JPH06338428A - Transformer provided with one pair of magnetic cores and string of dispersed power supply and system power supply using it - Google Patents

Transformer provided with one pair of magnetic cores and string of dispersed power supply and system power supply using it

Info

Publication number
JPH06338428A
JPH06338428A JP5149818A JP14981893A JPH06338428A JP H06338428 A JPH06338428 A JP H06338428A JP 5149818 A JP5149818 A JP 5149818A JP 14981893 A JP14981893 A JP 14981893A JP H06338428 A JPH06338428 A JP H06338428A
Authority
JP
Japan
Prior art keywords
power supply
voltage
transformer
primary
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5149818A
Other languages
Japanese (ja)
Inventor
Masahito Chinno
正仁 陳野
Kosuke Harada
耕介 原田
Izumo Miyazaki
出雲 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimu Electronics Industries Co Inc
Original Assignee
Nishimu Electronics Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimu Electronics Industries Co Inc filed Critical Nishimu Electronics Industries Co Inc
Priority to JP5149818A priority Critical patent/JPH06338428A/en
Publication of JPH06338428A publication Critical patent/JPH06338428A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the interterminal voltage of one out of a primary-side winding and a secondary-side winding from being generated due to a reverse induction from the other, out of the windings, to which a voltage has been applied when the voltage of either one out of the windings is vanished by a method wherein one out of one pair of magnetic cores performs a normal voltage transformation operation when a normal voltage is applied to both of the primary-side and secondary-side windings. CONSTITUTION:Magnetic cores at least on one side are saturable magnetic cores 11, 12, primary windings and secondary windings on one side for each unit transformer 10 are connected in series, and those on the other side are connected in reverse series. When a prescribed voltage is applied to both of the primary windings and the secondary windings, one of the saturable magnetic cores 11, 12 is saturated, and only the residual magnetic core performs a voltage transformation action. When the voltage is applied to only one out of the primary windings and the secondary windings, the saturable magnetic cores 11, 12 become unsaturated, the number of turns of the individual windings and the BH characteristic of the magnetic cores are selected in such a way that values of voltages induced in the individual windings which have been connected in reverse series become equal and of reverse polarity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分散型電源と系統電源と
の連係装置および、これに用いるのに適した変圧器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for linking a distributed power supply and a system power supply, and a transformer suitable for use in the device.

【0002】[0002]

【従来の技術】自家発電装置特に太陽電池、燃料電池な
どの分散型電源を、商用周波数の配電線などの系統電源
に連係して運転する技術が開発されている。
2. Description of the Related Art There has been developed a technique for operating a distributed power source such as a private power generator, particularly a solar cell or a fuel cell, in cooperation with a system power source such as a distribution line having a commercial frequency.

【0003】図11はその具体例を示すブロック図であ
る。分散型電源としての太陽電池1の直流出力はDC/
ACインバ−タ2によって商用周波数の交流に変換さ
れ、結合変圧器3を介して商用電源4に連係される。負
荷42が接続された商用電源4には停電(または/およ
び短絡)検出装置6が設けられ、その検出出力によって
太陽電池側および商用電源側のブレ−カ7、8が開かれ
る。
FIG. 11 is a block diagram showing a specific example thereof. The DC output of the solar cell 1 as a distributed power source is DC /
The AC inverter 2 converts the AC into a commercial frequency AC, which is linked to the commercial power source 4 via the coupling transformer 3. The commercial power supply 4 to which the load 42 is connected is provided with a power failure (or / and short-circuit) detection device 6, and the detected outputs open the breakers 7 and 8 on the solar cell side and the commercial power supply side.

【0004】図12は系統電源に連係された太陽電池の
他の従来例を示すブロック図である。この例では、DC
/ACインバ−タ2Aによって太陽電池1の直流出力が
高周波(例えば、数10KHz)に変換された後、高周
波変圧器3Aおよび双方向性AC/ACコンバ−タ9を
介して商用周波数の交流に変換され、商用電源4に連係
される。その他の構成は、図11の場合と同じである。
FIG. 12 is a block diagram showing another conventional example of a solar cell linked to a system power supply. In this example, DC
After the DC output of the solar cell 1 is converted to a high frequency (for example, several tens of KHz) by the / AC inverter 2A, it is converted into a commercial frequency AC through the high frequency transformer 3A and the bidirectional AC / AC converter 9. It is converted and linked to the commercial power supply 4. Other configurations are the same as in the case of FIG.

【0005】図11、12に示したような従来例におい
て、停電(または短絡)検出装置6としては、周波数継
電器、電圧継電器、電流継電器などが用いられる。系統
電源に短絡事故を生じたり、その故障修理や保守のため
に配電線への給電を止めたりするときには、検出装置の
検出出力によって太陽電池側および商用電源側のブレ−
カ7、8が開かれ、分散型電源1が系統から切離され
る。これにより、保守修理時に系統電源4が遮断されて
いるにも拘らず、分散型電源1からの誘導によって配電
線などに電圧を発生し、作業員が感電するなどの恐れが
なくなる。
In the conventional example as shown in FIGS. 11 and 12, as the power failure (or short circuit) detection device 6, a frequency relay, a voltage relay, a current relay, etc. are used. When a short-circuit accident occurs in the system power supply or when the power supply to the distribution line is stopped for the purpose of repairing or repairing the failure, the detection output of the detection device causes a blur on the solar cell side and commercial power supply side.
The powers 7 and 8 are opened, and the distributed power source 1 is disconnected from the system. As a result, there is no fear of generating electric voltage to the distribution line or the like due to the induction from the distributed power source 1 even if the system power source 4 is cut off at the time of maintenance and electric shock to the worker.

【0006】しかし、ブレ−カや継電器の動作には時間
遅れが伴い、また信頼性も低いと言う問題がある。また
系統電源4に複数の分散型電源1が連係された場合に
は、前記時間遅れのばらつきによって各分散型電源1の
切離しタイミングがずれるという問題もある。その対応
策として、図13に示すような直交磁心を用いた連係用
変圧器が提案されている(1992年2月電気学会マグ
ネティックス研究会MAG−92−57論文「直交磁心
形DC−AC変換器を適用した太陽光発電システムにつ
いて」参照)。
However, there are problems that the breaker and the relay are operated with a time delay and the reliability is low. Further, when a plurality of distributed power sources 1 are linked to the system power source 4, there is also a problem that the disconnection timing of each distributed power source 1 is shifted due to the variation in the time delay. As a countermeasure, a linking transformer using an orthogonal magnetic core as shown in FIG. 13 has been proposed (February 1992, Institute of Electrical Engineers of Japan, Magnetics Research Group, MAG-92-57, “Orthogonal Magnetic Core Type DC-AC Conversion”). About the photovoltaic power generation system that applies the device ").

【0007】同図において、直交磁心を用いた連係用変
圧器3Bでは、1対のu字型磁心31、32を、それぞ
れの磁気回路が空間的に90°回転し、かつ直交するよ
うに組合せて変圧器磁心が構成され、それぞれのu字型
磁心に一次(分散型電源30)側および二次(系統電源
40)側の巻線が巻回され、各巻線に流れる電流によっ
て磁束Φ1 、Φ2 が誘起される。明らかなように、磁心
が飽和しない状態では、これらの磁束は反対側の巻線と
鎖交しないので通常の変圧器機能を奏しない。
In the figure, in a transformer for connection 3B using orthogonal magnetic cores, a pair of u-shaped magnetic cores 31 and 32 are combined so that their magnetic circuits rotate 90 ° spatially and are orthogonal to each other. Transformer cores are configured, and primary (distributed power supply 30) side and secondary (system power supply 40) side windings are wound around each u-shaped magnetic core, and the magnetic fluxes Φ1, Φ2 are generated by the currents flowing through the windings. Is induced. Obviously, in the state where the magnetic core is not saturated, these magnetic fluxes do not interlink with the windings on the opposite side, and thus do not function as a normal transformer.

【0008】しかし、図から容易に理解できるように、
一次および二次側の磁気回路が一部で共通磁路となって
おり、かつこの共通磁路が飽和特性を有するように構成
され、この部分に磁束Φ1 、Φ2 の和の磁束が通るの
で、一次側の磁束Φ1 が増加すると共通磁路が飽和し、
二次巻線の実効インダクタンスが減少する。したがっ
て、一次側巻線に交流電流が供給されると二次側巻線の
インダクタンスが周期的に変化して二次側電流が変調を
受ける。この現象を利用して電力の変換、伝送を行なう
ものである。このような直交磁心変圧器では、系統電圧
が遮断または短絡された時には、磁心の共通磁路部分が
飽和しなくなり、また直交磁心は本来通常の変圧機能を
持たないため、分散型電源30からの誘導によって系統
側40に電圧が生ずることはなくなる。したがって、負
荷の両端に誘起電圧が印加されることがなくなり、停電
(または短絡)検出装置や継電器、ブレ−カを用いなく
ても作業時の感電などが防止される。
However, as can be easily understood from the figure,
The magnetic circuits on the primary and secondary sides are partly a common magnetic path, and this common magnetic path is configured to have saturation characteristics.Since the magnetic flux of the sum of the magnetic fluxes Φ1 and Φ2 passes through this part, When the magnetic flux Φ1 on the primary side increases, the common magnetic path becomes saturated,
The effective inductance of the secondary winding is reduced. Therefore, when an alternating current is supplied to the primary winding, the inductance of the secondary winding changes periodically and the secondary current is modulated. This phenomenon is used to convert and transmit electric power. In such an orthogonal magnetic core transformer, when the system voltage is cut off or short-circuited, the common magnetic path portion of the magnetic core is not saturated, and the orthogonal magnetic core does not originally have a normal transformer function. The induction does not generate a voltage on the system side 40. Therefore, the induced voltage is not applied to both ends of the load, and electric shock during work can be prevented without using a power failure (or short circuit) detection device, relay, or breaker.

【0009】[0009]

【発明が解決しようとする課題】図13からも容易に推
測されるように、直交磁心を用いた連係用変圧器はつぎ
のような問題がある。
As can be easily inferred from FIG. 13, the linking transformer using the orthogonal magnetic core has the following problems.

【0010】(1)磁路断面積が一対の磁心の接合面の
面積で制限されるので、磁心の利用効率が悪く、小形化
が難しい。
(1) Since the cross-sectional area of the magnetic path is limited by the area of the joint surface of the pair of magnetic cores, the utilization efficiency of the magnetic cores is poor and it is difficult to reduce the size.

【0011】(2)接合部から漏れ磁束が発生して渦電
流損失を生じやすく、また周辺機器での損失増加、周囲
環境への電磁誘導障害を発生しやすいのみならず、磁歪
現象によって接合部からノイズを発生しやすい。
(2) Leakage magnetic flux is easily generated from the joint to cause an eddy current loss, and the loss is increased in peripheral devices and electromagnetic induction damage to the surrounding environment is easily generated. It is easy to generate noise.

【0012】(3)高周波化が難しい。(3) It is difficult to increase the frequency.

【0013】(4)磁心形状が特異であるため理論解析
や設計が難しい。
(4) Since the shape of the magnetic core is peculiar, theoretical analysis and design are difficult.

【0014】本発明は上記の問題を解消するためになさ
れたもので、一般に市販されている部品のみを用いて分
散型電源と系統電源とを絶縁できると共に、特別な対策
を施さなくても、系統電圧消失時に分散型電源からの逆
誘導によって負荷に電圧が印加されることを原理的に防
止できる連係用変圧器およびこれを用いた分散型電源と
商用電源との系統連係装置を提供することにある。
The present invention has been made to solve the above-mentioned problems, and it is possible to insulate a distributed power source and a system power source from each other only by using commercially available components, and even if no special measures are taken, (EN) Provided are a linking transformer that can theoretically prevent a voltage from being applied to a load by reverse induction from a distributed power source when the system voltage disappears, and a system linking device using the distributed power source and a commercial power source. It is in.

【0015】[0015]

【課題を解決するための手段】本発明の変圧器は、それ
ぞれが一次および二次巻線と、これら巻線が巻回された
磁心とよりなる1対の単位変圧器を組合わせたものであ
り、少なくとも一方の磁心が可飽和磁心であり、かつ各
単位変圧器の一次および二次巻線同士は、その一方が直
列接続され、他方が逆直列接続される。そして、一次お
よび二次巻線の両者に所定の電圧が印加されるときは1
つの可飽和磁心が飽和して残りの磁心のみで変圧作用を
行ない、一次および二次巻線のいずれか一方のみに電圧
が印加されるときは前記可飽和磁心が不飽和になって、
逆直列接続された各巻線に誘起される電圧の値が等し
く、逆極性となるように各巻線の巻回数、磁心のBH特
性が選定される。
The transformer of the present invention is a combination of a pair of unit transformers each comprising a primary and a secondary winding and a magnetic core around which these windings are wound. Yes, at least one of the magnetic cores is a saturable magnetic core, and one of the primary and secondary windings of each unit transformer is connected in series and the other is connected in anti-series. When a predetermined voltage is applied to both the primary and secondary windings, 1
When one saturable magnetic core is saturated and the remaining magnetic core performs a transforming action, when a voltage is applied to only one of the primary and secondary windings, the saturable magnetic core becomes unsaturated,
The number of windings of each winding and the BH characteristic of the magnetic core are selected so that the voltages induced in the windings connected in anti-series are equal and have opposite polarities.

【0016】また本発明の分散型電源と系統電源との連
係装置は、前記変圧器と、前記一次および二次巻線の一
方を、連係されようとする系統電源周波数と同一の周波
数を有する分散電源の交流出力に接続する手段と、前記
一次および二次巻線の他方を系統電源に接続する手段
と、系統電源電圧および分散電源電圧の位相差を検出す
る手段と、検出された位相差が予め設定された値に等し
くなるように分散電源電圧の位相を調整する手段とを具
備している。
Further, in the linking device of the distributed power source and the system power source of the present invention, the transformer and one of the primary and secondary windings have a frequency equal to the frequency of the system power source to be linked. Means for connecting to the AC output of the power supply, means for connecting the other of the primary and secondary windings to the system power supply, means for detecting the phase difference between the system power supply voltage and the distributed power supply voltage, and the detected phase difference And means for adjusting the phase of the dispersed power supply voltage so as to be equal to a preset value.

