JP3564158B2 - Vehicle power supply - Google Patents

Vehicle power supply Download PDF

Info

Publication number
JP3564158B2
JP3564158B2 JP00657694A JP657694A JP3564158B2 JP 3564158 B2 JP3564158 B2 JP 3564158B2 JP 00657694 A JP00657694 A JP 00657694A JP 657694 A JP657694 A JP 657694A JP 3564158 B2 JP3564158 B2 JP 3564158B2
Authority
JP
Japan
Prior art keywords
transformer
voltage
power supply
core body
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00657694A
Other languages
Japanese (ja)
Other versions
JPH07212901A (en
Inventor
冨士夫 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP00657694A priority Critical patent/JP3564158B2/en
Publication of JPH07212901A publication Critical patent/JPH07212901A/en
Application granted granted Critical
Publication of JP3564158B2 publication Critical patent/JP3564158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高電圧を降圧することなく無接触状態で低電圧用負荷抵抗に給電する車輛用電力供給装置に関する。
【0002】
【従来の技術】
一般に、車輛に搭載されている電装品は、例えばガソリン自動車であれば12Vの電源電圧で作動するように構築されている。一方、電気自動車を始めとして100V以上の高電圧電源を利用する動力システムにおいて、ガソリン自動車用電装品をそのまま利用する場合には、降圧コンバータにより100Vを12Vに変換して供給する必要がある。
【0003】
このような電力を供給する装置として、車輛に高電圧発電機を搭載したものでは、例えば、図7に示すように、高電圧発電機1からの高電圧をコンデンサ2を介してDC−DCコンバータ3により12Vに降圧して、バッテリ4及び低電圧負荷5に給電する。また、直流状態で負荷制御を行う場合には、電圧が一定であるため低電圧負荷5と直列に接続した抵抗などの負荷でバアイス電圧を切換えて制御する。
【0004】
【発明が解決しようとする課題】
しかし、従来の電力供給装置では、低電圧負荷5に給電するには、この低電圧負荷5をコネクタ等を介して直接接続しなければならないので、コネクタ等の接続部品が必要で配線が複雑化する。
【0005】
また、直流状態で負荷制御行う場合に、抵抗などでバイアス電圧を切換えるのは回路が複雑化し、使い勝手が悪い。
【0006】
さらに、制御電力が大きくなると損失が増えるため、制御すべき電装負荷容量に限界が生じ、DC−DCコンバータ3の容量以上のバッテリ4が必要となり、システムの重量が増加し、燃費の悪化を起因する。
【0008】
本発明は、上記事情に鑑みてなされたもので、配線が簡素化され、しかも負荷に対してどこからでも簡単に給電することができる取扱い性の良い車輛用電力供給装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するため請求項1記載の発明による車輛用電力供給装置は、高電圧電源に高周波電流を発生する定電流インバータを接続し、上記定電流インバータの出力線を変圧器の一次側に挿通し、上記変圧器の二次側に低電圧用負荷抵抗の入力線を接続し、更に上記変圧器はコア本体と該コア本体の開口部に接離自在な蓋体とから構成し、上記コア本体と上記蓋体との間に上記定電流インバータの出力線を挿通したことを特徴とする。
請求項2記載の発明による車輛用電力供給装置は、高電圧電源に高周波電流を発生する定電流インバータを接続し、上記定電流インバータの出力線を変圧器の一次側に挿通し、上記変圧器の二次側に低電圧用負荷抵抗の入力線を接続し、更に上記変圧器はコア本体と該コア本体に対してスライド自在な蓋体とから構成し、上記コア本体と上記蓋体との間に上記定電流インバータの出力線を挿通したことを特徴とする。
【0010】
【作用】
請求項1記載の発明は、高電圧電源からの電圧が定電流インバータにより高周波電流に変換され、一定の高周波電流が定電流インバータの出力線から出力される。そして、定電流インバータの出力線が挿通されている変圧器の一次側に対応して、変圧器の二次側に配設された低電圧用負荷抵抗の入力線に誘起電力が発生し、低電圧用負荷抵抗に所定の低電圧の電力が供給される。また、変圧器を構成するコア本体と蓋体との間が磁路空隙となり、蓋体をコア本体から離間させることで、コア本体と蓋体との間に磁路空隙が形成され、磁束が減少して起電力が発生せず低電圧用負荷抵抗に対する通電が遮断される。また、コア本体を蓋体により閉じることで磁束が発生し、低電圧用負荷抵抗に接続する入力線に誘導起電力が発生する。
請求項2記載の発明は、高電圧電源からの電圧が定電流インバータにより高周波電流に変換され、一定の高周波電流が定電流インバータの出力線から出力される。そして、定電流インバータの出力線が挿通されている変圧器の一次側に対応して、変圧器の二次側に配設された低電圧用負荷抵抗の入力線に誘起電力が発生し、低電圧用負荷抵抗に所定の低電圧の電力が供給される。また、蓋体をコア本体に対しスライドさせることで、磁路の重なる面積が可変となり、低電圧用負荷抵抗に対する電力供給量を連続的に可変する。
【0011】
【実施例】
以下、図面に基づいて本発明の実施例を説明する。
【0012】
図1〜図4は本発明の第一実施例を示し、図1は電力供給装置の回路図、図2は変圧器の原理図、図3は変圧器の具体的構成図、図4は定電流インバータの特性を示す説明図である。
【0013】
図1に示すように、電力供給装置11の高電圧電源としての高電圧発電機12がコンデンサ13を介して高周波交流電流を発生する定電流インバータ14に接続され、この定電流インバータ14の出力線14aがフローティング状態に帰還接続されている。この出力線14aが変圧器15の一次側に挿通され、この変圧器15の二次側に電装品等の低電圧(例えば12V)用負荷抵抗16に接続する入力線16aが配設されている。
【0014】
なお、上記定電流インバータ14は電流を一定に保持する特性があり、仮に、図4に示すように、上記出力線14aに複数の負荷R1〜R4を接続した場合には、電流Iが一定であるため負荷の増加に伴い出力電圧Vが、上記高電圧発電機12がAC100Vであれば、0〜100Vの間で比例的に増加する。このことは電磁誘導の場合も同様の特性として示されるため、複数の電装品に対して配線を必要とする場合、個々の負荷抵抗16の付近に上記出力線14aを配設することで、抵抗値変動の影響を受けることなく、非接触状態で簡単に配線することが可能になる。
【0015】
図2に変圧器15の原理を示すこの変圧器15の磁気カップリングコア15aはフェライト等の透磁率の高い材料で形成されており、この磁気カップリングコア15aに上記出力線14aが挿通されている。また、この磁気カップリングコア15aの一側に上記入力線16aが巻装されており、磁路は上記磁気カップリングコア15aの円周方向に形成される。
【0016】
ここで、上記出力線14aに流れる電流をIaとしたとき、上記出力線14aは上記磁気カップリングコア15aに挿通されているだけであるため、巻数は1であり、従って、起磁力はIaとなる。又、上記磁気カップリングコア15aの断面積をS、磁路の平均長さをL、透磁率をμとすれば、磁気抵抗Rは
R=L/μS …(1)
であり、上記磁気カップリングコア15aに発生する磁束φは、
φ=Ia/R …(2)
であるため、式(1)より、
φ=Ia・μ・(S/L) …(3)
となる。
【0017】
一方、上記入力線16aに発生する誘導起電力Eb(例えば12V)は、出力線14aを流れる高周波交流電流の、電流の最大値をIm,周波数をω,入力線16aの巻数をNbとすれば、
Eb=Im・ω・μ・(S/L)・Nb・COS(ωt) …(4)
となり、この誘導起電力Ebが上記電装品などの負荷抵抗16に給電される。
【0018】
従って、この負荷抵抗16の要求電力は、Nb,ω,Im,μ,S/Lで設定できるが、ωは高周波に依存する値であるため、Nb,S,Lが実際の設計パラメータとなる。
