機を制御する方法が種々
提案されている。例えば、特開平4−283340号公
報には、ある環境における普遍性のある人間感覚の予測
データを用いて空調機器等の環境調整手段を制御するこ
とにより、個人に適した環境調整手段を設計する快適環
境設計方法が提案されている。この快適環境設計方法で
は、人間感覚(快適感や、温冷感)の予測値を用いて空
調機器等の環境調整を行っている。
2. Description of the Related Art
In the control of the air conditioner, comfort is emphasized, and various methods of controlling the air conditioner so as not to impair the feeling of comfort have been proposed. For example, Japanese Patent Application Laid-Open No. 4-283340 discloses a method of designing an environment adjusting means suitable for an individual by controlling an environment adjusting means such as an air conditioner using prediction data of a universal human sense in a certain environment. A comfortable environment design method has been proposed. In this comfortable environment design method, the environment of an air conditioner or the like is adjusted using a predicted value of a human sense (comfortable sensation or thermal sensation).

【0003】しかしながら、屋内に複数の部屋が有る場
合、冷房の効いた室内では快適だと感じていても、冷房
の効いた室内から冷房が効いていない室内に入室する
と、急激な温度変化により人間の体温調節機能が追随す
ることができずショック状態(ヒートショック)に陥る
場合もある。このため人間の生活環境に配慮した空気調
和機の制御方法が必要とされていた。また、屋内に複数
の部屋が有る場合に全室を人間が快適であると感じる温
熱環境に制御するのでは、省エネルギー化を図ることが
できない、という問題もある。
[0003] However, when there are a plurality of rooms indoors, even if the user feels comfortable in a room with cooling, if the user enters a room without cooling from a room with cooling, a sudden change in temperature causes In some cases, the body's body temperature regulation function cannot follow, causing a shock state (heat shock). Therefore, there is a need for a method of controlling an air conditioner in consideration of human living environment. In addition, when there are a plurality of rooms indoors, if all rooms are controlled to a thermal environment in which humans feel comfortable, energy saving cannot be achieved.

【0004】特開平8−240334号公報には、温度
及び湿度の検出値から算出された快適温度を発汗の有無
により補正することにより、空気調和機の快適さよりも
個人の健康を重視し、冷え過ぎによる体調の低下を防
ぎ、体温調節機能の退化を抑制する健康的な空気調和機
の制御装置が提案されている。
Japanese Unexamined Patent Publication No. Hei 8-240334 discloses that the comfort temperature calculated from the detected values of temperature and humidity is corrected by the presence or absence of perspiration, thereby giving more importance to the health of the individual than the comfort of the air conditioner, and There has been proposed a healthy air conditioner control device that prevents deterioration of the physical condition due to excessive heat and suppresses deterioration of the body temperature control function.

【0005】しかしながら、この制御装置では、発汗な
どの人間の生理量を直接計測しなければならないため、
睡眠中のように発汗の経時変化を長時間追跡することが
可能な場合の空調制御には適しているが、人が室内に滞
在する時間が短い場合や人が室内に居ない場合の制御等
には適用することができない、という問題がある。
[0005] However, in this control device, since it is necessary to directly measure human physiological quantities such as sweating,
Suitable for air-conditioning control when it is possible to track changes over time in sweating for a long time, such as during sleep, but control when a person stays indoors for a short time or when no person is indoors Has the problem that it cannot be applied.

【0006】本発明は上記従来技術の問題点に鑑みなさ
れたものであり、本発明の目的は、常時は人がいない室
内の空調を、外部から入室した人間が室外との温熱環境
格差により健康を損なわないように制御することができ
る空調制御装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and it is an object of the present invention to provide an air conditioner in a room where there is no person at all times, and that a person entering from the outside has a health problem due to a difference in thermal environment from the outside. It is an object of the present invention to provide an air-conditioning control device capable of performing control so as not to impair the air conditioning.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に記載の空調制御装置は、常時人が存在す
る室内の温熱環境要素を検出する第1の温熱環境検出手
段と、常時は人が存在しない室内の温熱環境要素を検出
する第2の温熱環境検出手段と、第1の温熱環境検出手
段で検出された常時人が存在する室内の温熱環境要素に
基づいて、人体生理モデルにより常時は人が存在しない
室内に置かれた場合の人間の健康度に関連する生理量を
推定し、推定された生理量に基づいて人間の健康度を推
定し、推定された健康度に応じて常時は人が存在しない
室内の目標温熱環境を設定する健康度推定手段と、第2
の温熱環境検出手段で検出された常時は人が存在しない
室内の温熱環境要素に基づいて、常時は人が存在しない
室内の温熱環境が設定された目標温熱環境に近づくよう
に空調を制御する空調制御手段と、を含んで構成したこ
とを特徴とする。
In order to solve the above-mentioned problems, an air-conditioning control device according to claim 1 includes a first thermal environment detecting means for detecting a thermal environment element in a room where a person is always present, Based on the second thermal environment detecting means for detecting a thermal environment element in a room where a person does not always exist, and the human thermal physiology based on the thermal environment element in a room where a person always exists detected by the first thermal environment detecting means. The model estimates a physiological quantity related to human health when placed in a room where no person is normally present, estimates the human health based on the estimated physiological quantity, and A health degree estimating means for setting a target thermal environment in a room where no person is present at all times in response thereto;
Air conditioning that controls air conditioning based on the thermal environment element in a room where there is no human at all times detected by the thermal environment detecting means, so that the thermal environment inside the room where there is no human always approaches the set target thermal environment. And control means.

【0008】請求項1の発明では、第1の温熱環境検出
手段により常時人が存在する室内の温熱環境要素が検出
されると、健康度推定手段は、第1の温熱環境検出手段
で検出された常時人が存在する室内の温熱環境要素に基
づいて、人体生理モデルにより常時は人が存在しない室
内に置かれた場合の人間の健康度に関連する生理量を推
定し、推定された生理量に基づいて人間の健康度を推定
し、推定された健康度に応じて常時は人が存在しない室
内の目標温熱環境を設定する。一方、第2の温熱環境検
出手段により常時は人が存在しない室内の温熱環境要素
が検出されると、空調制御手段は、第2の温熱環境検出
手段で検出された常時は人が存在しない室内の温熱環境
要素に基づいて、常時は人が存在しない室内の温熱環境
が設定された目標温熱環境に近づくように空調を制御す
る。
According to the first aspect of the present invention, when the first thermal environment detecting means detects a thermal environment element in a room where a person is always present, the health degree estimating means is detected by the first thermal environment detecting means. Based on the thermal environment factor in a room where a person always exists, a human body physiology model estimates a physiological amount related to the degree of human health when placed in a room where no person is always present, and estimates the estimated physiological amount. And a target thermal environment in a room where no person is present at all times is set according to the estimated degree of health. On the other hand, when the second thermal environment detecting means detects a thermal environment element in the room where no person is always present, the air conditioning control means detects the room where no human is normally detected by the second thermal environment detecting means. The air conditioning is controlled based on the thermal environment element in such a manner that the indoor thermal environment in which no person is always present approaches the set target thermal environment.

【0009】以上の通り、本発明では、人間の健康度の
推定値に応じて常時は人が存在しない室内の目標温熱環
境を設定し、常時は人が存在しない室内の温熱環境がこ
の目標温熱環境に近づくように空調を制御するので、常
時は人が存在しない室内と室外との温熱環境格差により
人間が健康を損なわない室内環境となるように空調を制
御することができる。また、人体生理モデルにより人間
の健康度に関連する生理量を推定し、推定された生理量
に基づいて人間の健康度を推定するので、現実に人間の
生理量を測定する必要がなく、人が室内に滞在する時間
が短い場合や人が室内に居ない場合にも目標温熱環境を
設定することができる。更に、推定された健康度に応じ
て設定された目標温熱環境に近づくように空調を制御す
るので、快適性を主眼とする空調制御より広い範囲での
温度制御が可能になり、省動力な空調を実現できる。
As described above, according to the present invention, a target thermal environment in a room where no person is always present is set in accordance with the estimated value of the degree of health of a person, and the thermal environment in a room where no person is normally present is determined by the target thermal environment. Since the air conditioning is controlled so as to approach the environment, it is possible to control the air conditioning so that the indoor environment does not impair human health due to the difference in the thermal environment between the room where no person is always present and the outside. In addition, since a physiological quantity related to the degree of human health is estimated using a human body physiology model, and the degree of human health is estimated based on the estimated physiological quantity, there is no need to actually measure the physiological quantity of human beings. The target thermal environment can be set even when the user stays indoors for a short time or when no person is indoors. Furthermore, since air conditioning is controlled so as to approach the target thermal environment set according to the estimated health level, temperature control in a wider range than air conditioning control with a focus on comfort is possible, and power-saving air conditioning is possible. Can be realized.

【0010】なお、上記空調制御装置においては、前記
生理量が、発汗、血流、血圧、及び心拍の少なくとも1
つであることが好ましい。また、前記温熱環境要素は、
少なくとも空気温度を含むことが好ましく、他に風速、
日射量、湿度等を含んでいてもよい。
In the air conditioning control device, the physiological quantity is at least one of sweating, blood flow, blood pressure, and heart rate.
It is preferably one. Further, the thermal environment element includes:
It is preferable to include at least the air temperature, wind speed,
It may include the amount of solar radiation, humidity, and the like.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0012】本実施の形態に係る空調制御装置は、図1
に示すように、常時人が存在する室内(例えば昼間なら
リビング、夜間なら寝室等の通常は快適温度に空調制御
されている部屋)に設置された第1の温熱環境検出手段
1、常時は人が存在しない室内(例えば廊下、トイレ、
浴室等)に設置された第2の温熱環境検出手段2、第1
の温熱環境検出手段1に接続され、第1の温熱環境検出
手段1が出力する信号に基づいて、常時は人が存在しな
い室内に置かれた場合の人体各部の発汗、血流、心拍、
血圧の空気温度変化に対する挙動を推定する人体生理モ
デル3、人体生理モデル3に接続され、推定された発
汗、血流、心拍、血圧各々の空気温度変化に対する挙動
から常時は人が存在しない室内に置かれた場合の人間の
健康度を推定し、推定された人間の健康度に基づいて常
時は人が存在しない室内の目標温熱環境となる健康温度
範囲を次に述べる制御信号発生手段5に設定する健康度
推定手段4、健康度推定手段4及び第2の温熱環境検出
手段2に接続され、第2の温熱環境検出手段2で検出さ
れた常時は人が存在しない室内の温熱環境要素に基づい
て、常時は人が存在しない室内の温度が設定された健康
温度範囲に近づくように空調を制御する空調制御手段と
しての制御信号発生手段5、及び制御対象である空調機
6を備えている。
The air-conditioning control device according to the present embodiment is shown in FIG.
As shown in the figure, the first thermal environment detecting means 1 installed in a room where a person is always present (for example, a room which is normally air-conditioned at a comfortable temperature such as a living room in the daytime and a bedroom in the nighttime). Rooms that do not exist (eg, corridors, toilets,
Second thermal environment detecting means 2 installed in a bathroom, etc.)
Is connected to the thermal environment detecting means 1, and based on the signal output from the first thermal environment detecting means 1, sweating, blood flow, heartbeat,
A human body physiology model 3 for estimating the behavior of blood pressure with respect to air temperature change, connected to the human body physiology model 3, and based on the estimated sweating, blood flow, heart rate, and blood pressure behavior for each air temperature change, enter a room where no person is always present. The degree of health of the human being when placed is estimated, and based on the estimated degree of health of the human, a healthy temperature range which is a target thermal environment in a room where no person is always present is set in the control signal generating means 5 described below. Health level estimating means 4, health level estimating means 4, and second thermal environment detecting means 2 which are connected to the health level estimating means 4. A control signal generating unit 5 as an air-conditioning control unit for controlling air-conditioning so that the temperature in a room where no person is always present approaches a set healthy temperature range, and an air conditioner 6 to be controlled.

【0013】第1の温熱環境検出手段1は、温度センサ
から構成されており、所定時間毎に常時人が存在する室
内の空気温度を検出する。また、第2の温熱環境検出手
段2は、温度センサ、湿度センサ、及び風速センサから
構成されており、所定時間毎に常時は人が存在しない室
内の空気温度、湿度、及び風速を検出する。
The first thermal environment detecting means 1 is constituted by a temperature sensor, and detects the temperature of the air in a room where a person is always present at predetermined time intervals. The second thermal environment detecting means 2 is composed of a temperature sensor, a humidity sensor, and a wind speed sensor, and detects the air temperature, humidity, and wind speed in a room where no person is constantly present at predetermined time intervals.

【0014】人体生理モデル3は、人体と環境との熱収
支計算により、温熱環境検出手段1で検出した温熱環境
要素である常時人が存在する室内の空気温度に基づい
て、常時は人が存在しない室内に入室した場合におけ
る、生理情報である人体各部の発汗、血流、心拍、血圧
の値を算出するための数理モデルである。
The human body physiology model 3 calculates the heat balance between the human body and the environment and, based on the thermal environment element detected by the thermal environment detecting means 1, is based on the temperature of the air in the room where the human always exists. This is a mathematical model for calculating values of sweating, blood flow, heart rate, and blood pressure of each part of the human body, which are physiological information, when entering a room where the user does not enter.

【0015】図2(A)〜(D)に、人体生理モデル3
で推定された人体各部の発汗、血流、心拍、血圧の空気
温度変化に対する挙動を示す。図2(A)には空気温度
と発汗との関係を示し、図2(B)には空気温度と血流
との関係を示す。また、図2(C)には空気温度と心拍
との関係を示し、図2(D)には空気温度と血圧との関
係を示す。
FIGS. 2A to 2D show a human physiology model 3.
3 shows the behavior of each part of the human body with respect to changes in air temperature, such as perspiration, blood flow, heart rate, and blood pressure, estimated in step (a). FIG. 2A shows the relationship between air temperature and perspiration, and FIG. 2B shows the relationship between air temperature and blood flow. FIG. 2C shows the relationship between the air temperature and the heart rate, and FIG. 2D shows the relationship between the air temperature and the blood pressure.

【0016】本実施の形態では、健康度推定手段4は、
上記の図2(A)に示す推定された発汗の空気温度変化
に対する挙動と、図2(B)に示す推定された血流の空
気温度変化に対する挙動とから人間の健康度を推定して
いる。まず、図2(A)を見ると、発汗は温度A以下で
は略一定であり、温度Aを超えると急激に増加し始め
る。このような発汗の急激な増加は、人間の健康状態が
損なわれ健康度が低下したことを示唆している。また、
図2(B)を見ると、血流は温度B以上では略一定であ
り、温度Bを下回ると急激に減少し始めると共に温度C
を超えると急激に増加し始める。このような血流の急激
な増減は、人間の健康状態が損なわれ健康度が低下した
ことを示唆している。従って、健康度推定手段4は、発
汗が急激に増加し始める温度Aまたは血流が急激に増加
し始める温度Cのうち小さい方を上限とし、血流が急激
に減少する温度Bを下限として、空気温度が温度B以上
温度A以下では健康度が高く、温度Aを超えるかまたは
温度Bを下回ると健康度が低いと判断する。そして、温
度B以上温度A以下の範囲を健康温度範囲として設定す
る。即ち、図3に示すように、設定された健康温度範囲
においては、健康度を損なう発汗、血流、心拍、血圧の
急激な増加や急激な減少は無く、健康度は高く維持され
ることになる。
In the present embodiment, the health level estimation means 4
The degree of human health is estimated from the behavior of the estimated sweat shown in FIG. 2A with respect to the change in air temperature and the estimated behavior of the blood flow shown in FIG. 2B with respect to the change in air temperature. . First, referring to FIG. 2 (A), the sweating is substantially constant below the temperature A, and starts increasing rapidly after the temperature A. Such a rapid increase in sweating suggests that human health has been impaired and health has declined. Also,
Referring to FIG. 2 (B), the blood flow is substantially constant above the temperature B, and when it falls below the temperature B, it begins to rapidly decrease and at the same time the temperature C
After that, it starts to increase sharply. Such a rapid increase or decrease in blood flow suggests that the health condition of humans has been impaired and the degree of health has decreased. Accordingly, the health degree estimating means 4 sets the lower one of the temperature A at which the sweating starts to rapidly increase or the temperature C at which the blood flow starts to rapidly increase as an upper limit, and sets the temperature B at which the blood flow sharply decreases as a lower limit. If the air temperature is equal to or higher than the temperature B and equal to or lower than the temperature A, the degree of health is determined to be high. If the air temperature exceeds the temperature A or falls below the temperature B, the degree of health is determined to be low. Then, a range between the temperature B and the temperature A is set as a health temperature range. That is, as shown in FIG. 3, in the set health temperature range, there is no sudden increase or decrease in sweat, blood flow, heart rate, and blood pressure that impair the health, and the health is maintained at a high level. Become.

【0017】なお、推定された発汗、血流、心拍、血圧
各々の空気温度変化に対する挙動は、空調を行う部屋が
どのような部屋かにより変化するものであり、健康温度
範囲もこれに応じて変化する。この空調を行う部屋によ
る違いは、人体生理モデルにおいては例えば着衣量の違
いとして考慮される。例えば、廊下では着衣量は変化せ
ず、トイレでは着衣量を略半分とし、浴室では着衣量を
ゼロとして人体各部の発汗、血流、心拍、血圧の値を算
出する。
The behavior of each of the estimated sweating, blood flow, heart rate, and blood pressure with respect to changes in the air temperature changes depending on the type of the room in which the air conditioning is performed. Change. The difference depending on the room in which the air conditioning is performed is considered as a difference in the amount of clothes in the human body physiology model, for example. For example, the amount of clothing does not change in a corridor, the amount of clothing is reduced to approximately half in a bathroom, and the amount of clothing is reduced to zero in a bathroom to calculate the values of sweating, blood flow, heart rate, and blood pressure of each part of the human body.

【0018】空調機6は、吹出し温度、吹出し風速が可
変な空調装置であり、空調を行う室内に設置されてい
る。制御信号発生手段5は、健康度推定手段4から設定
された健康温度範囲に近づくように、第2の温熱環境検
出手段2が出力する信号に基づいて空調機6の吹出し温
度、吹出し風量を段階的に変更するための制御信号を発
生する。
The air conditioner 6 is an air conditioner whose outlet temperature and outlet speed are variable, and is installed in a room for air conditioning. The control signal generating means 5 steps the temperature and the amount of air blown out of the air conditioner 6 based on the signal output from the second thermal environment detecting means 2 so as to approach the health temperature range set by the health degree estimating means 4. A control signal is generated for the purpose of the change.

【0019】次に、図4に示すフローチャートを参照し
て、本実施の形態の空調制御装置の人体生理モデル3、
健康度推定手段4、及び制御信号発生手段5における処
理動作をまとめて説明する。
Next, with reference to the flowchart shown in FIG. 4, a human physiology model 3,
The processing operations in the health degree estimating means 4 and the control signal generating means 5 will be described together.

【0020】ステップ100で、常時人が存在する室内
に設置された温度センサにおいて検出された空気温度の
検出信号が人体生理モデル3に入力されると、ステップ
102で、入力された検出信号に基づいて、人体生理モ
デル3により、常時人が存在する室内に居る人の発汗、
血流、心拍、血圧が推定し、これを初期値として常時は
人が存在しない室内(空調制御を行う室内)に入室した
場合における、生理情報である人体各部の発汗、血流、
心拍、血圧の各々と空気温度(空調制御を行う室内の空
気温度)との関係を推定する。
In step 100, when a detection signal of an air temperature detected by a temperature sensor installed in a room where a person always exists is input to the human body physiology model 3, in step 102, based on the input detection signal. Therefore, according to the human body physiology model 3, sweating of a person in a room where a person always exists,
The blood flow, heart rate, and blood pressure are estimated, and when the person enters a room where no person is always present (room for performing air-conditioning control) as initial values, sweating, blood flow,
The relationship between each of the heart rate and the blood pressure and the air temperature (the air temperature in the room where the air conditioning control is performed) is estimated.

【0021】次のステップ104で、人体生理モデル3
で推定された発汗と空気温度との関係及び血流と空気温
度との関係から、常時は人が存在しない室内の空気温度
に応じた入室者の健康度を推定し、ステップ106で、
入室者の健康度が高く維持される空気温度範囲の上限及
び下限を決定して、健康温度範囲として制御信号発生手
段5に設定する。
In the next step 104, the human physiology model 3
From the relationship between the perspiration and the air temperature and the relationship between the blood flow and the air temperature estimated in the above, the degree of health of the occupant according to the air temperature in the room where no person is always present is estimated, and in step 106,
The upper and lower limits of the air temperature range in which the degree of health of the occupant is maintained at a high level are determined, and are set in the control signal generating means 5 as the health temperature range.

【0022】次のステップ108で、常時は人が存在し
ない室内に設置された温度センサ、湿度センサ、及び風
速センサにおいて検出された空気温度、湿度、及び風速
の検出信号が制御信号発生手段5に入力されると、ステ
ップ110で、制御信号発生手段5は、入力された室内
の空気温度が健康温度範囲内かを判断する。その結果、
入力された室内の空気温度が健康温度範囲内であれば、
ステップ112で、空調機6の状態を現状値に維持する
ための制御信号を発生し、ステップ100に戻って、健
康温度範囲を超えるまで、ステップ100〜110の動
作を繰り返し行う。また、ステップ110で入力された
室内の空気温度が健康温度範囲を超えると、制御信号発
生手段5は、ステップ114で、室内の空気温度が健康
温度範囲の下限を下回ったか否か判断し、下限を下回っ
た場合はステップ116で温度制御目標を1レベル上げ
るための制御信号を発生し、室内の空気温度が健康温度
範囲の下限を下回っていない場合は健康温度範囲の上限
を超えたと判断して、ステップ118で温度制御目標を
1レベル下げるための制御信号を発生する。
In the next step 108, the control signal generating means 5 sends detection signals of the air temperature, humidity and wind speed detected by the temperature sensor, humidity sensor and wind speed sensor installed in the room where no person is present at all times. When input, at step 110, the control signal generator 5 determines whether the input indoor air temperature is within the healthy temperature range. as a result,
If the input room air temperature is within the healthy temperature range,
In step 112, a control signal for maintaining the state of the air conditioner 6 at the current value is generated, and the process returns to step 100 to repeat the operations of steps 100 to 110 until the temperature exceeds the healthy temperature range. If the indoor air temperature input in step 110 exceeds the healthy temperature range, the control signal generating means 5 determines in step 114 whether the indoor air temperature has fallen below the lower limit of the healthy temperature range. If the temperature is below the lower limit, a control signal for raising the temperature control target by one level is generated in step 116. If the indoor air temperature is not below the lower limit of the healthy temperature range, it is determined that the upper limit of the healthy temperature range is exceeded. In step 118, a control signal for lowering the temperature control target by one level is generated.

【0023】次のステップ120で、処理の終了が指示
されたか否かを判断し、終了が指示されていなければス
テップ100に戻り、ステップ100〜ステップ120
を繰り返す。
In the next step 120, it is determined whether or not the end of the process has been instructed. If the end has not been instructed, the process returns to step 100, and steps 100 to 120
repeat.

【0024】以上の通り、本実施の形態によれば、人間
の健康度の推定値に応じて常時は人が存在しない室内の
目標温熱環境としての健康温度範囲を設定し、常時は人
が存在しない室内の空気温度がこの健康温度範囲に近づ
くように空調を制御するので、常時は人が存在しない室
内と室外との温度格差により人間が健康を損なわない室
内温度になるように空調を制御することができる。これ
によりいわゆるヒートショックを防止することができ
る。
As described above, according to the present embodiment, a healthy temperature range is set as a target thermal environment in a room where no person is always present according to the estimated value of the degree of human health. Air conditioning is controlled so that the indoor air temperature does not approach this healthy temperature range, so the air conditioning is controlled so that the temperature difference between the room where no people are always present and the outdoor room does not impair human health due to the temperature difference between the room and the outside. be able to. Thereby, so-called heat shock can be prevented.

【0025】また、人体生理モデルにより人間の健康度
に関連する生理量を推定し、推定された生理量に基づい
て人間の健康度を推定するので、現実に人間の生理量を
測定する必要がなく、人が室内に滞在する時間が短い場
合や人が室内に居ない場合にも目標温熱環境としての健
康温度範囲を設定することができ、空調を制御すること
ができる。
Further, since a physiological quantity related to the human health level is estimated by the human body physiology model, and the human health level is estimated based on the estimated physiological quantity, it is necessary to actually measure the human physiological quantity. In addition, even when a person stays indoors for a short time or when a person is not indoors, a healthy temperature range as a target thermal environment can be set, and air conditioning can be controlled.

【0026】更に、推定された健康度に応じて設定され
た健康温度範囲に近づくように空調を制御するので、図
3にその範囲を比較して示すように、快適性を主眼とす
る空調制御より広い範囲での温度制御が可能になり、省
動力な空調を実現できる。また、図5に本実施の形態で
の温度制御の様子を示すが、冷房の場合には健康温度範
囲は従来の空調制御での快適温度範囲より高温側にあ
り、暖房の場合には健康温度範囲は従来の空調制御での
快適温度範囲より低温側にあるので、空調に要するエネ
ルギーは小さくて済み、省動力化が図られることにな
る。
Further, since the air conditioning is controlled so as to approach the health temperature range set in accordance with the estimated health degree, as shown by comparing the range in FIG. Temperature control over a wider range becomes possible, and power-saving air conditioning can be realized. FIG. 5 shows a state of temperature control in the present embodiment. In the case of cooling, the healthy temperature range is higher than the comfortable temperature range of the conventional air conditioning control, and in the case of heating, the healthy temperature range is higher. Since the range is lower than the comfortable temperature range in the conventional air-conditioning control, the energy required for air-conditioning is small, and power saving is achieved.

【0027】上記では、発汗が急激に増加し始める空気
温度を上限とし、血流が急激に減少し始める空気温度を
下限として健康温度範囲を設定したが、発汗が急激に増
加し始める空気温度を上限とし、血流が急激に減少し始
める空気温度または血圧が急激に上昇し始める空気温度
のいずれか一方を下限として健康温度範囲を設定するこ
ともできる。また、冷房を行う場合には、心拍または血
流の少なくとも一方が急激に上昇し始める空気温度、ま
たは空調を行う部屋の外から中へ移動した時、発汗量が
少なくとも増加しない空気温度を上限として健康温度範
囲を設定することができる。また、暖房を行う場合に
は、血流が急激に減少または血圧が急激に上昇し始める
空気温度を下限として健康温度範囲を設定することがで
きる。
In the above description, the air temperature at which perspiration begins to rapidly increase is set as the upper limit, and the air temperature at which blood flow starts to rapidly decrease is set as the lower limit, but the health temperature range is set. The health temperature range can be set with the upper limit as the lower limit of either the air temperature at which the blood flow starts to rapidly decrease or the air temperature at which the blood pressure starts to rapidly increase. Also, when performing cooling, the upper limit is the air temperature at which at least one of the heartbeat or blood flow starts to rise sharply, or the air temperature at which the amount of sweating does not increase at least when moving from outside the room to be air-conditioned to inside. Health temperature range can be set. When heating is performed, the health temperature range can be set with the lower limit of the air temperature at which the blood flow rapidly decreases or the blood pressure starts to rapidly increase.

【0028】また、上記では特定の室内の空調制御を行
う場合について説明したが、複数の部屋を有する建物全
館または一部の部屋の空調制御を行うこともできる。例
えば住居であれば、トイレ、浴室、廊下等の滞在時間が
短い部屋、全館空調時には弱い空調を行ってさえいれば
良い部屋(例えば家族が集まるリビング以外の部屋)な
どの常時は人が存在しない部屋については、本実施の形
態の空調制御装置により空調制御を行い、他の部屋につ
いては異なる装置により空調制御を行うこともできる。
In the above, the case where the air-conditioning control of a specific room is performed has been described. However, the air-conditioning control of the whole building or a part of the building having a plurality of rooms may be performed. For example, in the case of a residence, there are no people at all times, such as a room with a short stay time such as a toilet, a bathroom, a corridor, etc., or a room that only needs to be weakly air-conditioned during the air-conditioning of the entire building (for example, a room other than a living room where families gather). For a room, air conditioning control can be performed by the air conditioning control device of the present embodiment, and for other rooms, air conditioning control can be performed by a different device.

【0029】また、常時は人が存在しない室内に設置さ
れた温度センサ、湿度センサ、及び風速センサにより検
出された温度、湿度、及び風速の検出信号の取込みは、
人体生理モデルによる入室者の発汗、血流、心拍、血圧
の推定以前に行っても良い。
Also, the detection of temperature, humidity and wind speed detection signals detected by a temperature sensor, a humidity sensor and a wind speed sensor installed in a room where no one is always present,
It may be performed before estimating sweating, blood flow, heart rate, and blood pressure of the occupant by the human body physiology model.

【0030】また、上記空調制御装置においては、第1
及び第2の温熱環境検出手段は特定のセンサとして説明
したが、それぞれ、風速を検出する風速センサ、気温を
検出する温度センサ、湿度を検出する湿度センサ、及び
日射量を検出する日射センサ等の温熱環境要素を検出す
るセンサを少なくとも1つ含んで構成されていればよ
い。
In the above air conditioning control device, the first
And the second thermal environment detecting means has been described as a specific sensor, but a wind speed sensor for detecting wind speed, a temperature sensor for detecting air temperature, a humidity sensor for detecting humidity, a solar sensor for detecting solar radiation, and the like, respectively. What is necessary is just to be comprised including at least one sensor which detects a thermal environment element.

【0031】[0031]

【発明の効果】本発明の空調制御装置は、常時は人がい
ない室内の空調を、外部から入室した人間が室外との温
熱環境格差により健康を損なわないように制御すること
ができる、という効果を奏する。
The air-conditioning control device according to the present invention can control air-conditioning in a room where there are no people at all times so that a person entering from the outside does not impair health due to a difference in thermal environment between the room and the outside. To play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施の形態の空調制御装置の概略構成を示す
ブロック図である。
FIG. 1 is a block diagram illustrating a schematic configuration of an air conditioning control device according to the present embodiment.

【図2】(A)〜(D)は、人体生理モデルで推定され
た発汗、血流、心拍、血圧の各々と空気温度との関係を
表す線図である。
FIGS. 2A to 2D are diagrams showing a relationship between each of sweating, blood flow, heart rate, and blood pressure estimated by a human body physiology model and an air temperature.

【図3】健康度と空気温度との関係を示す線図である。FIG. 3 is a diagram showing a relationship between a degree of health and an air temperature.

【図4】本実施の形態の空調制御装置の主要構成部分の
処理動作を説明するためのフローチャートである。
FIG. 4 is a flowchart illustrating a processing operation of main components of the air conditioning control device according to the present embodiment.

【図5】本実施の形態の空調制御装置の温度制御の様子
を示す線図である。
FIG. 5 is a diagram showing a state of temperature control of the air-conditioning control device of the present embodiment.

【符号の説明】[Explanation of symbols]

1 第1の温熱環境検出手段 2 第2の温熱環境検出手段 3 人体生理モデル 4 健康度推定手段 5 制御信号発生手段 6 空調機 DESCRIPTION OF SYMBOLS 1 1st thermal environment detection means 2 2nd thermal environment detection means 3 Human body physiology model 4 Health estimation means 5 Control signal generation means 6 Air conditioner

───────────────────────────────────────────────────── フロントページの続き (72)発明者 茨木 克也 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 藏薗 功一 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 3L060 AA05 CC02 CC03 CC07 CC11 DD05 EE21  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Katsuya Ibaraki 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. No. 41, 41, Yokomichi, Yojimichi, Toyoda Central Research Laboratory Co., Ltd. F-term (reference) 3L060 AA05 CC02 CC03 CC07 CC11 DD05 EE21

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】常時人が存在する室内の温熱環境要素を検
出する第1の温熱環境検出手段と、 常時は人が存在しない室内の温熱環境要素を検出する第
2の温熱環境検出手段と、 第1の温熱環境検出手段で検出された常時人が存在する
室内の温熱環境要素に基づいて、人体生理モデルにより
常時は人が存在しない室内に置かれた場合の人間の健康
度に関連する生理量を推定し、推定された生理量に基づ
いて人間の健康度を推定し、推定された健康度に応じて
常時は人が存在しない室内の目標温熱環境を設定する健
康度推定手段と、 第2の温熱環境検出手段で検出された常時は人が存在し
ない室内の温熱環境要素に基づいて、常時は人が存在し
ない室内の温熱環境が設定された目標温熱環境に近づく
ように空調を制御する空調制御手段と、 を含む空調制御装置。
A first thermal environment detecting means for detecting a thermal environment element in a room where a person is always present; a second thermal environment detecting means for detecting a thermal environment element in a room where no person is always present; Based on the thermal environment element in the room where the person is always present, detected by the first thermal environment detecting means, the physiology related to human health when placed in the room where the person is not always present based on the human body physiology model. Health estimating means for estimating an amount, estimating a human health degree based on the estimated physiological quantity, and setting a target thermal environment in a room where no person is always present according to the estimated health degree; The air conditioning is controlled based on the thermal environment element in the room where there is no person at all times detected by the thermal environment detecting means 2 so that the thermal environment inside the room where there is no person at all times approaches the set target thermal environment. Air conditioning control means, Air conditioning control device.
【請求項2】前記生理量は、発汗、血流、血圧、及び心
拍の少なくとも1つである請求項1に記載の空調制御装
置。
2. The air conditioning control device according to claim 1, wherein the physiological quantity is at least one of sweating, blood flow, blood pressure, and heart rate.
【請求項3】前記温熱環境要素は、少なくとも空気温度
を含む請求項1または2に記載の空調制御装置。
3. The air conditioning control device according to claim 1, wherein said thermal environment element includes at least an air temperature.
JP2000222744A 2000-07-24 2000-07-24 Air-conditioning controller Pending JP2002039596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000222744A JP2002039596A (en) 2000-07-24 2000-07-24 Air-conditioning controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000222744A JP2002039596A (en) 2000-07-24 2000-07-24 Air-conditioning controller

Publications (1)

Publication Number Publication Date
JP2002039596A true JP2002039596A (en) 2002-02-06

Family

ID=18716948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000222744A Pending JP2002039596A (en) 2000-07-24 2000-07-24 Air-conditioning controller

Country Status (1)

Country Link
JP (1) JP2002039596A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267741A (en) * 2007-04-24 2008-11-06 Toyota Motor Corp Equipment control system
JP2009248688A (en) * 2008-04-03 2009-10-29 Denso Corp Seat air conditioner for vehicle
WO2017067341A1 (en) * 2015-10-21 2017-04-27 珠海格力电器股份有限公司 Intelligent air conditioning system
JP2019066159A (en) * 2017-09-29 2019-04-25 株式会社ヒノキヤグループ Whole building air conditioning system
JP2020051675A (en) * 2018-09-26 2020-04-02 積水化学工業株式会社 Air-conditioning system
CN111306706A (en) * 2019-10-10 2020-06-19 珠海派诺科技股份有限公司 Air conditioner linkage control method and system
CN113375314A (en) * 2021-05-18 2021-09-10 青岛海尔空调器有限总公司 Method and device for controlling air conditioner and air conditioner
CN113819598A (en) * 2021-08-26 2021-12-21 青岛海尔空调器有限总公司 Air conditioner control method and device and air conditioner
WO2022117121A1 (en) * 2021-06-07 2022-06-09 青岛海尔空调器有限总公司 Air conditioner and control method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267741A (en) * 2007-04-24 2008-11-06 Toyota Motor Corp Equipment control system
JP2009248688A (en) * 2008-04-03 2009-10-29 Denso Corp Seat air conditioner for vehicle
WO2017067341A1 (en) * 2015-10-21 2017-04-27 珠海格力电器股份有限公司 Intelligent air conditioning system
JP2019066159A (en) * 2017-09-29 2019-04-25 株式会社ヒノキヤグループ Whole building air conditioning system
JP2020051675A (en) * 2018-09-26 2020-04-02 積水化学工業株式会社 Air-conditioning system
JP7150545B2 (en) 2018-09-26 2022-10-11 積水化学工業株式会社 air conditioning control system
CN111306706A (en) * 2019-10-10 2020-06-19 珠海派诺科技股份有限公司 Air conditioner linkage control method and system
CN111306706B (en) * 2019-10-10 2021-11-02 珠海派诺科技股份有限公司 Air conditioner linkage control method and system
CN113375314A (en) * 2021-05-18 2021-09-10 青岛海尔空调器有限总公司 Method and device for controlling air conditioner and air conditioner
WO2022117121A1 (en) * 2021-06-07 2022-06-09 青岛海尔空调器有限总公司 Air conditioner and control method therefor
CN113819598A (en) * 2021-08-26 2021-12-21 青岛海尔空调器有限总公司 Air conditioner control method and device and air conditioner

Similar Documents

Publication Publication Date Title
JP3113193B2 (en) Air conditioner
JPH048621A (en) Air-conditioning control device
JP5530256B2 (en) Air conditioning control mode switching method and apparatus
JP7219392B2 (en) air conditioning control system
JP2002039596A (en) Air-conditioning controller
JP6937946B2 (en) Air conditioner control system
JP4196484B2 (en) Control device and control method for air conditioning system
JP2002022238A (en) Comfortable feeling estimation device and air conditioning control device
JPH06307700A (en) Device for detecting amount of human body's activity and control device for air conditioner
JP3564583B2 (en) Control device for air conditioner
JP3343702B2 (en) Control device for air conditioner
JPH07198186A (en) Cooling/heating switching device for air conditioner
JP3087446B2 (en) Comfort degree calculation device in air conditioning
JPH10148371A (en) Healthy air-conditioning control system
JPH0471128B2 (en)
JP3630755B2 (en) Air conditioner control device
JPH06147593A (en) Bed room temperature and humidity control system and bed
JP2897395B2 (en) Control device for air conditioner
JP2830240B2 (en) Air conditioner
JPH0979642A (en) Air conditioning device
JPH06147620A (en) Air conditioner
JPH0351650A (en) Air conditioning control device
JP2737339B2 (en) Control device for air conditioner
JPH04288431A (en) Air conditioner
JPH07332728A (en) Comfortable air conditioning controller