【0017】さらに他の分散型電源と系統電源との連係
装置は、前記変圧器と、連係されようとする分散型電源
の出力を供給されて高周波交流に変換し、前記変圧器の
一次巻線に供給する手段と、前記変圧器の二次巻線をそ
の入力に接続され、前記二次巻線に誘起された高周波交
流を系統電源周波数の交流に変換して系統電源に接続す
る手段と、系統電源電圧および分散型電源電圧の位相差
ならびに前記変圧器の一次および二次巻線の電圧の位相
差の一方を検出する手段と、検出された位相差が予め設
定された値に等しくなるように前記変圧器の一次側電圧
の位相を調整する手段とを具備している。
Still another distributed power supply and system power supply linking device is supplied with the output of the distributed power supply to be linked with the transformer, converts the output to high frequency AC, and transforms the primary winding of the transformer. And a means for connecting the secondary winding of the transformer to its input, for converting the high frequency alternating current induced in the secondary winding into alternating current of the system power supply frequency and connecting it to the system power supply. A means for detecting one of the phase difference between the system power supply voltage and the distributed power supply voltage and the phase difference between the primary and secondary windings of the transformer, and the detected phase difference being equal to a preset value And means for adjusting the phase of the primary side voltage of the transformer.

【0018】[0018]

【作用】本発明の変圧器の一次および二次巻線の両者に
所定の電圧が印加されるときは、交流半波のある位相範
囲において1つの可飽和磁心が飽和するので、飽和しな
い他の磁心と巻線で通常の変圧作用が行なわれる。一
方、一次および二次巻線のいずれか一方のみに電圧が印
加されるときは前記可飽和磁心が不飽和になるので、1
対の磁心に巻回された他方の巻線に誘起される電圧は、
その値が等しく、逆極性となり、他方巻線の端子間電圧
は零になる。
When a predetermined voltage is applied to both the primary and secondary windings of the transformer of the present invention, one saturable magnetic core saturates in a certain phase range of the AC half-wave, so that other saturable cores are not saturated. The core and the windings perform the usual transformation. On the other hand, when a voltage is applied to only one of the primary and secondary windings, the saturable core becomes unsaturated, so
The voltage induced in the other winding wound around the pair of magnetic cores is
The values are equal and have opposite polarities, and the voltage between the terminals of the other winding is zero.

【0019】このような変圧器を介して分散型電源を配
電線などの系統電源に連携すると、系統電源が開放また
は短絡されて前記変圧器の一方の巻線に電圧が印加され
なくなると、1対の磁心が共に不飽和となってそれぞれ
が変圧作用を呈するので、他方巻線への印加電圧によっ
て一方の巻線に誘起される電圧は、1対の磁心の巻線対
で、その値が等しく、逆極性となる。このため、一方の
巻線の端子間電圧は零になり、感電などの事故が防止さ
れる。また、一次および二次巻線の両者に所定の電圧が
印加されるときは、交流半波のある位相範囲において1
つの可飽和磁心が飽和するので、飽和しない他の磁心と
巻線で通常の変圧作用が行なわれる。
When a distributed power source is linked to a system power source such as a distribution line through such a transformer, if the system power source is opened or short-circuited and voltage is not applied to one winding of the transformer, Since the pair of magnetic cores are both unsaturated and exhibit a transformer action, the voltage induced in one winding by the voltage applied to the other winding is one pair of magnetic cores, and its value is Equal and opposite polarities. Therefore, the voltage between the terminals of one of the windings becomes zero, and accidents such as electric shock are prevented. Further, when a predetermined voltage is applied to both the primary and secondary windings, it is 1 in a certain phase range of the AC half-wave.
As one saturable core saturates, the other transformers and windings that do not saturate perform the normal transformation action.

【0020】[0020]

【実施例】図1は本発明の実施例のブロック図である。
連係変圧器10はそれぞれ可飽和磁心11、12を備え
た2個の独立の可飽和単位変圧器21、22よりなる。
図に明示したように、各可飽和単位変圧器の一次巻線1
3、14は逆直列接続されて分散型電源30に接続さ
れ、一方二次巻線15、16は直列接続され、配電線3
8を経て系統(商用)電源40に接続される。配電線3
8には負荷42が接続される。分散型電源30は、系統
電源40と同じ周波数で位相制御された交流であり、例
えば太陽電池の出力をインバ−タで交流に変換したもの
である。前記各巻線の巻数は、分散型電源30および系
統電源40の両方の交流電圧が同時に印加されたときは
前記交流の正または負の半周期の途中で、少なくとも一
方の可飽和磁心11、12が飽和するが、いずれか一方
の電圧しか印加されないときは前記半周期の途中で可飽
和磁心11、12が飽和することのないように設定され
る。このような可飽和磁心の材料としては、例えば「セ
ンパ−シル」などの商品名で市販されているような方向
性珪素鋼板が利用できる。
1 is a block diagram of an embodiment of the present invention.
The link transformer 10 comprises two independent saturable unit transformers 21 and 22 with saturable magnetic cores 11 and 12, respectively.
As shown in the figure, the primary winding 1 of each saturable unit transformer
3, 14 are connected in anti-series and connected to the distributed power supply 30, while the secondary windings 15, 16 are connected in series and the distribution line 3
8 to be connected to the system (commercial) power supply 40. Distribution line 3
A load 42 is connected to 8. The distributed power source 30 is an alternating current whose phase is controlled at the same frequency as the system power source 40, and is, for example, an output of a solar cell converted into an alternating current by an inverter. The number of turns of each of the windings is such that at least one of the saturable magnetic cores 11 and 12 is in the middle of the positive or negative half cycle of the alternating current when the alternating voltage of both the distributed power source 30 and the system power source 40 is applied at the same time. It saturates, but when only one of the voltages is applied, the saturable magnetic cores 11 and 12 are set so as not to saturate during the half cycle. As a material of such a saturable magnetic core, for example, a grain-oriented silicon steel sheet commercially available under the trade name of "Semper-Sil" can be used.

【0021】動作時に、分散型電源30および系統電源
40の両方の交流電圧が正常に同時印加されており、か
つ2つの可飽和磁心11、12はいずれも飽和していな
い状態では、変圧器に流れる電流は励磁電流だけであ
り、その値は非常に小さい。そこで、各磁心における一
次側巻線の巻回数N12、N22は互いに等しく、またこれ
らと二次側巻線の巻回数N11、N21との比をn、分散型
電源30および系統電源40の電圧をV1 、V2 とし、
ファラデ−の法則を適用して各磁心11、12の二次側
に誘起する電圧V21、V22を求めると、次のようにな
る。
In operation, when the AC voltages of both the distributed power supply 30 and the system power supply 40 are normally applied simultaneously and the two saturable magnetic cores 11 and 12 are not saturated, the transformer is operated. The flowing current is only the exciting current, and its value is very small. Therefore, the number of turns N12, N22 of the primary winding in each magnetic core is equal to each other, the ratio of these to the number of turns N11, N21 of the secondary winding is n, and the voltages of the distributed power supply 30 and the system power supply 40 are V1 and V2,
When Faraday's law is applied to find the voltages V21 and V22 induced on the secondary side of the magnetic cores 11 and 12, they are as follows.

【0022】V21=(V2 +nV1 )/2 V22=(V2 −nV1 )/2 すなわち、上記2つの磁心11、12には、分散電源3
0の出力電圧V1 を系統側に換算した電圧nV1 と、系
統電圧V2 との和または差の各2分の1が加わることに
なる。
V21 = (V2 + nV1) / 2 V22 = (V2-nV1) / 2 That is, the distributed power source 3 is provided in the above two magnetic cores 11 and 12.
One half of the sum or difference between the voltage nV1 obtained by converting the output voltage V1 of 0 to the system side and the system voltage V2 is added.

【0023】各磁心11、12の磁束量は、そこに印加
される電圧の積分値に依存するから、印加交流の正また
は負の半周期の途中でどちらかの磁心が飽和する。飽和
した側の磁心に巻回された巻線のリアクタンスは実質上
零となり、この巻線は短絡と見なすことができる。した
がって、いま磁心12が飽和したと仮定すると、図1の
装置は等価的に図2の回路構成となり、不飽和側の磁心
11の巻線13、15に全電圧が加わるので、その変圧
作用によって電力が伝送される。磁心11と12は、交
流電圧の正および負の半周期ごとに交互に、その途中か
ら飽和するが、前述の説明から容易に理解されるよう
に、磁心11が飽和したときは磁心12の変圧作用によ
って電力伝送が行なわれる。
Since the amount of magnetic flux of each magnetic core 11 and 12 depends on the integrated value of the voltage applied thereto, one of the magnetic cores is saturated during the positive or negative half cycle of the applied AC. The reactance of the winding wound around the magnetic core on the saturated side becomes substantially zero, and this winding can be regarded as a short circuit. Therefore, assuming that the magnetic core 12 is saturated now, the device of FIG. 1 has an equivalent circuit configuration of FIG. 2, and the entire voltage is applied to the windings 13 and 15 of the magnetic core 11 on the unsaturated side. Electric power is transmitted. The magnetic cores 11 and 12 are alternately saturated for each positive and negative half cycle of the AC voltage, and are saturated from the middle thereof. As will be easily understood from the above description, when the magnetic core 11 is saturated, the magnetic core 12 is transformed. Electric power is transmitted by the action.

【0024】系統電源の正常時には、連係変圧器10の
一次および二次側には分散電源電圧V1 と系統電源電圧
V2 とが同時に、ある位相差θを保って印加される。こ
のとき、両電源間のインピ−ダンスをXとすると、周知
のようにP=(V1 ・V2 sin θ)/Xで表される電力
の流れを生ずる。したがって、前記位相差θを調整する
ことによって電力伝送の方向と量を所望のように制御す
ることができる。なお、可飽和磁心に飽和インダクタン
スの小さい角形性の優れた磁心を用いる場合には、図1
の分散電源(インバータ)30から変圧器を経て、系統
電源40を通り分散電源30に戻る大きな循環電流が流
れるため、片方の磁心が深く飽和し、鉄損の増加が問題
となる。この場合連係用リアクトルを分散電源30の出
力と変圧器10の間に挿入するか、分散電源の出力側に
電流形インバータを使用するのがよい。
When the system power supply is normal, the distributed power supply voltage V1 and the system power supply voltage V2 are simultaneously applied to the primary and secondary sides of the linkage transformer 10 while maintaining a certain phase difference θ. At this time, if the impedance between the two power sources is X, as is well known, a power flow represented by P = (V1 .V2 sin .theta.) / X occurs. Therefore, the direction and amount of power transmission can be controlled as desired by adjusting the phase difference θ. When a magnetic core with a small saturation inductance and excellent squareness is used as the saturable magnetic core,
Since a large circulating current flows from the distributed power source (inverter) 30 through the transformer to the distributed power source 30 through the system power source 40, one of the magnetic cores is deeply saturated, which causes an increase in iron loss. In this case, it is preferable to insert a linking reactor between the output of the distributed power source 30 and the transformer 10 or use a current source inverter on the output side of the distributed power source.

【0025】図3は系統電源に開放事故を生じたときの
等価回路である。系統電源40が開放されると、連係変
圧器10には分散電源30の電圧が単独で印加される。
前述のように、この状態では交流の正負の全周期を通じ
て磁心が飽和することはなく、また各磁心11、12に
おける一次側巻線の巻回数N12、N22は互いに等しいと
仮定したので、それぞれの巻線13、14には常に分散
電源の出力電圧V1 の半分が印加され、二次側巻線1
5、16には極性が反対で、絶対値が等しい電圧V21、
V22が誘起される。その結果、連係変圧器10の二次側
に表れる電圧V2すなわち負荷に印加される電圧は零と
なり、分散電源30から系統電源40側へ伝送される電
力がないので系統側が充電されることもない。この場
合、分散電源30は連係変圧器10の励磁電流を供給す
るだけとなる。
FIG. 3 is an equivalent circuit when an open accident occurs in the system power supply. When the system power supply 40 is opened, the voltage of the distributed power supply 30 is independently applied to the linkage transformer 10.
As described above, in this state, it is assumed that the magnetic core does not saturate throughout the positive and negative cycles of the alternating current, and the number of turns N12 and N22 of the primary winding in each magnetic core 11 and 12 is equal to each other. Half of the output voltage V1 of the distributed power source is always applied to the windings 13 and 14, and the secondary winding 1
5 and 16 have the opposite polarities and have the same absolute value V21,
V22 is induced. As a result, the voltage V2 appearing on the secondary side of the linkage transformer 10, that is, the voltage applied to the load becomes zero, and since there is no power transmitted from the distributed power source 30 to the system power source 40 side, the system side is not charged. . In this case, the distributed power source 30 only supplies the exciting current of the linkage transformer 10.

【0026】図4は系統電源に短絡事故を生じたときの
等価回路である。点線矢印のように系統電源40が短絡
されたときも、図3の場合と同様に、連係変圧器10に
は分散電源30の電圧が単独で印加されるから、連係変
圧器10の二次側に表れる電圧V2 すなわち負荷に印加
される電圧は零となり、系統側の短絡によって分散電源
30から過電流が流れ出ることはない。この場合も、分
散電源30は連係変圧器10の励磁電流を供給するだけ
となる。
FIG. 4 is an equivalent circuit when a short circuit accident occurs in the system power supply. Even when the system power supply 40 is short-circuited as indicated by the dotted arrow, the voltage of the distributed power supply 30 is applied to the linkage transformer 10 alone, as in the case of FIG. The voltage V2 appearing at 1), that is, the voltage applied to the load becomes zero, and an overcurrent does not flow out from the distributed power source 30 due to a short circuit on the system side. Also in this case, the distributed power source 30 only supplies the exciting current of the linkage transformer 10.

【0027】また以上の説明から容易に理解されるよう
に、逆に分散電源側に開放、短絡の事故を生じた場合に
も、系統電源側によって分散電源側に電圧が誘起された
り、過電流が流れたりすることはなくなる。
Further, as will be easily understood from the above description, conversely, when an accident such as an open or a short circuit occurs on the distributed power source side, a voltage is induced on the dispersed power source side by the system power source side, or an overcurrent occurs. Will no longer flow.

【0028】図1の装置は以上に説明したように動作す
るので、系統電源あるいは分散電源の事故や修理、保守
のために、これらの一方が短絡、開放されたときは、継
電器などの電路遮断装置をなんら使用すること無く、連
係変圧器が持つ本来の物理的性質のみによって他方の電
源側での電圧誘起や逆充電が自動的に防止されるので、
これらに起因する感電事故などを確実に防止できる。
Since the device of FIG. 1 operates as described above, when one of these is short-circuited or opened for the purpose of accident, repair, or maintenance of the system power source or distributed power source, the circuit break of a relay or the like is interrupted. Without using any device, voltage induction and reverse charging on the other power supply side are automatically prevented only by the original physical properties of the link transformer,
It is possible to reliably prevent electric shock accidents and the like caused by these.

【0029】図5は、商品名「センパ−シル」で市販さ
れている可飽和磁心を用いた図1の装置における、系統
電源および分散電源電圧間の位相差と各電源からの供給
電力との関係の1例を示すグラフであり、横軸は連係変
圧器10の一次および二次側電圧の位相差、縦軸は電力
である。この例では、分散電源30は太陽電池であり、
そのインバ−タの出力電圧すなわち分散電源電圧V1 お
よび系統電源電圧V2をそれぞれ70V、負荷抵抗を4
0Ω、負荷の消費電力を一定値PL (=122.5W)
とした。系統電源および分散電源電圧間の位相差θを0
から360°まで変化させたとき、系統電源および分散
電源から供給される電力P2 、P3 は図示のように変化
する。
FIG. 5 shows the phase difference between the system power supply and the distributed power supply voltage and the power supplied from each power supply in the apparatus of FIG. 1 using a saturable magnetic core sold under the trade name "Semper-Sil". It is a graph which shows an example of a relation, a horizontal axis is the phase difference of the primary side and the secondary side voltage of cooperation transformer 10, and a vertical axis is electric power. In this example, the distributed power source 30 is a solar cell,
The output voltage of the inverter, that is, the distributed power supply voltage V1 and the system power supply voltage V2 are 70V, and the load resistance is 4V.
0Ω, constant power consumption of load PL (= 122.5W)
And Phase difference θ between system power supply and distributed power supply voltage is 0
To 360 °, the electric powers P2 and P3 supplied from the system power source and the distributed power source change as shown in the figure.

【0030】すなわち、位相差θが90〜165°の範
囲では磁心12が、また270〜345°の範囲では磁
心11が、それぞれ交流の正または負の半周期の途中で
飽和し、太陽電池すなわち分散電源30から系統電源4
0側へ電力が伝送され、その他の位相差では電力の流れ
は反対になる。そして伝送される電力量は位相差によっ
て変化する。したがって、前記位相差を調整することに
よって電力の伝送方向と伝送量を制御することができ
る。例えば、図5で、電力P3 が最大値になる位相差に
設定すれば、太陽電池から最大電力を取出すことができ
る。
That is, the magnetic core 12 is saturated in the range of the phase difference θ of 90 to 165 °, and the magnetic core 11 is saturated in the range of 270 to 345 ° in the middle of the positive or negative half cycle of the alternating current. Distributed power source 30 to system power source 4
The power is transmitted to the 0 side, and the power flow becomes opposite at other phase differences. Then, the amount of power transmitted changes depending on the phase difference. Therefore, it is possible to control the power transmission direction and the power transmission amount by adjusting the phase difference. For example, in FIG. 5, the maximum power can be taken out from the solar cell by setting the phase difference that maximizes the power P3.

【0031】図6は、図5と同じ装置において、一次お
よび二次側電圧を70Vに保持して位相差θを変化した
場合の、一次および二次側電源の各分担電力P2 、P3
の変化状態を、負荷抵抗RL すなわち負荷電力をパラメ
−タとして示す図である。負荷抵抗RL を40Ω、80
Ωとし、そのときの負荷電力をカーブPL1、PL2、また
商用電源の負担電力をカーブP21、P22でそれぞれ表わ
している。この図では、太陽電池の分担電力P3 のカ−
ブは、パラメ−タ(負荷電力)が変化しても変化せずに
すべて重なっている。すなわち、分散電源(太陽電池)
から供給される電力は負荷抵抗が変化してもほとんど変
化せず、位相差θのみに依存することが分かる。したが
って、一次および二次側電源電圧の位相差θを検出し、
この位相差を設定値に保つように一次側すなわち分散型
電源30の出力電圧の位相を調整すれば、予定の(望ま
しくは最大の)電力を分散型電源30から負荷に供給す
ることができる。
FIG. 6 shows the same apparatus as in FIG. 5, in which the primary and secondary side power supplies are held at 70 V and the phase difference θ is changed, and the respective shared powers P2 and P3 of the primary and secondary side power supplies.
Is a diagram showing a change state of load resistance RL, that is, load power as a parameter. Load resistance RL is 40Ω, 80
The load power at that time is represented by curves PL1 and PL2, and the power burden on the commercial power source is represented by curves P21 and P22. In this figure, the power of P3 shared by the solar cell
The curves do not change even if the parameters (load power) change, and they all overlap. That is, distributed power source (solar cell)
It can be seen that the electric power supplied from the device hardly changes even if the load resistance changes, and depends only on the phase difference θ. Therefore, the phase difference θ between the primary and secondary power supply voltages is detected,
If the phase of the output voltage of the primary side, that is, the distributed power source 30 is adjusted so that this phase difference is maintained at the set value, the planned (desirably maximum) power can be supplied from the dispersed power source 30 to the load.

【0032】図7は、本発明による分散型電源と系統電
源との連係装置の1実施例のブロック図である。同図に
おいて図1と同一の符号は同一または同等部分を示す。
位相差検出器25は連係変圧器10の一次および二次側
電源電圧の位相差θを検出し、これを位相制御回路26
に供給する。位相制御回路26は、位相差設定器27で
設定された値と前記位相差θとを比較し、偏差が零にな
るように、例えばDC/ACインバ−タ2のトリガ信号
の位相を調整する。このようにして、図7の装置は設定
された位相差を保って動作する。
FIG. 7 is a block diagram of an embodiment of a device for linking distributed power sources and system power sources according to the present invention. In the figure, the same reference numerals as those in FIG. 1 indicate the same or equivalent portions.
The phase difference detector 25 detects the phase difference θ between the primary and secondary side power supply voltages of the link transformer 10, and detects the phase difference θ.
Supply to. The phase control circuit 26 compares the value set by the phase difference setting unit 27 with the phase difference θ, and adjusts the phase of the trigger signal of the DC / AC inverter 2, for example, so that the deviation becomes zero. . In this way, the device of FIG. 7 operates with the set phase difference maintained.

【0033】図8は、前述の位相制御をデジタル的に行
なうための制御回路の1例を示すブロック図である。ゼ
ロクロス検出器43は二次側すなわち商用電源40の電
圧波形のゼロクロス点を検出して商用周波数の2倍の周
波数の信号を発生し、PLL回路43に供給する。PL
L回路43はこの信号のさらに256倍の周波数のクロ
ック信号を発生し、カウンタ45に供給する。カウンタ
45の計数値は比較器46に送られ、そこで、予定の位
相差θに応じて予め位相設定器で設定された値(例え
ば、商用周波数が60Hzで、進相130°ならば13
0)と比較される。計数値が設定値を超えると、比較器
46がパルスを発生してフリップフロップ48をトリガ
するので、フリップフロップ48からは時比率50%の
パルスが得られる。このパルスは、太陽電池1の直流出
力を交流に変換するDC/ACインバ−タ2の駆動信号
として用いられる。なおこの場合、インバ−タ2の出力
はパルス状であり、連係変圧器10の出力には高調波成
分が含まれるので、系統への流入を抑制するために、連
係変圧器10の出力側に低域通過フィルタを挿入するこ
とが必要となる。
FIG. 8 is a block diagram showing an example of a control circuit for digitally performing the above-mentioned phase control. The zero-cross detector 43 detects the zero-cross point of the voltage waveform of the secondary side, that is, the commercial power supply 40, generates a signal having a frequency twice the commercial frequency, and supplies the signal to the PLL circuit 43. PL
The L circuit 43 generates a clock signal having a frequency of 256 times that of this signal and supplies it to the counter 45. The count value of the counter 45 is sent to the comparator 46, where a value set in advance by the phase setter according to the planned phase difference θ (for example, if the commercial frequency is 60 Hz and the advance phase is 130 °, the value is 13).
0). When the count value exceeds the set value, the comparator 46 generates a pulse to trigger the flip-flop 48, so that the flip-flop 48 obtains a pulse with a duty ratio of 50%. This pulse is used as a drive signal for the DC / AC inverter 2 which converts the DC output of the solar cell 1 into AC. In this case, the output of the inverter 2 is pulsed, and the output of the linkage transformer 10 contains harmonic components. Therefore, in order to suppress the inflow to the system, the output of the linkage transformer 10 is connected to the output side of the linkage transformer 10. It is necessary to insert a low pass filter.

【0034】以上では、一次および二次側電源を商用周
波数で直接連係する例を説明したが、この場合は次のよ
うな問題が予想される。
In the above, the example in which the primary and secondary power supplies are directly linked at the commercial frequency has been described, but in this case, the following problems are expected.

【0035】(1)装置が大型となり、高価格になり易
い。
(1) The device is large and tends to be expensive.

【0036】(2)磁心が飽和されるので、磁歪による
低周波振動が生じて騒音の原因になり易い。
(2) Since the magnetic core is saturated, low frequency vibration due to magnetostriction is likely to occur and cause noise.

【0037】このような問題を解決するためには、連係
変圧器を可聴周波数帯よりも高い高周波帯域で動作させ
るのが有利である。図9は、高周波帯域で動作する連係
変圧器を用いた本発明の実施例の原理的ブロック図であ
る。DC/ACインバ−タ2Aは、太陽電池1の直流出
力を高周波交流(例えば、20KHz)に変換し、連係
高周波変圧器10Hの一次側に供給する。連係高周波変
圧器10Hは、連係変圧器10と同様の構成および磁心
の飽和特性を有する。双方向AC/ACコンバ−タ9
は、連係高周波変圧器10Hの高周波出力を商用周波数
交流に変換する。位相比較/制御回路29は、連係高周
波変圧器10Hの入出力側電圧の位相差を検出し、これ
を設定値と比較して検出位相差が設定値に合致するよう
にDC/ACインバ−タ2Hの動作を制御するものであ
り、図7や図8と同様の構成でよい。
In order to solve such a problem, it is advantageous to operate the link transformer in a high frequency band higher than the audible frequency band. FIG. 9 is a principle block diagram of an embodiment of the present invention using an associative transformer operating in the high frequency band. The DC / AC inverter 2A converts the direct current output of the solar cell 1 into a high frequency alternating current (for example, 20 KHz) and supplies the high frequency alternating current transformer 10H with the primary side. Linking high-frequency transformer 10H has the same configuration as that of linking transformer 10 and the saturation characteristic of the magnetic core. Bidirectional AC / AC converter 9
Converts the high frequency output of the linked high frequency transformer 10H into a commercial frequency AC. The phase comparison / control circuit 29 detects the phase difference between the input and output side voltages of the associated high frequency transformer 10H and compares it with a set value so that the detected phase difference matches the set value. It controls the operation of 2H and may have the same configuration as that of FIG. 7 or 8.

【0038】図10(A)および(B)は、本発明の変
圧器の一次および二次巻線の具体的構成例を示す概念図
である。同図(A)では、少なくとも一方を可飽和磁性
材で構成された1対の磁心11、12に、それぞれの一
次巻線に等しい電圧を印加した時二次巻線に誘起される
電圧が等しくなるような巻数比で、それぞれの磁心に巻
線13〜16を巻回して各別に単位変圧器を構成する。
その後、1対の磁心11、12を重ね合わせ、各巻線を
図示のような極性になるように接続する。この構成で
は、一次側巻線13、14にV1 の電圧を印加した場
合、直列接続された二次巻線15、16の端子間には電
圧が現れないが、個々の巻線15、16にはそれぞれ電
圧V21、V22が発生しているので、なお感電の恐れがあ
り、作業時の安全確保が十分ではない。
FIGS. 10 (A) and 10 (B) are conceptual diagrams showing a concrete configuration example of the primary and secondary windings of the transformer of the present invention. In the same figure (A), when a voltage equal to each primary winding is applied to a pair of magnetic cores 11 and 12, at least one of which is made of a saturable magnetic material, the voltage induced in the secondary winding is equal. The winding transformers 13 to 16 are wound around the respective magnetic cores at such a winding ratio that the unit transformers are individually configured.
After that, the pair of magnetic cores 11 and 12 are superposed on each other, and the respective windings are connected so as to have polarities as shown in the drawing. In this configuration, when a voltage of V1 is applied to the primary windings 13 and 14, no voltage appears between the terminals of the secondary windings 15 and 16 connected in series, but to the individual windings 15 and 16, Since the voltages V21 and V22 are generated respectively, there is still a risk of electric shock, and it is not sufficient to ensure safety during work.

【0039】同図(B)はこの点を改良するもので、少
なくとも一方を可飽和磁性材で構成された1対の磁心1
1、12に、まず一次巻線13、14のみを巻回した
後、2つの磁心を重ね合せ、重ね合せた2つの磁心に共
通に1つの二次巻線19を巻回する。この構成によれ
ば、二次巻線の端子間電圧はもちろん巻線に誘起する電
圧自体をも零にすることができるので感電の恐れを皆無
とし、作業時の安全をより確実にすることができる。
FIG. 2B is to improve this point, and a pair of magnetic cores 1 of which at least one is made of a saturable magnetic material 1 is used.
First, only the primary windings 13 and 14 are wound on 1 and 12, then two magnetic cores are superposed, and one secondary winding 19 is commonly wound on the two superposed magnetic cores. With this configuration, the voltage between the terminals of the secondary winding as well as the voltage itself induced in the winding can be reduced to zero, so there is no risk of electric shock, and safety during work can be further ensured. it can.

【0040】[0040]

【発明の効果】本発明の変圧器では、一次および二次側
巻線の両者に正常な電圧が印加されているときは、1対
の磁心の一方が正常な変圧動作をするが、いずれか一方
の巻線の電圧が消失したときは、電圧が印加された他方
の巻線からの逆誘導による前記一方の巻線の端子間電圧
の発生が防止される。これにより、感電の恐れが無くな
り、作業時の安全を確保することができる。また前記変
圧器はそれ自体の特性として前記の効果を奏し得るもの
であり、普通に市販されている部品のみで構成でき、セ
ンサや保護回路などの付加的部品を必要としないので、
構成が簡単で廉価に製造できるのみならず、信頼性も高
いという利点がある。
In the transformer of the present invention, when a normal voltage is applied to both the primary and secondary windings, one of the pair of magnetic cores performs a normal transformer operation. When the voltage of one winding disappears, the generation of the terminal voltage of the one winding due to the reverse induction from the other winding to which the voltage is applied is prevented. This eliminates the risk of electric shock and ensures safety during work. Further, the transformer is capable of exhibiting the above-mentioned effects as its own characteristics, and can be configured only with commercially available components, and does not require additional components such as a sensor and a protection circuit.
Not only is the structure simple and inexpensive to manufacture, but it is also highly reliable.

【0041】前記変圧器を用いて、配電線などの系統電
源に太陽電池などの分散型電源を連係すれば、構造が簡
単で信頼性の高い連係装置が実現でき、系統電源や分散
型電源の保守点検時などに、当該電源を遮断したにも拘
らず感電するなどの恐れも無くなる。
If a distributed power source such as a solar cell is linked to a system power source such as a distribution line using the transformer, a linking device having a simple structure and high reliability can be realized. There is no fear of electric shock even when the power is cut off during maintenance and inspection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】図1の装置の正常動作時の等価回路である。FIG. 2 is an equivalent circuit during normal operation of the device of FIG.

【図3】図1の装置の系統電源に開放事故を生じたとき
の等価回路である。
FIG. 3 is an equivalent circuit when an open accident occurs in the system power supply of the device of FIG.

【図4】図1の装置の系統電源に短絡事故を生じたとき
の等価回路である。
4 is an equivalent circuit when a short circuit accident occurs in the system power supply of the device of FIG.

【図5】系統電源および分散電源電圧間の位相差と各電
源からの供給電力との関係の1例を示すグラフである。
FIG. 5 is a graph showing an example of the relationship between the phase difference between the system power supply and the distributed power supply voltage and the power supplied from each power supply.

【図6】系統電源および分散電源の各分担電力の変化状
態を、負荷電力をパラメ−タとして示す図である。
FIG. 6 is a diagram showing a change state of each shared power of a system power supply and a distributed power supply, using load power as a parameter.

【図7】本発明による分散型電源と系統電源との連係装
置の1実施例のブロック図である。
FIG. 7 is a block diagram of an embodiment of a device for linking a distributed power supply and a system power supply according to the present invention.

【図8】図7の連係装置に好適な制御回路の1例を示す
ブロック図である。
8 is a block diagram showing an example of a control circuit suitable for the linking device of FIG. 7. FIG.

【図9】本発明による分散型電源と系統電源との連係装
置の他の実施例のブロック図である。
FIG. 9 is a block diagram of another embodiment of the linking device of the distributed power supply and the system power supply according to the present invention.

【図10】本発明の変圧器の一次および二次巻線の構成
例を示す概念図である。
FIG. 10 is a conceptual diagram showing a configuration example of primary and secondary windings of the transformer of the present invention.

【図11】系統電源に連係された太陽電池の従来例を示
すブロック図である。
FIG. 11 is a block diagram showing a conventional example of a solar cell linked to a system power supply.

【図12】系統電源に連係された太陽電池の他の従来例
を示すブロック図である。
FIG. 12 is a block diagram showing another conventional example of a solar cell linked to a system power supply.

【図13】直交磁心を用いた従来の連係用変圧器の斜視
図である。
FIG. 13 is a perspective view of a conventional linking transformer using an orthogonal magnetic core.

【符号の説明】[Explanation of symbols]

1…太陽電池 2、2A…DC/ACインバータ 4、
40…系統(商用)電源 9…AC/ACコンバータ
10…連係変圧器 11、12…可飽和磁心 21、22…可飽和単位変圧器 29…位相比較・制御
回路 30…分散型電源 42…負荷
1 ... Solar cell 2, 2A ... DC / AC inverter 4,
40 ... System (commercial) power supply 9 ... AC / AC converter
10 ... Link transformer 11, 12 ... Saturable magnetic core 21, 22 ... Saturable unit transformer 29 ... Phase comparison / control circuit 30 ... Distributed power supply 42 ... Load

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】それぞれが磁心と、前記各磁心に巻回され
た一次および二次巻線とよりなる1対の単位変圧器を具
備した変圧器であって、前記一次および二次巻線同士
は、その一方が直列接続され、他方が逆直列接続され、
少なくとも一方の磁心が可飽和磁心であって、一次およ
び二次巻線の両者に所定の電圧が印加されるときは前記
可飽和磁心が飽和し、一次および二次巻線のいずれか一
方のみに電圧が印加されるときは前記可飽和磁心が不飽
和になることを特徴とする変圧器。
1. A transformer comprising a pair of unit transformers each comprising a magnetic core and primary and secondary windings wound around the respective magnetic cores, wherein the primary and secondary windings are connected to each other. One of them is connected in series and the other is connected in anti-series,
At least one of the magnetic cores is a saturable magnetic core, and when a predetermined voltage is applied to both the primary and secondary windings, the saturable magnetic core is saturated, and only one of the primary and secondary windings is saturated. A transformer characterized in that the saturable magnetic core becomes unsaturated when a voltage is applied.
【請求項2】前記可飽和磁心は、印加電圧の半周期の一
部で飽和される請求項1記載の変圧器。
2. The transformer according to claim 1, wherein the saturable magnetic core is saturated in a part of a half cycle of an applied voltage.
【請求項3】直列接続された巻線の両端に交流電圧が印
加された時、逆直列接続された各巻線に誘起される電圧
は、値が等しく、逆極性である請求項1または2記載の
変圧器。
3. The voltage induced in each winding connected in anti-series when the alternating voltage is applied to both ends of the winding connected in series, and the values are equal and opposite in polarity. Transformer.
【請求項4】1対の単位変圧器が共に可飽和磁心よりな
り、それぞれの磁心のBH特性が事実上等しい請求項1
〜3のいずれか1に記載の変圧器。
4. The pair of unit transformers are both made of saturable magnetic cores, and the BH characteristics of the respective magnetic cores are substantially equal.
The transformer according to any one of 1 to 3.
【請求項5】少なくとも一方が可飽和特性を有する1対
の磁心と、1対の磁心に共通に巻回された第1の巻線
と、それぞれの磁心に別個に巻回されて直列接続された
第2および第3の巻線とを具備し、第1の巻線に流れる
電流によって第2および第3の巻線に誘起される電圧が
互いに相殺されるように構成された変圧器。
5. A pair of magnetic cores, at least one of which has a saturable characteristic, a first winding which is commonly wound around the pair of magnetic cores, and a first winding which is separately wound around each magnetic core and connected in series. And a second and a third winding, and the currents flowing through the first winding cancel the voltages induced in the second and the third windings.
【請求項6】前記請求項1〜5のいずれか1に記載の変
圧器と、前記一次および二次巻線の一方を、連係されよ
うとする系統電源周波数と同一の周波数を有する分散電
源の交流出力に接続する手段と、前記一次および二次巻
線の他方を系統電源に接続する手段と、系統電源電圧お
よび分散電源電圧の位相差を検出する手段と、検出され
た位相差が予め設定された値に等しくなるように分散電
源電圧の位相を調整する手段とを具備した分散型電源と
系統電源との連係装置。
6. A distributed power supply having the same frequency as the system power supply frequency to be linked with the transformer according to claim 1 and one of the primary and secondary windings. Means for connecting to the AC output, means for connecting the other of the primary and secondary windings to the system power supply, means for detecting the phase difference between the system power supply voltage and the distributed power supply voltage, and the detected phase difference is preset And a means for adjusting the phase of the distributed power supply voltage so as to be equal to the specified value.
【請求項7】分散型電源は直流電源であり、前記直流電
源の出力を系統電源周波数と同一の周波数を有する交流
に変換して出力するDC/ACインバ−タをさらに具備
した請求項6記載の分散型電源と系統電源との連係装
置。
7. The distributed power source is a direct current power source, and further comprises a DC / AC inverter for converting the output of the direct current power source into an alternating current having the same frequency as the system power source frequency and outputting the alternating current. A device that links distributed power sources and system power sources.
【請求項8】前記請求項1〜5のいずれか1に記載の変
圧器と、連係されようとする分散型電源の出力を供給さ
れて高周波数交流に変換し、前記変圧器の一次巻線に供
給する手段と、前記変圧器の二次巻線をその入力に接続
され、前記二次巻線に誘起された高周波数交流を系統電
源周波数の交流に変換して系統電源に接続する手段と、
系統電源電圧および分散型電源電圧の位相差ならびに前
記変圧器の一次および二次巻線の電圧の位相差の一方を
検出する手段と、検出された位相差が予め設定された値
に等しくなるように前記変圧器の一次側電圧の位相を調
整する手段とを具備した分散型電源と系統電源との連係
装置。
8. A primary winding of the transformer, which is supplied with an output of a distributed power source which is about to be linked with the transformer according to any one of claims 1 to 5 and converts the output into a high frequency alternating current. And a means for connecting the secondary winding of the transformer to its input, for converting the high-frequency alternating current induced in the secondary winding into alternating current of the system power supply frequency, and connecting it to the system power supply. ,
A means for detecting one of the phase difference between the system power supply voltage and the distributed power supply voltage and the phase difference between the primary and secondary windings of the transformer, and the detected phase difference being equal to a preset value And a means for adjusting the phase of the primary side voltage of the transformer, wherein the distributed power supply and the system power supply are linked together.
JP5149818A 1993-05-31 1993-05-31 Transformer provided with one pair of magnetic cores and string of dispersed power supply and system power supply using it Pending JPH06338428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5149818A JPH06338428A (en) 1993-05-31 1993-05-31 Transformer provided with one pair of magnetic cores and string of dispersed power supply and system power supply using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5149818A JPH06338428A (en) 1993-05-31 1993-05-31 Transformer provided with one pair of magnetic cores and string of dispersed power supply and system power supply using it

Publications (1)

Publication Number Publication Date
JPH06338428A true JPH06338428A (en) 1994-12-06

Family

ID=15483378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5149818A Pending JPH06338428A (en) 1993-05-31 1993-05-31 Transformer provided with one pair of magnetic cores and string of dispersed power supply and system power supply using it

Country Status (1)

Country Link
JP (1) JPH06338428A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069403A1 (en) * 2005-12-16 2007-06-21 Murata Manufacturing Co., Ltd. Composite transformer and insulated switching power supply
JP2009146955A (en) * 2007-12-11 2009-07-02 Hitachi Computer Peripherals Co Ltd Complex reactor and power supply unit
JP2009272489A (en) * 2008-05-08 2009-11-19 Tdk Corp Coil component
JP2011229396A (en) * 2011-08-04 2011-11-10 Hitachi Computer Peripherals Co Ltd Power supply device
JP2019169690A (en) * 2018-03-26 2019-10-03 田淵電機株式会社 Transformer and LLC resonant circuit using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069403A1 (en) * 2005-12-16 2007-06-21 Murata Manufacturing Co., Ltd. Composite transformer and insulated switching power supply
US7872561B2 (en) 2005-12-16 2011-01-18 Murata Manufacturing Co., Ltd. Composite transformer and insulated switching power source device
JP2009146955A (en) * 2007-12-11 2009-07-02 Hitachi Computer Peripherals Co Ltd Complex reactor and power supply unit
US8203855B2 (en) 2007-12-11 2012-06-19 Hitachi Computer Peripherals Co., Ltd. Complex inductor and power supply unit
JP2009272489A (en) * 2008-05-08 2009-11-19 Tdk Corp Coil component
JP2011229396A (en) * 2011-08-04 2011-11-10 Hitachi Computer Peripherals Co Ltd Power supply device
JP2019169690A (en) * 2018-03-26 2019-10-03 田淵電機株式会社 Transformer and LLC resonant circuit using the same

Similar Documents

Publication Publication Date Title
Tan et al. Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system
Manjrekar et al. Power electronic transformers for utility applications
JP2597951B2 (en) High frequency power supply
EP0860048B1 (en) An ac-dc power supply
US7629786B2 (en) Device for reducing harmonics in three-phase poly-wire power lines
CA2168520C (en) Inverter/charger circuit for uninterruptible power supplies
US9349532B2 (en) Turning joint for electric excavator
US5018058A (en) High frequency AC voltage control
US20200153354A1 (en) Controlling voltage in ac power lines
CN110829619A (en) Power transmission line energy taking device with impedance adjusting function and application method thereof
US5717579A (en) Power supply unit, more specifically battery charger for electric vehicles and the like
JP3478338B2 (en) Power transmission equipment
JPH06338428A (en) Transformer provided with one pair of magnetic cores and string of dispersed power supply and system power supply using it
US9343996B2 (en) Method and system for transmitting voltage and current between a source and a load
US10630203B2 (en) Bidirectional power conversion system for single-phase electric load and corresponding power conversion process
CA1175479A (en) Multi-voltage transformer input circuits with primary reactor voltage control
JP2020141555A (en) Automatic device for compensating for reactive component loss in ac network and method thereof
Samanta et al. A new current-fed (C)(LC)(LC) topology for inductive wireless power transfer (IWPT) application: Analysis, design, and experimental results
Yan et al. Control strategy of transformer coupling solid state fault current limiter and its experimental study with capacitance load
RU2171003C1 (en) Method and device for differential protection of three-phase power transmission line
JPH0756125Y2 (en) Power supply for arc welding
JP2685454B2 (en) Control device for PWM converter
Sankala et al. Flux and winding current balancing control for a medium-frequency six-winding transformer
CN117767585A (en) Power conversion circuit and electronic device
JPS6022800Y2 (en) induction motor control device