【0019】
図3に上記磁気カップリングコア15の具体例を示す。この磁気カップリングコア15は、一側を開口するコア本体15aと、このコア本体15aの開口部に接離自在な蓋体15bとで構成されている。又、このコア本体15aと上記蓋体15bとの間が磁路空隙tになる。
【0020】
次に、上記構成による実施例の作用について説明する。
【0021】
高電圧発電機12で発電された電力は直流高電圧に変換された後、この高電圧発電機12と直列に接続され定電流インバータ14により出力一定に制御された高周波電流に変換されて出力線14aから出力される。
【0022】
この出力線14aには、この出力線14aを一次側とする変圧器15が介装されており、この変圧器15の二次側をなす入力線16aに誘導起電力Eb(例えば12V)が発生し、電装品等の負荷抵抗16に、上記高電圧発電機12からの電力が非接触状態で供給される。
【0023】
図3に示すように、上記変圧器15の磁気カップリングコア15は、コア本体15aと蓋体15bとで分割されており、この蓋体15bを上記コア本体15aから離間させると、このコア本体15aと上記蓋体15bとの間に磁路空隙tが形成され、磁束が減少して起電力が発生せず、上記負荷抵抗16に対する通電が遮断される。一方、上記蓋体15bを図3の矢印で示すように押圧して上記磁路空隙tを閉じると、磁束が発生して、上記入力線16aに誘導起電力が発生する。従って、このコア本体15aと蓋体15bとが、コネクタ、及びスイッチと同様の機能を果す。
【0024】
又、図5、図6は本発明の第二実施例を示し、図5は磁気カップリングコアの概念を示す部分拡大図、図6は変圧器の具体的構成を示す斜視図である。
【0025】
上記第一実施例では、磁路空隙tを接離することで低電圧用負荷抵抗16のスイッチ的動作を行っていたが、さらにこの実施例に示すように、蓋体15bをコア本体15aに対してスライドさせるようにして、磁路の重なる面積S0を可変するようにすれば、低電圧用負荷抵抗16に対する電力供給量を連続的に可変させることができる。
【0026】
この実施例によれば、コネクタ、スイッチ及び負荷調整が変圧器15で全て代用できるため、構造が簡素化されるばかりでなく、無損失で機械的に連続負荷調整ができるため、取扱い性が良い。
【0027】
このように、本発明では、高電圧電源から12Vに降圧することなく、高圧配線はすべて絶縁状態で電力を負荷抵抗16に供給することができる。
【0028】
なお、本発明は上記各実施例に限るものではなく、例えば、定電流インバータ14の出力線14aを磁気カップリングコア15aに複数回巻くようにしても良い。
【0029】
【発明の効果】
以上説明したように請求項1記載の発明によれば、高電圧電源からの電圧が定電流インバータにより高周波電流に変換され、一定の高周波電流が定電流インバータの出力線から出力される。そして、定電流インバータの出力線が挿通されている変圧器の一次側に対応して、変圧器の二次側に配設された低電圧用負荷抵抗の入力線に誘起電力が発生し、低電圧用負荷抵抗に所定の低電圧の電力が供給されるで、低電圧用負荷抵抗に高電圧電源からの電力を非接触状態で供給することができ、コネクタなどが不要になり、配線が簡素化すると共に、安全設計が容易になる。また、電磁誘導により起電力を得るので、低電圧用負荷抵抗に対して、どこからでも簡単に所定の低電圧の電力を供給することができ、取扱い性を向上することができる。
また、変圧器をコア本体とコア本体の開口部に接離自在な蓋体とから構成し、コア本体と蓋体との間に定電流インバータの出力線を挿通するので、変圧器を構成するコア本体と蓋体との間が磁路空隙となり、蓋体をコア本体から離間させることで、コア本体と蓋体との間に磁路空隙が形成され、磁束が減少して起電力が発生せず低電圧用負荷抵抗に対する通電が遮断される。また、コア本体を蓋体により閉じることで磁束が発生し、低電圧用負荷抵抗に接続する入力線に誘導起電力が発生する。従って、該変圧器によりコネクタ及びスイッチの同様の機能を果たすことができる。
請求項2記載の発明によれば、高電圧電源からの電圧が定電流インバータにより高周波電流に変換され、一定の高周波電流が定電流インバータの出力線から出力される。そして、定電流インバータの出力線が挿通されている変圧器の一次側に対応して、変圧器の二次側に配設された低電圧用負荷抵抗の入力線に誘起電力が発生し、低電圧用負荷抵抗に所定の低電圧の電力が供給されるで、低電圧用負荷抵抗に高電圧電源からの電力を非接触状態で供給することができ、コネクタなどが不要になり、配線が簡素化すると共に、安全設計が容易になる。また、電磁誘導により起電力を得るので、低電圧用負荷抵抗に対して、どこからでも簡単に所定の低電圧の電力を供給することができ、取扱い性を向上することができる。
また、変圧器をコア本体とコア本体に対してスライド自在な蓋体とから構成し、コア本体と蓋体との間に定電流インバータの出力線を挿通するので、蓋体をコア本体に対しスライドさせることで、磁路の重なる面積が可変となり、低電圧用負荷抵抗に対する電力供給量を連続的に可変することができる。従って、コネクタ、スイッチ及び負荷調整を変圧器で全て代用することができて、構造が簡素化できると共に、無損失で機械的に連続負荷調整することが可能となり取扱い性を更に向上することができる。
【図面の簡単な説明】
【図1】本発明の第一実施例による電力供給装置の回路図
【図2】本発明の第一実施例による変圧器の原理図
【図3】本発明の第一実施例による変圧器の具体的構成図
【図4】本発明の第一実施例による定電流インバータの特性を示す説明図
【図5】本発明の第二実施例による磁気カップリングコアの概念を示す部分拡大図
【図6】本発明の第二実施例による変圧器の具体的構成を示す斜視図
【図7】従来の電力供給装置の回路図
【符号の説明】
12…高電圧発電機
14…定電流インバータ
14a…出力線
15…変圧器
16…低電圧用負荷抵抗
[0001]
[Industrial applications]
The present invention relates to a power supply device for a vehicle that supplies a low-voltage load resistor in a non-contact state without stepping down a high voltage.
[0002]
[Prior art]
In general, electric components mounted on a vehicle are configured to operate at a power supply voltage of 12 V in a gasoline vehicle, for example. On the other hand, in a power system that uses a high-voltage power supply of 100 V or more, such as an electric vehicle, when electric components for a gasoline vehicle are used as they are, it is necessary to convert 100 V to 12 V using a step-down converter and supply it.
[0003]
As a device for supplying such electric power, a high-voltage generator is mounted on a vehicle. For example, as shown in FIG. 7, a high voltage from a high-voltage generator 1 is supplied to a DC-DC converter via a capacitor 2 as shown in FIG. 3, the voltage is reduced to 12 V, and power is supplied to the battery 4 and the low-voltage load 5. In the case of performing load control in a DC state, since the voltage is constant, control is performed by switching the bais voltage with a load such as a resistor connected in series with the low-voltage load 5.
[0004]
[Problems to be solved by the invention]
However, in the conventional power supply device, in order to supply power to the low-voltage load 5, the low-voltage load 5 must be directly connected via a connector or the like. Therefore, connecting parts such as a connector are required and wiring becomes complicated. I do.
[0005]
In addition, when load control is performed in a DC state, switching a bias voltage with a resistor or the like complicates a circuit and is inconvenient.
[0006]
Furthermore, the loss increases as the control power increases, so that the electric load capacity to be controlled is limited, the battery 4 having a capacity larger than the capacity of the DC-DC converter 3 is required, the weight of the system increases, and the fuel efficiency deteriorates. I do.
[0008]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a vehicle power supply device with simplified handling, which can easily supply power to a load from anywhere, and which is easy to handle. I have.
[0009]
[Means for Solving the Problems]
The vehicle power supply device according to a first aspect of the present invention for achieving the above object, connects the constant current inverter which generates a high-frequency current to the high voltage power supply, an output line of the constant current inverter on the primary side of the transformer insertion and connects the input line of the low-voltage load resistance on the secondary side of the transformer, further the transformer is composed of a separable closable lid body to the opening of the core body and the core body, the An output line of the constant current inverter is inserted between the core body and the lid .
According to a second aspect of the present invention, there is provided a vehicle power supply device, wherein a constant current inverter for generating a high frequency current is connected to a high voltage power supply, and an output line of the constant current inverter is inserted into a primary side of the transformer. An input line of a low-voltage load resistor is connected to the secondary side of the transformer, and the transformer further includes a core body and a lid slidable with respect to the core body. The output line of the constant current inverter is inserted therebetween.
[0010]
[Action]
According to the first aspect of the present invention, the voltage from the high-voltage power supply is converted into a high-frequency current by the constant-current inverter, and a constant high-frequency current is output from the output line of the constant-current inverter. Then, corresponding to the primary side of the transformer through which the output line of the constant current inverter is inserted, induced power is generated in the input line of the low-voltage load resistor disposed on the secondary side of the transformer, and A predetermined low voltage power is supplied to the voltage load resistor. Further, a magnetic path gap is formed between the core body and the lid constituting the transformer, and a magnetic path gap is formed between the core body and the lid by separating the lid from the core body, and the magnetic flux is generated. As a result, the electromotive force is not generated, and the power supply to the low-voltage load resistance is cut off. In addition, a magnetic flux is generated by closing the core body with the lid, and an induced electromotive force is generated in an input line connected to the low-voltage load resistor.
According to the second aspect of the present invention, the voltage from the high voltage power supply is converted into a high frequency current by the constant current inverter, and a constant high frequency current is output from the output line of the constant current inverter. Then, corresponding to the primary side of the transformer through which the output line of the constant current inverter is inserted, induced power is generated in the input line of the low-voltage load resistor disposed on the secondary side of the transformer, and A predetermined low voltage power is supplied to the voltage load resistor. In addition, by sliding the lid with respect to the core body, the overlapping area of the magnetic paths is variable, and the amount of power supply to the low-voltage load resistance is continuously varied.
[0011]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
1 to 4 show a first embodiment of the present invention. FIG. 1 is a circuit diagram of a power supply device, FIG. 2 is a principle diagram of a transformer, FIG. 3 is a specific configuration diagram of the transformer, and FIG. FIG. 4 is an explanatory diagram illustrating characteristics of a current inverter.
[0013]
As shown in FIG. 1, a high-voltage generator 12 as a high-voltage power supply of a power supply device 11 is connected via a capacitor 13 to a constant-current inverter 14 that generates a high-frequency AC current, and an output line of the constant-current inverter 14. 14a is connected in a feedback manner to a floating state. The output line 14a is inserted into the primary side of the transformer 15, and an input line 16a connected to a low-voltage (for example, 12V) load resistor 16 such as an electrical component is provided on the secondary side of the transformer 15. .
[0014]
Note that the constant current inverter 14 has a characteristic of maintaining a constant current, and if a plurality of loads R1 to R4 are connected to the output line 14a as shown in FIG. Therefore, as the load increases, the output voltage V increases proportionally between 0 and 100 V if the high-voltage generator 12 has 100 V AC. This is shown as the same characteristic in the case of electromagnetic induction. Therefore, when wiring is required for a plurality of electrical components, the output line 14a is disposed near each load resistor 16 to reduce the resistance. Wiring can be easily performed in a non-contact state without being affected by a value change.
[0015]
FIG. 2 shows the principle of the transformer 15 . The magnetic coupling core 15a of the transformer 15 is formed of a material having high magnetic permeability such as ferrite, and the output line 14a is inserted through the magnetic coupling core 15a . Further, a the input line 16a is wound on one side of the magnetic cup ring core 15a, the magnetic path is formed in the circumferential direction of the magnetic cup ring core 15a.
[0016]
Here, assuming that the current flowing through the output line 14a is Ia, the output line 14a is only inserted through the magnetic coupling core 15a, so the number of turns is 1, and the magnetomotive force is Ia. . If the sectional area of the magnetic coupling core 15a is S, the average length of the magnetic path is L, and the magnetic permeability is μ, the magnetic resistance R is R = L / μS (1)
And the magnetic flux φ generated in the magnetic coupling core 15a is
φ = Ia / R (2)
Therefore, from equation (1),
φ = Ia · μ · (S / L) (3)
It becomes.
[0017]
On the other hand, the induced electromotive force Eb (for example, 12 V) generated in the input line 16a can be obtained by setting the maximum value of the high-frequency AC current flowing through the output line 14a to Im, the frequency to ω, and the number of turns of the input line 16a to Nb. ,
Eb = Im · ω · μ · (S / L) · Nb · COS (ωt) (4)
And the induced electromotive force Eb is supplied to the load resistor 16 such as the electrical component.
[0018]
Therefore, the required power of the load resistor 16 can be set by Nb, ω, Im, μ, and S / L. However, since ω is a value dependent on the high frequency, Nb, S, and L are actual design parameters. .
[0019]
FIG. 3 shows a specific example of the magnetic coupling core 15. The magnetic coupling core 15 includes a core body 15a having an opening on one side, and a lid 15b which can freely contact and separate from the opening of the core body 15a. The space between the core body 15a and the lid 15b is a magnetic path gap t.
[0020]
Next, the operation of the embodiment having the above configuration will be described.
[0021]
The electric power generated by the high voltage generator 12 is converted into a DC high voltage by the high voltage generator 12 and the constant current inverter 14 connected in series, it is converted to the control output constant high-frequency current Output from the output line 14a.
[0022]
A transformer 15 having the output line 14a as a primary side is interposed in the output line 14a, and an induced electromotive force Eb (for example, 12 V) is generated in an input line 16a forming a secondary side of the transformer 15. Then, the electric power from the high-voltage generator 12 is supplied to the load resistor 16 such as an electrical component in a non-contact state.
[0023]
As shown in FIG. 3, the magnetic coupling core 15 of the transformer 15 is divided by a core body 15a and a lid 15b. When the lid 15b is separated from the core body 15a, the core 15a A magnetic path gap t is formed between the power supply and the lid 15b, the magnetic flux is reduced and no electromotive force is generated, and the power supply to the load resistor 16 is cut off. On the other hand, when the lid 15b is pressed as shown by the arrow in FIG. 3 to close the magnetic path gap t, a magnetic flux is generated, and an induced electromotive force is generated in the input line 16a. Therefore, the core body 15a and the lid 15b perform the same function as the connector and the switch.
[0024]
5 and 6 show a second embodiment of the present invention. FIG. 5 is a partially enlarged view showing the concept of a magnetic coupling core, and FIG. 6 is a perspective view showing a specific configuration of a transformer.
[0025]
In the above-described first embodiment, the switching operation of the low-voltage load resistor 16 is performed by moving the magnetic path gap t apart. However, as shown in this embodiment, the lid 15b is attached to the core body 15a. In contrast, if the area S0 where the magnetic paths overlap is varied by sliding, the power supply amount to the low-voltage load resistor 16 can be continuously varied.
[0026]
According to this embodiment, all of the connectors, switches and load adjustment can be substituted by the transformer 15, so that not only the structure is simplified, but also the load can be mechanically and continuously adjusted without loss, so that the handling is good. .
[0027]
As described above, according to the present invention, the power can be supplied to the load resistor 16 in a state in which all the high-voltage wires are insulated without stepping down from the high-voltage power supply to 12 V.
[0028]
Note that the present invention is not limited to the above embodiments. For example, the output line 14a of the constant current inverter 14 may be wound around the magnetic coupling core 15a a plurality of times.
[0029]
【The invention's effect】
As described above , according to the first aspect of the invention, the voltage from the high-voltage power supply is converted into the high-frequency current by the constant-current inverter, and a constant high-frequency current is output from the output line of the constant-current inverter. Then, corresponding to the primary side of the transformer through which the output line of the constant current inverter is inserted, induced power is generated in the input line of the low-voltage load resistor disposed on the secondary side of the transformer, and The specified low-voltage power is supplied to the voltage load resistor, so that the power from the high-voltage power supply can be supplied to the low-voltage load resistor in a non-contact state, eliminating the need for connectors and simplifying wiring And safety design becomes easier. In addition, since electromotive force is obtained by electromagnetic induction, a predetermined low-voltage power can be easily supplied to the low-voltage load resistor from anywhere, and handling can be improved.
Also, the transformer is composed of a core body and a lid that can be freely attached to and detached from the opening of the core body, and the output line of the constant current inverter is inserted between the core body and the lid, so that the transformer is configured. A magnetic path gap is formed between the core body and the lid, and a magnetic path gap is formed between the core body and the lid by separating the lid from the core body, thereby reducing magnetic flux and generating electromotive force. Without this, the power supply to the low-voltage load resistor is cut off. In addition, a magnetic flux is generated by closing the core body with the lid, and an induced electromotive force is generated in an input line connected to the low-voltage load resistor. Therefore, the transformer can perform the same function of the connector and the switch.
According to the second aspect of the invention, the voltage from the high-voltage power supply is converted into a high-frequency current by the constant-current inverter, and a constant high-frequency current is output from the output line of the constant-current inverter. Then, corresponding to the primary side of the transformer through which the output line of the constant current inverter is inserted, induced power is generated in the input line of the low-voltage load resistor disposed on the secondary side of the transformer, and The specified low-voltage power is supplied to the voltage load resistor, so that the power from the high-voltage power supply can be supplied to the low-voltage load resistor in a non-contact state, eliminating the need for connectors and simplifying wiring And safety design becomes easier. In addition, since electromotive force is obtained by electromagnetic induction, a predetermined low-voltage power can be easily supplied to the low-voltage load resistor from anywhere, and handling can be improved.
In addition, the transformer is composed of a core body and a lid slidable with respect to the core body, and the output line of the constant current inverter is inserted between the core body and the lid. By sliding, the overlapping area of the magnetic paths becomes variable, and the amount of power supply to the low-voltage load resistor can be continuously varied. Therefore, all of the connectors, switches and load adjustment can be substituted by a transformer, so that the structure can be simplified and the load can be continuously adjusted mechanically with no loss, so that the handling can be further improved. .
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a power supply device according to a first embodiment of the present invention. FIG. 2 is a principle diagram of a transformer according to a first embodiment of the present invention. FIG. 3 is a diagram of a transformer according to a first embodiment of the present invention. FIG. 4 is an explanatory view showing characteristics of a constant current inverter according to the first embodiment of the present invention. FIG. 5 is a partially enlarged view showing the concept of a magnetic coupling core according to the second embodiment of the present invention. FIG. 7 is a perspective view showing a specific configuration of a transformer according to a second embodiment of the present invention. FIG. 7 is a circuit diagram of a conventional power supply device.
12 high voltage generator 14 constant current inverter 14a output line 15 transformer 16 low voltage load resistance

Claims (2)

高電圧電源に高周波電流を発生する定電流インバータを接続し、
上記定電流インバータの出力線を変圧器の一次側に挿通し、
上記変圧器の二次側に低電圧用負荷抵抗の入力線を接続し、
更に上記変圧器はコア本体と該コア本体の開口部に接離自在な蓋体とから構成し、上記コア本体と上記蓋体との間に上記定電流インバータの出力線を挿通したことを特徴とする車輛用電力供給装置。
Connect a constant current inverter that generates high frequency current to the high voltage power supply ,
Insert the output line of the constant current inverter into the primary side of the transformer ,
Connect the input line of the low-voltage load resistor to the secondary side of the transformer ,
Further, the transformer comprises a core body and a lid which can be freely attached to and detached from the opening of the core body, and an output line of the constant current inverter is inserted between the core body and the lid. Power supply device for vehicles.
高電圧電源に高周波電流を発生する定電流インバータを接続し、Connect a constant current inverter that generates high frequency current to the high voltage power supply,
上記定電流インバータの出力線を変圧器の一次側に挿通し、Insert the output line of the constant current inverter into the primary side of the transformer,
上記変圧器の二次側に低電圧用負荷抵抗の入力線を接続し、Connect the input line of the low-voltage load resistor to the secondary side of the transformer,
更に上記変圧器はコア本体と該コア本体に対してスライド自在な蓋体とから構成し、上記コア本体と上記蓋体との間に上記定電流インバータの出力線を挿通したことを特徴とする車輛用電力供給装置。Further, the transformer comprises a core body and a lid slidable with respect to the core body, and an output line of the constant current inverter is inserted between the core body and the lid. Vehicle power supply.
JP00657694A 1994-01-25 1994-01-25 Vehicle power supply Expired - Fee Related JP3564158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00657694A JP3564158B2 (en) 1994-01-25 1994-01-25 Vehicle power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00657694A JP3564158B2 (en) 1994-01-25 1994-01-25 Vehicle power supply

Publications (2)

Publication Number Publication Date
JPH07212901A JPH07212901A (en) 1995-08-11
JP3564158B2 true JP3564158B2 (en) 2004-09-08

Family

ID=11642161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00657694A Expired - Fee Related JP3564158B2 (en) 1994-01-25 1994-01-25 Vehicle power supply

Country Status (1)

Country Link
JP (1) JP3564158B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09131098A (en) 1995-10-30 1997-05-16 Hitachi Ltd Controller of electric car
JP5622013B1 (en) * 2013-11-27 2014-11-12 悠一 桐生 Collective tidal current power generation facility

Also Published As

Publication number Publication date
JPH07212901A (en) 1995-08-11

Similar Documents

Publication Publication Date Title
US5889384A (en) Power transfer and voltage level conversion for a battery-powered electronic device
TWI467608B (en) Ferroresonant transformer for use in uninterruptible power supplies
WO2010119324A2 (en) Onboard multiphase converter
JP7041600B2 (en) Power system
US5563778A (en) Uninterruptible power supply system
TW200803123A (en) Power converter and magnetic structure thereof
Boys et al. Pick-up transformer for ICPT applications
JP2800383B2 (en) High frequency inverter
Praneeth et al. An universal on-board battery charger with wide output voltage range for electric transportation
EP1704636B1 (en) Variable ac voltage regulation control method and apparatus
JPS59194664A (en) Electronic power source circuit
JP3564158B2 (en) Vehicle power supply
KR102227190B1 (en) On board Charger for electric vehicle
Murayama et al. Method of designing an impedance matching network for wireless power transfer systems
JP5540872B2 (en) Power supply
JP2000294433A (en) Converter transformer
KR20220142796A (en) Charging device
AU2001289587A1 (en) A resonant converter
WO2021199405A1 (en) In-vehicle charger
JPH06338428A (en) Transformer provided with one pair of magnetic cores and string of dispersed power supply and system power supply using it
Sooksatra et al. State-Plane Diagram Analysis of Series Resonant Converter Used for Wireless EV Battery Charging
JP7178586B2 (en) Electrical equipment and transformer equipment
JPH0646571A (en) Initial charge circuit of voltage type inverter
JPH03239135A (en) Feeder system
JPH01144333A (en) Multi-output winding transformer load uninterruptible power source equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees