JP3564492B2 - Polyolefin resin composition - Google Patents

Polyolefin resin composition Download PDF

Info

Publication number
JP3564492B2
JP3564492B2 JP26208395A JP26208395A JP3564492B2 JP 3564492 B2 JP3564492 B2 JP 3564492B2 JP 26208395 A JP26208395 A JP 26208395A JP 26208395 A JP26208395 A JP 26208395A JP 3564492 B2 JP3564492 B2 JP 3564492B2
Authority
JP
Japan
Prior art keywords
propylene
resin composition
polyolefin resin
component
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26208395A
Other languages
Japanese (ja)
Other versions
JPH0977952A (en
Inventor
千加志 岡山
隆則 中島
雅美 木村
利守 中井
祐哉 石本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP26208395A priority Critical patent/JP3564492B2/en
Publication of JPH0977952A publication Critical patent/JPH0977952A/en
Application granted granted Critical
Publication of JP3564492B2 publication Critical patent/JP3564492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は剛性、成形収縮率および耐衝撃性のバランスが優れたポリオレフィン樹脂組成物に関する。
【0002】
【従来の技術】
プロピレンホモポリマーから成るポリプロピレン樹脂は比較的に安価で、その優れた特性の為にこれまで多岐の分野に渡り使用されている。しかし、一般にプロピレンホモポリマーから成るポリプロピレン樹脂は高い剛性を有する反面、耐衝撃性が劣るという課題が残っていた。プロピレンホモポリマーから成るポリプロピレン樹脂の耐衝撃性を向上させる為にこれまで多くの提案がなされてきている。例えば、まず最初にプロピレンホモポリマー成分を生成し、その後にエチレン−プロピレンランダム共重合体成分を導入する製造方法を用いたプロピレン系ブロック共重合体から成るポリプロピレン樹脂、または、プロピレンホモポリマーまたはプロピレン系ブロック共重合体にエチレン−プロピレン−ラバー(EPR)を添加した組成物から成るポリプロピレン樹脂等が提案がなされてきている。該ポリプロピレン樹脂はプロピレンホモポリマーから成るポリプロピレン樹脂に比べて耐衝撃性が優れているが、剛性が劣り、更に成形収縮率が大きい等の課題が残る。該課題を改善させる方法としては特開平03−053979号公報に示される様に該ポリプロピレン樹脂にタルクを添加した組成物よりなるポリプロピレン樹脂の提案がなされてきているが、剛性および成形収縮率は向上するものの耐衝撃性が著しく低下するという課題が残り、剛性、成形収縮率及び耐衝撃性の向上を同時に図ることは困難であった。
【0003】
【発明が解決しようとする課題】
本発明者らは前記の課題を解決することを目的に鋭意検討を行った結果、チタン含有固体触媒成分と有機アルミニウム化合物との組み合わせからなる立体規則性触媒を用いて得られるプロピレン系ブロック共重合体において、エチレン−プロピレン共重合体のコポリマー成分のエチレン含有量およびその極限粘度をある一定の範囲に制御し、更にタルクの粒径および添加量をも制御することにより剛性および成形収縮率に優れると共に0℃以上の温度においての耐衝撃性に優れたポリオレフィン樹脂組成物を発明するに至った。本発明はプロピレン系ブロック共重合体にタルクを添加した系において剛性、成形収縮率および0℃以上の温度において耐衝撃性も向上するポリオレフィン樹脂組成物を提供することにある。
【0004】
【課題を解決するための手段】
本発明のポリオレフィン樹脂組成物は、
(1)プロピレンホモポリマー成分ならびに極限粘度([η]RC)が1.0〜2.5dl/gおよびエチレン含量が25〜60重量%のエチレン−プロピレンコポリマー成分から成るプロピレン系ブロック共重合体100重量部、ならびに平均粒子径が5μm以下の超微粒子タルク3〜40重量部から成るポリオレフィン樹脂組成物。
【0005】
(2)前記1項記載のプロピレン系ブロック共重合体がエチレン−プロピレンコポリマー成分が15〜60重量%から成る前記1項記載のポリオレフィン樹脂組成物。
【0006】
(3)前記1項記載のプロピレン系ブロック共重合体のメルトフローレートが0.1〜100g/10分である前記1項のポリオレフィン樹脂組成物。
【0007】
(4)前記1項記載のプロピレンホモポリマー成分がアイソタクチックペンタット分率が0.95以上である前記1項記載のポリオレフィン樹脂組成物。
【0008】
(5)前記1項記載のエチレン−プロピレンコポリマー成分が気相重合で製造された前記1項記載のポリオレフィン樹脂組成物。
【0009】
(6)前記1項記載のプロピレン系ブロック共重合体がチタン含有固体触媒成分(A)と一般式AlR 3−(M+N)(式中RおよびRは炭化水素基またはアルコール基を示し、Xはハロゲンを示し、MおよびNは0<M+N≦3の任意の数を表す。)で表される有機アルミニウム化合物(B)と必要に応じて用いられる一般式R Si(OR)Z(式中R 、Rは炭化水素基、Rは炭化水素基あるいはヘテロ原子を含む炭化水素基を示し、X+Y+Z=4、0≦X≦2、1≦Y≦3、1≦Z≦3である)で表される有機ケイ素化合物(C)とを組み合わせた立体規則性触媒を用いて製造された前記1項記載のポリオレフィン樹脂組成物。
【0010】
(7)前記6項記載のチタン含有個体触媒成分(A)がマグネシウム化合物およびシリカにチタン化合物を担時したものであることを特徴とする前記6項記載のポリオレフィン樹脂組成物。
【0011】
本発明を以下詳細に説明する。
本発明に用いるプロピレン系ブロック共重合体は、プロピレンホモポリマー成分ならびに極限粘度([η]RC)が1.0〜2.5dl/g、より好ましくは得られるポリオレフィン樹脂組成物の剛性、耐衝撃性の点で1.3〜2.5dl/gおよびエチレン含量が25〜60重量%、より好ましくは得られるポリオレフィン樹脂組成物の剛性、耐衝撃性の点で30〜55重量%のエチレン−プロピレンコポリマー成分から成るプロピレン系ブロック共重合体である。更に得られるポリオレフィン樹脂組成物の剛性、耐衝撃性の点でプロピレンホモポリマー成分40〜85重量%及びエチレン−プロピレンコポリマー成分15〜60重量%から成るプロピレン系ブロック共重合体が好ましい。又、得られるポリオレフィン樹脂組成物の耐衝撃性、成形時の成形性の点で該プロピレン系ブロック共重合体のメルトフローレートが0.1〜100g/10分が好ましく、0.5〜70g/10分が更に好ましい。
該極限粘度は、下記式(1)より求めらる。
【0012】
【式1】

Figure 0003564492
【0013】
即ち、本発明に用いるプロピレン系ブロック共重合体の製造を、結晶性のプロピレンホモポリマー成分をまず生成し、続いてエチレン−プロピレンコポリマー成分を生成する製造方法を用いた場合、該プロピレンホモポリマー成分を生成した時点で該プロピレンホモポリマー成分の極限粘度([η]PP)は直接測定できるが、続いて生成される該プロピレン−エチレンコポリマー成分の極限粘度([η]RC)は直接測定することは困難である。そこで、得られる該プロピレン系ブロック共重合体の極限粘度([η]WHOLE)から、該プロピレンホモポリマー成分の重量分率に極限粘度[η]PPをかけた積を引いて、この値をコポリマー成分の分率で割り、該エチレン−プロピレンコポリマー成分の極限粘度[η]RCが求められる。
【0014】
式中、エチレン−プロピレンコポリマー成分の分率(WRC/100)は従来より知られている赤外線分析法などで求めることができる。
【0015】
更に、剛性に優れる成型品が得られる点で、プロピレンホモポリマー成分がアイソペンタット分率が0.95以上である該プロピレン系ブロック共重合体を用いる事が好ましい。アイソタクチックペンタット分率は、分子内立体規則性の指標であり、NMRにより測定することが例示できる。
【0016】
本発明に用いるプロピレン系ブロック共重合体は、いかなる方法によって得えることができる。例えば、チタン担持触媒を用いて重合した本発明で規定した極限粘度およびエチレン含量を有するエチレン−プロピレンランダム共重合体をプロピレンホモポリマーに添加しする方法が例示できる。しかし、該方法はエチレン−プロピレンランダム共重合体の製造コストが高い。
【0017】
また、プロピレンホモポリマー成分及びエチレン−プロピレンコポリマー成分を連続的に重合する方法も例示でき、該方法は製造コストが低く、該プロピレンホモポリマー成分中に該エチレン−プロピレンコポリマー成分が均一に分散し品質(剛性、耐衝撃性、寸法安定性)の安定化が図れている点でより好ましい。
【0018】
以下に該連続的に重合する方法を詳細に説明する。
本発明に用いるプロピレン系ブロック共重合体のプロピレンホモポリマー成分の重合はチタン含有固体触媒等を用いてスラリー重合法、塊状重合法や気相重合法のいずれの方法でもよいが、後段のエチレン−プロピレンコポリマー成分の重合方法は気相重合法が好ましい。気相重合方法はエチレン−プロピレンコポリマー成分が溶液中に溶出する等の問題が発生せず、安定運転の継続が容易であるためである。
【0019】
重合条件は重合形式で異なるが、気相重合法の場合、一定量のパウダーを混合攪拌しながらチタン含有触媒成分、有機アルミニウム成分および有機ケイ素化合物を重合温度20〜120℃、好ましくは40〜100℃の条件下、重合圧力大気圧〜10MPa、好ましくは0.5〜5MPaの条件下で供給してプロピレンホモポリマー成分を重合する。プロピレンホモポリマー成分の分子量の調節は重合時に水素のような分子量調節剤を加えると効果的である。プロピレンホモポリマー成分を重合後、生成したパウダーの一部を抜き出し、極限粘度の測定および触媒単位当たりの重合収量を求めるのに供する。プロピレンホモポリマー成分の重合に引き続いてエチレン−プロピレンコポリマー成分を重合温度20〜120℃、好ましくは40〜100℃の条件下、重合圧力大気圧〜10MPa、好ましくは0.5〜5MPaの条件下で重合することによりプロピレン系ランダム共重合体が生成される。エチレン−プロピレンコポリマー成分中のエチレン含量はコモノマーガス中のエチレンモノマーとプロピレンモノマーのガスモル比をコントロールすることにより、エチレン−プロピレンコポリマー成分中のエチレン含量が25〜60wt%になるように調節される。さらに、コポリマー成分の分子量はコポリマー成分の極限粘度が本発明の要件を満たすように水素のような分子量調節剤をコポリマー重合時に加えて調節される。重合は、回分式、半連続式または連続式のいずれでもよいが、工業的には連続式重合が好ましい。
【0020】
本重合の終了後には、重合系からモノマーを除去させて粒子状ポリマーを得ることができる。得られたポリマーは極限粘度の測定、エチレン含量の測定、メルトフローレートの測定および触媒単位重量当たりの重合収量を求めるのに供される。
【0021】
本発明のプロピレン系ブロック共重合体の製造で用いられるチタン含有固体触媒成分(A)はオレフィン重合で用いられることが公知のチタン化合物ならどの様なものでも使用できる。例えば、マグネシウム化合物、シリカおよびアルミナ等の無機担体やポリスチレン等の有機担体にチタン化合物を担時したもの、また必要に応じてエーテル類、エステル類の電子供与化合物を担時したものなら公知のどの様なものでも使用できる。例えば、特開昭62−104810、特開昭62ー104811、特開昭62−104812等に記載のマグネシウム化合物にTiClを担時した、チタン、マグネシウム、ハロゲンおよび電子供与体を必須成分とするチタン含有担時型触媒成分が用いられる。また、マグネシウム化合物ーアルコール溶液をスプレーし、該固体成分を部分乾燥し、しかる後該乾燥固体触媒成分をハロゲン化チタンおよび電子供与性化合物で処理してなるチタン含有固体触媒成分(特開平3ー119003)が挙げられる。また、マグネシウム化合物をテトラヒドロフラン/アルコール/電子供与性に溶解させ、TiCl4単独または電子供与体の組み合わせで析出させたマグネシウム担体をハロゲン化チタンおよび電子供与性化合物で処理してなるチタン含有固体触媒成分(特開平4ー103604)が挙げられる。 また、特開昭47ー34478、特開昭52ー35283等に記載のα、βまたはγー三塩化チタンも挙げられる。より好ましくはマグネシウム化合物、シリカおよびアルミナ等の無機担体やポリスチレン等の有機担体にチタン化合物を担時したもの、また必要に応じてエーテル類、エステル類の電子供与化合物を担時したものである。
【0022】
本発明のプロピレン系ブロック共重合体の製造に用いられる有機アルミニウム化合物(B)としては、一般式AlR 3−(M+N)(式中RおよびRは炭化水素基またはアルコール基を示し、Xはハロゲンを示し、MおよびNは0<M+N≦3の任意の数を表す。)で表される有機アルミニウム化合物を用いることができる。
【0023】
具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリーnープロピルアルミニウム、トリーnーブチルアルミニウム、トリーiーブチルアルミニウム、ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、メチルアルミニウムセスキクロライド、エチルアルミニウムジクロリド、ヂエチルアルミニウムアイオダイド、エトキシジエチルアルミニウム等を挙げることができる。
【0024】
これら有機アルミニウム化合物は単独あるいは2種類以上を混合して使用することができる。
本発明のプロピレン系ブロック共重合体の製造において必要に応じて用いられる有機ケイ素化合物(C)としては、一般式R Si(OR)Z(式中R 、Rは炭化水素基、Rは炭化水素基あるいはヘテロ原子を含む炭化水素基を示し、X+Y+Z=4、0≦X≦2、1≦Y≦3、1≦Z≦3である)で表される有機ケイ素化合物が使用できる。
【0025】
具体的にはメチルトリメトキシシラン、t−ブチルトリメトキシシラン、t−ブチルトリエトキシシラン、フェニルトリエトキシシラン、メチルエチルジメトキシシラン、メチルフェニルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソブチルジメトキシシラン、ジーt−ブチルジメトキシシラン、ジフェニルジメトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等を挙げることができる。好ましくは、ジイソブチルジメトキシシラン、ジイソプロピルジメトキシシラン、ジーt−ブチルジメトキシシランおよびジフェニルジメトキシシランである。
これらの有機ケイ素化合物は単独あるいは2種類以上を混合して使用することができる。
【0026】
本発明に用いる超微粒子タルクは、得られるポリオレフィン樹脂組成物の耐衝撃性及び剛性の点で平均粒子径が5μm以下あり、好ましくは平均粒子径が3μm以下の超微粒子タルクである。
【0027】
上記の該平均粒子径および該粒子径は島津製作所(株)製SA−CP2−20型を用い、遠心沈降法により測定した。
本発明のポリオレフィン樹脂組成物は、耐衝撃性、剛性、外観の点で本発明に用いるプロピレン系ブロック共重合体100重量部及び本発明に用いる超微粒子タルク3〜40重量部からなり、好ましくは該プロピレン系ブロック共重合体100重量部及び該超微粒子タルク5〜35重量部である。
【0028】
本発明のポリオレフィン樹脂組成物は、射出成形、押出し成形など各種成形法により種々の形状を有する成形品にすることができる。成形に際しては、本発明のポリオレフィン樹脂組成物に、必要に応じて従来のポリオレフィンに用いられている公知の酸化防止剤、中和剤、帯電防止剤、耐候剤、造核剤、顔料等を添加することができる。
【0029】
【実施例】
以下、本発明を実施例および比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
実施例および比較例において用いた測定方法について以下説明する。
【0030】
極限粘度は、本発明の場合には、135℃の温度条件下、溶媒としてテトラリン(テトラクロロナフタレン)を用い、三井東圧社製自動粘度測定装置AVS2型を使用して求めた。(単位 dl/g)
【0031】
アイソタクチックペンタット分率はmacromolecules 8687(1975)に基づいて測定した。C12−NMRを使用して、ポリプロピレン分子鎖中のペンタット単位でのアイソタクチックペンタット分率である。
【0032】
剛性は、実施例、比較例で成形した試験片の曲げ弾性率と標準試験片の曲げ弾性率の差(ΔFM)を剛性の指標とした。曲げ弾性率はJIS K7203に準じて測定した。
【0033】
耐衝撃性は、実施例、比較例で成形した試験片のアイゾット衝撃値と標準試験片のアイゾット衝撃値の差(ΔII)を耐衝撃性の指標とした。又、標準品、実施例共に破断しない場合はNBを記した。アイゾット衝撃値はJIS K6758に準じて、0℃、23℃の条件で測定した。(単位 J/m)
【0034】
メルトフローレートはJIS K6710に準じて、230℃の条件で測定した。(単位 g/10分)(以下MFRと略称することがある。)
【0035】
成形収縮率は成形機の金型の全長から上記条件で調整した引っ張り試験片(JIS K7113引っ張り試験片)の全長の長さを減じた長さと金型の長さの比を100倍した下記式(2)より求めた。
【0036】
【式2】
Figure 0003564492
【0037】
標準試験片の作成は、各実施例、比較例それぞれに用いる後述の表1に示したプロピレン系ブロック共重合体99.8重量%、フェノール系酸化防止剤0.1重量%及びステアリン酸カルシウム0.1重量%を配合し高速攪拌式混合機(註、ヘンシェルミキサー、商品名)で室温下に10分混合し、その後スクリュー口径40mmの押し出し造粒機を用いて造粒し、ペレット状の組成物を得た。ついで、該組成物を射出成形機で溶融樹脂温度230℃、金型温度50℃でJIS型の試験片を成形し、湿度50%、室温23℃の条件下で72時間状態調整し、各評価に用いた。
【0038】
(実施例1〜8、比較例1〜4)
後述の表1に示したプロピレン系ブロック共重合体、タルク、フェノール系酸化防止剤及びステアリン酸カルシウムを表1に示す配合率で配合し高速攪拌式混合機(註、ヘンシェルミキサー、商品名)で室温下に10分混合し、その後スクリュー口径40mmの押し出し造粒機を用いて造粒し、ペレット状の組成物を得た。ついで、該組成物を射出成形機で溶融樹脂温度230℃、金型温度50℃でJIS型の試験片を成形し、湿度50%、室温23℃の条件下で72時間状態調整し、各評価に用いた。
【0039】
実施例1〜8は成形収縮率が小さく、剛性及び耐衝撃性も標準試験片より優れる値を示しているのに対し、比較例1〜4は成形収縮率が大きく、耐衝撃性が優れない。
【0040】
【表1】
Figure 0003564492
【0041】
【発明の効果】
本発明のポリオレフィン樹脂組成物は剛性、成形収縮率および耐衝撃性が優れた成形品が得られるため、工業用部品、家電用部品、自動車用部品用等の材料として極めて有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyolefin resin composition having an excellent balance between rigidity, molding shrinkage and impact resistance.
[0002]
[Prior art]
Polypropylene resins composed of propylene homopolymer are relatively inexpensive and have been used in a wide variety of fields because of their excellent properties. However, while a polypropylene resin composed of a propylene homopolymer generally has high rigidity, there remains a problem that the impact resistance is poor. Many proposals have been made to improve the impact resistance of a polypropylene resin composed of a propylene homopolymer. For example, a propylene homopolymer component is first produced, and then a polypropylene resin comprising a propylene-based block copolymer using a production method of introducing an ethylene-propylene random copolymer component, or a propylene homopolymer or a propylene-based Proposals have been made for a polypropylene resin or the like made of a composition obtained by adding ethylene-propylene-rubber (EPR) to a block copolymer. The polypropylene resin is superior in impact resistance to a polypropylene resin composed of a propylene homopolymer, but has problems such as poor rigidity and a large molding shrinkage. As a method for solving this problem, a polypropylene resin comprising a composition obtained by adding talc to the polypropylene resin has been proposed as disclosed in JP-A-03-053979, but the rigidity and molding shrinkage are improved. However, there remains a problem that the impact resistance is significantly reduced, and it has been difficult to simultaneously improve rigidity, molding shrinkage, and impact resistance.
[0003]
[Problems to be solved by the invention]
The present inventors have conducted intensive studies with the aim of solving the above problems, and as a result, have found that a propylene-based block copolymer obtained using a stereoregular catalyst comprising a combination of a titanium-containing solid catalyst component and an organoaluminum compound is obtained. In the coalescence, the ethylene content of the copolymer component of the ethylene-propylene copolymer and its intrinsic viscosity are controlled within a certain range, and the talc particle size and the amount added are also controlled to thereby provide excellent rigidity and molding shrinkage. In addition, the inventors have invented a polyolefin resin composition having excellent impact resistance at a temperature of 0 ° C. or higher. An object of the present invention is to provide a polyolefin resin composition in which rigidity, molding shrinkage and impact resistance at a temperature of 0 ° C. or more are improved in a system in which talc is added to a propylene-based block copolymer.
[0004]
[Means for Solving the Problems]
The polyolefin resin composition of the present invention,
(1) A propylene homopolymer component and a propylene-based block copolymer 100 comprising an ethylene-propylene copolymer component having an intrinsic viscosity ([η] RC ) of 1.0 to 2.5 dl / g and an ethylene content of 25 to 60% by weight. A polyolefin resin composition comprising parts by weight and 3 to 40 parts by weight of ultrafine talc having an average particle diameter of 5 μm or less.
[0005]
(2) The polyolefin resin composition according to (1), wherein the propylene-based block copolymer according to (1) comprises 15 to 60% by weight of an ethylene-propylene copolymer component.
[0006]
(3) The polyolefin resin composition according to (1), wherein the propylene-based block copolymer according to (1) has a melt flow rate of 0.1 to 100 g / 10 minutes.
[0007]
(4) The polyolefin resin composition according to (1), wherein the propylene homopolymer component according to (1) has an isotactic pentat fraction of 0.95 or more.
[0008]
(5) The polyolefin resin composition according to (1), wherein the ethylene-propylene copolymer component according to (1) is produced by gas phase polymerization.
[0009]
(6) the formula AlR 1 propylene block copolymer of 1 wherein the titanium-containing solid catalyst component (A) M R 2 N X 3- (M + N) ( wherein R 1 and R 2 is a hydrocarbon group Or an alcohol group, X represents a halogen, and M and N each represent an arbitrary number of 0 <M + N ≦ 3.) And an organic aluminum compound (B) represented by the general formula R 3 used if necessary. X R 4 Y Si (oR 5 ) Z ( wherein R 3 X, R 5 is a hydrocarbon group, R 4 represents a hydrocarbon group containing a hydrocarbon group or a hetero atom, X + Y + Z = 4,0 ≦ X ≦ 2 2. The polyolefin resin composition according to claim 1, which is produced using a stereoregular catalyst in combination with an organosilicon compound (C) represented by the formula: 1 ≦ Y ≦ 3, 1 ≦ Z ≦ 3.
[0010]
(7) The polyolefin resin composition according to (6), wherein the titanium-containing solid catalyst component (A) according to (6) is a magnesium compound and silica supporting a titanium compound.
[0011]
The present invention will be described in detail below.
The propylene-based block copolymer used in the present invention has a propylene homopolymer component and an intrinsic viscosity ([η] RC ) of 1.0 to 2.5 dl / g, more preferably the rigidity and impact resistance of the obtained polyolefin resin composition. Ethylene-propylene having 1.3 to 2.5 dl / g in terms of properties and ethylene content of 25 to 60% by weight, more preferably 30 to 55% by weight in terms of rigidity and impact resistance of the obtained polyolefin resin composition. It is a propylene-based block copolymer composed of a copolymer component. Further, a propylene block copolymer composed of 40 to 85% by weight of a propylene homopolymer component and 15 to 60% by weight of an ethylene-propylene copolymer component is preferable in terms of rigidity and impact resistance of the obtained polyolefin resin composition. Further, the melt flow rate of the propylene-based block copolymer is preferably from 0.1 to 100 g / 10 minutes, and from 0.5 to 70 g / m in terms of impact resistance of the obtained polyolefin resin composition and moldability at the time of molding. 10 minutes is more preferred.
The intrinsic viscosity is determined by the following equation (1).
[0012]
(Equation 1)
Figure 0003564492
[0013]
That is, when the production method of the propylene-based block copolymer used in the present invention is such that a crystalline propylene homopolymer component is first produced and then an ethylene-propylene copolymer component is produced, the propylene homopolymer component is produced. Although the intrinsic viscosity ([η] PP ) of the propylene homopolymer component can be directly measured at the time when the propylene homopolymer is produced, the intrinsic viscosity ([η] RC ) of the subsequently produced propylene-ethylene copolymer component must be directly measured. It is difficult. Therefore, the product of the intrinsic viscosity [η] PP and the weight fraction of the propylene homopolymer component is subtracted from the intrinsic viscosity ([η ] WHOLE ) of the obtained propylene-based block copolymer, and this value is calculated as the copolymer. The intrinsic viscosity [η] RC of the ethylene-propylene copolymer component is determined by dividing by the fraction of the component.
[0014]
In the formula, the fraction ( WRC / 100) of the ethylene-propylene copolymer component can be determined by a conventionally known infrared analysis method or the like.
[0015]
Further, from the viewpoint that a molded article having excellent rigidity can be obtained, it is preferable to use the propylene-based block copolymer in which the propylene homopolymer component has an isopentat fraction of 0.95 or more. The isotactic pentat fraction is an index of intramolecular stereoregularity, and can be exemplified by measurement by NMR.
[0016]
The propylene-based block copolymer used in the present invention can be obtained by any method. For example, a method of adding an ethylene-propylene random copolymer having an intrinsic viscosity and an ethylene content defined in the present invention, which is polymerized by using a titanium-supported catalyst, to a propylene homopolymer can be exemplified. However, this method has a high production cost for an ethylene-propylene random copolymer.
[0017]
Also, a method of continuously polymerizing a propylene homopolymer component and an ethylene-propylene copolymer component can be exemplified. This method has a low production cost, and the ethylene-propylene copolymer component is uniformly dispersed in the propylene homopolymer component. (Rigidity, impact resistance, dimensional stability) are more preferable because they can be stabilized.
[0018]
Hereinafter, the method of continuous polymerization will be described in detail.
Polymerization of the propylene homopolymer component of the propylene-based block copolymer used in the present invention may be any of a slurry polymerization method, a bulk polymerization method and a gas phase polymerization method using a titanium-containing solid catalyst or the like. The polymerization method of the propylene copolymer component is preferably a gas phase polymerization method. This is because the gas phase polymerization method does not cause a problem such as elution of the ethylene-propylene copolymer component into the solution, and facilitates continuation of stable operation.
[0019]
The polymerization conditions differ depending on the polymerization mode. In the case of the gas phase polymerization method, a titanium-containing catalyst component, an organoaluminum component and an organosilicon compound are polymerized at a polymerization temperature of 20 to 120 ° C., preferably 40 to 100 while mixing and stirring a fixed amount of powder. The propylene homopolymer component is polymerized by supplying at a temperature of 10 ° C. under a polymerization pressure of atmospheric pressure to 10 MPa, preferably 0.5 to 5 MPa. The molecular weight of the propylene homopolymer component is effectively adjusted by adding a molecular weight modifier such as hydrogen during polymerization. After polymerization of the propylene homopolymer component, a part of the produced powder is extracted and used for measuring the intrinsic viscosity and determining the polymerization yield per catalyst unit. Subsequent to the polymerization of the propylene homopolymer component, the ethylene-propylene copolymer component is polymerized at a polymerization temperature of 20 to 120 ° C, preferably 40 to 100 ° C, under a polymerization pressure of atmospheric pressure to 10 MPa, preferably 0.5 to 5 MPa. Polymerization produces a propylene-based random copolymer. The ethylene content in the ethylene-propylene copolymer component is adjusted by controlling the gas molar ratio of the ethylene monomer and the propylene monomer in the comonomer gas so that the ethylene content in the ethylene-propylene copolymer component becomes 25 to 60 wt%. Further, the molecular weight of the copolymer component is adjusted by adding a molecular weight modifier such as hydrogen during copolymerization so that the intrinsic viscosity of the copolymer component meets the requirements of the present invention. The polymerization may be of a batch type, a semi-continuous type or a continuous type, but industrially, a continuous type polymerization is preferred.
[0020]
After completion of the main polymerization, the monomer can be removed from the polymerization system to obtain a particulate polymer. The resulting polymer is used to determine the intrinsic viscosity, the ethylene content, the melt flow rate, and the polymerization yield per unit weight of the catalyst.
[0021]
As the titanium-containing solid catalyst component (A) used in the production of the propylene-based block copolymer of the present invention, any titanium compound known to be used in olefin polymerization can be used. For example, a magnesium compound, an inorganic carrier such as silica and alumina or an organic carrier such as polystyrene carrying a titanium compound, or, if necessary, ethers and esters, and any known carrier provided with an electron donating compound such as an ester. Anything can be used. For example, titanium, magnesium, halogen, and an electron donor, in which TiCl 4 is supported on a magnesium compound described in JP-A-62-104810, JP-A-62-104811, and JP-A-62-104812, are essential components. A titanium-containing supported catalyst component is used. Also, a magnesium compound-alcohol solution is sprayed, the solid component is partially dried, and then the dried solid catalyst component is treated with a titanium halide and an electron donating compound to obtain a titanium-containing solid catalyst component (JP-A-3-119003). ). Further, a magnesium-containing solid catalyst component obtained by dissolving a magnesium compound in tetrahydrofuran / alcohol / electron-donating property and treating a magnesium carrier precipitated with TiCl4 alone or in combination with an electron donor with a titanium halide and an electron-donating compound ( JP-A-4-103604). Also, α, β or γ-titanium trichloride described in JP-A-47-34478, JP-A-52-35283 and the like can be mentioned. More preferably, a titanium compound is supported on an inorganic carrier such as a magnesium compound, silica and alumina, or an organic carrier such as polystyrene, and, if necessary, an electron-donating compound such as ethers or esters is supported.
[0022]
As the organoaluminum compound used for the production of the propylene block copolymer of the present invention (B), the general formula AlR 1 M R 2 N X 3- (M + N) ( wherein R 1 and R 2 is a hydrocarbon group or X represents an alcohol group, X represents a halogen, and M and N each represent an arbitrary number of 0 <M + N ≦ 3.) Can be used.
[0023]
Specifically, trimethyl aluminum, triethyl aluminum, tree n-propyl aluminum, tree n-butyl aluminum, tree i-butyl aluminum, dimethyl aluminum chloride, diethyl aluminum chloride, methyl aluminum sesquichloride, ethyl aluminum dichloride, and diethyl aluminum ion Dyed, ethoxydiethylaluminum and the like can be mentioned.
[0024]
These organoaluminum compounds can be used alone or in combination of two or more.
The propylene block copolymer organosilicon compound optionally used in the preparation of the present invention (C), the general formula R 3 X R 4 Y Si ( OR 5) Z ( wherein R 3 X, R 5 Represents a hydrocarbon group, R 4 represents a hydrocarbon group or a hydrocarbon group containing a hetero atom, and is represented by X + Y + Z = 4, 0 ≦ X ≦ 2, 1 ≦ Y ≦ 3, 1 ≦ Z ≦ 3) Organosilicon compounds can be used.
[0025]
Specifically, methyltrimethoxysilane, t-butyltrimethoxysilane, t-butyltriethoxysilane, phenyltriethoxysilane, methylethyldimethoxysilane, methylphenyldiethoxysilane, dimethyldimethoxysilane, diethyldiethoxysilane, diisopropyldimethoxysilane Examples thereof include silane, diisobutyldimethoxysilane, di-tert-butyldimethoxysilane, diphenyldimethoxysilane, trimethylmethoxysilane, and trimethylethoxysilane. Preferred are diisobutyldimethoxysilane, diisopropyldimethoxysilane, di-tert-butyldimethoxysilane and diphenyldimethoxysilane.
These organosilicon compounds can be used alone or in combination of two or more.
[0026]
The ultrafine talc used in the present invention is an ultrafine talc having an average particle diameter of 5 μm or less, preferably 3 μm or less, in terms of impact resistance and rigidity of the obtained polyolefin resin composition.
[0027]
The above average particle diameter and the particle diameter were measured by a centrifugal sedimentation method using SA-CP2-20 manufactured by Shimadzu Corporation.
The polyolefin resin composition of the present invention comprises 100 parts by weight of a propylene block copolymer used in the present invention and 3 to 40 parts by weight of ultrafine talc used in the present invention in terms of impact resistance, rigidity, and appearance, and is preferably used. 100 parts by weight of the propylene-based block copolymer and 5 to 35 parts by weight of the ultrafine talc.
[0028]
The polyolefin resin composition of the present invention can be formed into molded articles having various shapes by various molding methods such as injection molding and extrusion molding. During molding, a known antioxidant, a neutralizing agent, an antistatic agent, a weathering agent, a nucleating agent, a pigment, and the like used in conventional polyolefins are added to the polyolefin resin composition of the present invention as needed. can do.
[0029]
【Example】
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
The measurement methods used in the examples and comparative examples will be described below.
[0030]
In the case of the present invention, the intrinsic viscosity was determined under the temperature condition of 135 ° C. using tetralin (tetrachloronaphthalene) as a solvent and using an automatic viscosity meter AVS2 manufactured by Mitsui Toatsu. (Unit dl / g)
[0031]
The isotactic pentat fraction was measured based on macromolecules 8687 (1975). The isotactic pentat fraction in pentat units in the polypropylene molecular chain using C 12 -NMR.
[0032]
For the rigidity, the difference (ΔFM) between the flexural modulus of the test specimen formed in the example and the comparative example and the flexural modulus of the standard test specimen was used as an index of the rigidity. The flexural modulus was measured according to JIS K7203.
[0033]
For the impact resistance, the difference (ΔII) between the Izod impact value of the test piece molded in each of the examples and the comparative examples and the Izod impact value of the standard test piece was used as an index of the impact resistance. In addition, when neither the standard product nor the embodiment was broken, NB was described. The Izod impact value was measured at 0 ° C. and 23 ° C. according to JIS K6758. (Unit J / m)
[0034]
The melt flow rate was measured at 230 ° C. according to JIS K6710. (Unit: g / 10 minutes) (hereinafter sometimes abbreviated as MFR)
[0035]
The molding shrinkage is obtained by subtracting the total length of the tensile test piece (JIS K7113 tensile test piece) adjusted from the total length of the mold of the molding machine under the above conditions from the total length, and multiplying the ratio of the mold length by 100 by the following formula. (2) Determined from:
[0036]
[Equation 2]
Figure 0003564492
[0037]
The standard test piece was prepared by using 99.8% by weight of a propylene-based block copolymer, 0.1% by weight of a phenolic antioxidant, and 0.1% by weight of calcium stearate shown in Table 1 below, which are used in each of Examples and Comparative Examples. 1% by weight and mixed at room temperature for 10 minutes with a high-speed stirring mixer (Note: Henschel mixer, trade name), and then granulated using an extrusion granulator with a screw diameter of 40 mm to obtain a pellet-shaped composition. Got. Then, a JIS-type test piece was molded from the composition using an injection molding machine at a molten resin temperature of 230 ° C. and a mold temperature of 50 ° C., and the state was adjusted for 72 hours under the conditions of 50% humidity and 23 ° C. room temperature. It was used for.
[0038]
(Examples 1 to 8, Comparative Examples 1 to 4)
The propylene block copolymer, talc, phenolic antioxidant, and calcium stearate shown in Table 1 below are blended at the blending ratio shown in Table 1, and mixed with a high-speed stirring mixer (Note, Henschel mixer, trade name) at room temperature. The mixture was mixed for 10 minutes below, and then granulated using an extrusion granulator having a screw diameter of 40 mm to obtain a pellet-shaped composition. Then, a JIS-type test piece was molded from the composition using an injection molding machine at a molten resin temperature of 230 ° C. and a mold temperature of 50 ° C., and the state was adjusted for 72 hours under the conditions of 50% humidity and 23 ° C. room temperature. It was used for.
[0039]
Examples 1 to 8 have a small molding shrinkage, and the stiffness and impact resistance also show values superior to the standard test pieces, whereas Comparative Examples 1 to 4 have a large molding shrinkage and poor impact resistance. .
[0040]
[Table 1]
Figure 0003564492
[0041]
【The invention's effect】
Since the polyolefin resin composition of the present invention can provide a molded article having excellent rigidity, molding shrinkage and impact resistance, it is extremely useful as a material for industrial parts, home electric parts, automobile parts and the like.

Claims (7)

プロピレンホモポリマー成分ならびに極限粘度([η]RC)が1.0〜2.5dl/gおよびエチレン含量が25〜60重量%のエチレン−プロピレンコポリマー成分から成るプロピレン系ブロック共重合体100重量部、ならびに平均粒子径が5μm以下の超微粒子タルク3〜40重量部から成るポリオレフィン樹脂組成物。100 parts by weight of a propylene homopolymer component and 100 parts by weight of a propylene-based block copolymer comprising an ethylene-propylene copolymer component having an intrinsic viscosity ([η] RC ) of 1.0 to 2.5 dl / g and an ethylene content of 25 to 60% by weight; And a polyolefin resin composition comprising 3 to 40 parts by weight of ultrafine talc having an average particle diameter of 5 μm or less. 請求項1記載のプロピレン系ブロック共重合体がエチレン−プロピレンコポリマー成分が15〜60重量%から成る請求項1記載のポリオレフィン樹脂組成物。The polyolefin resin composition according to claim 1, wherein the propylene block copolymer according to claim 1 comprises 15 to 60% by weight of an ethylene-propylene copolymer component. 請求項1記載のプロピレン系ブロック共重合体のメルトフローレートが0.1〜100g/10分である請求項1のポリオレフィン樹脂組成物。The polyolefin resin composition according to claim 1, wherein the propylene-based block copolymer according to claim 1 has a melt flow rate of 0.1 to 100 g / 10 minutes. 請求項1記載のプロピレンホモポリマー成分がアイソタクチックペンタット分率が0.95以上である請求項1記載のポリオレフィン樹脂組成物。The polyolefin resin composition according to claim 1, wherein the propylene homopolymer component according to claim 1 has an isotactic pentat fraction of 0.95 or more. 請求項1記載のエチレン−プロピレンコポリマー成分が気相重合で製造された請求項1記載のポリオレフィン樹脂組成物。The polyolefin resin composition according to claim 1, wherein the ethylene-propylene copolymer component according to claim 1 is produced by gas phase polymerization. 請求項1記載のプロピレン系ブロック共重合体がチタン含有固体触媒成分(A)と一般式AlR 3−(M+N)(式中RおよびRは炭化水素基またはアルコール基を示し、Xはハロゲンを示し、MおよびNは0<M+N≦3の任意の数を表す。)で表される有機アルミニウム化合物(B)と必要に応じて用いられる一般式R Si(OR)Z(式中R 、Rは炭化水素基、Rは炭化水素基あるいはヘテロ原子を含む炭化水素基を示し、X+Y+Z=4、0≦X≦2、1≦Y≦3、1≦Z≦3である)で表される有機ケイ素化合物(C)とを組み合わせた立体規則性触媒を用いて製造された請求項1記載のポリオレフィン樹脂組成物。Propylene block copolymer titanium-containing solid catalyst component of claim 1 wherein (A) and the general formula AlR 1 M R 2 N X 3- (M + N) ( wherein R 1 and R 2 is a hydrocarbon group or an alcohol group X represents a halogen, and M and N each represent an arbitrary number of 0 <M + N ≦ 3.) And an organic aluminum compound (B) represented by the general formula R 3 X R 4 used if necessary. Y Si (OR 5 ) Z (wherein R 3 X and R 5 represent a hydrocarbon group, R 4 represents a hydrocarbon group or a hydrocarbon group containing a hetero atom, and X + Y + Z = 4, 0 ≦ X ≦ 2, 1 ≦ The polyolefin resin composition according to claim 1, which is produced using a stereoregular catalyst in combination with an organosilicon compound (C) represented by the following formula: Y ≤ 3, 1 ≤ Z ≤ 3. 請求項6記載のチタン含有個体触媒成分(A)がマグネシウム化合物およびシリカにチタン化合物を担時したものであることを特徴とする請求項6記載のポリオレフィン樹脂組成物。The polyolefin resin composition according to claim 6, wherein the titanium-containing solid catalyst component (A) according to claim 6 is obtained by supporting a titanium compound on a magnesium compound and silica.
JP26208395A 1995-09-13 1995-09-13 Polyolefin resin composition Expired - Fee Related JP3564492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26208395A JP3564492B2 (en) 1995-09-13 1995-09-13 Polyolefin resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26208395A JP3564492B2 (en) 1995-09-13 1995-09-13 Polyolefin resin composition

Publications (2)

Publication Number Publication Date
JPH0977952A JPH0977952A (en) 1997-03-25
JP3564492B2 true JP3564492B2 (en) 2004-09-08

Family

ID=17370797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26208395A Expired - Fee Related JP3564492B2 (en) 1995-09-13 1995-09-13 Polyolefin resin composition

Country Status (1)

Country Link
JP (1) JP3564492B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934734B2 (en) * 1997-04-18 2007-06-20 三甲株式会社 Injection molded product made of polypropylene resin
JP4532084B2 (en) * 2003-08-21 2010-08-25 サンアロマー株式会社 Method for producing polypropylene resin composition
JP2005125775A (en) * 2003-09-30 2005-05-19 Dainippon Ink & Chem Inc Laminate sheet for molding

Also Published As

Publication number Publication date
JPH0977952A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
AU744410B2 (en) Process for preparing polypropylene
KR101693062B1 (en) Polyolefine masterbatch and composition suitable for injection molding
AU744407B2 (en) Talc containing polypropylene compositions
RU2309169C2 (en) Shock-resistant polyolefin compositions
JP3772648B2 (en) Polypropylene resin composition
JP5236481B2 (en) Impact resistant polyolefin composition
JP4365685B2 (en) Polyolefin masterbatch for the production of impact-resistant polyolefin products
JP5775142B2 (en) Heterogeneous polyolefin composition
BR112015003091B1 (en) FIBER REINFORCED COMPOSITION, ITS AUTOMOTIVE AND FOAM ARTICLES AND ITS PREPARATION PROCESS
RU2315069C2 (en) Shock-resistant polyolefin composition, method for preparation thereof, and an article containing indicated composition
JP3385733B2 (en) Propylene block copolymer composition
RU2308470C2 (en) Shock-resistant polyolefin compositions
JP4989222B2 (en) Polyolefin composition having a high balance between rigidity and impact strength
EP3559113A1 (en) Masterbatch composition
EP2729528A1 (en) Polypropylene composition
KR100338875B1 (en) Propylene block copolymers, processes for their preparation and resin compositions comprising them
WO2012098086A1 (en) Polyolefin composition
CN110997795B (en) High stiffness polypropylene impact copolymers
JP3564492B2 (en) Polyolefin resin composition
KR20180016147A (en) Polypropylene resin composition with low shrinkage and good appearance
KR100472556B1 (en) High Gloss Polypropylene Resin Composition
US6339128B1 (en) Polyolefin resin modifier, polyolefin resin composition and oriented polyolefin film
JP2000053726A (en) Propylene-based resin for forming sheet and resin composition
JP3024082B2 (en) Propylene-based polymer blend and method for producing the same
JP2003301086A (en) Polypropylene composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees