JP3563865B2 - Solar cell power controller - Google Patents

Solar cell power controller Download PDF

Info

Publication number
JP3563865B2
JP3563865B2 JP06514396A JP6514396A JP3563865B2 JP 3563865 B2 JP3563865 B2 JP 3563865B2 JP 06514396 A JP06514396 A JP 06514396A JP 6514396 A JP6514396 A JP 6514396A JP 3563865 B2 JP3563865 B2 JP 3563865B2
Authority
JP
Japan
Prior art keywords
value
voltage
power supply
battery power
operating point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06514396A
Other languages
Japanese (ja)
Other versions
JPH09230952A (en
Inventor
誠路 黒神
信善 竹原
公俊 深江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP06514396A priority Critical patent/JP3563865B2/en
Publication of JPH09230952A publication Critical patent/JPH09230952A/en
Application granted granted Critical
Publication of JP3563865B2 publication Critical patent/JP3563865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Control Of Electrical Variables (AREA)

Description

【0001】
【産業上の利用分野】
本発明は電力変換装置を有する太陽光発電システムの電力制御装置に関する。
【0002】
【従来の技術】
今日、地球環境に対する意識の高まりから、クリーンエネルギーを提供する太陽光発電、風力発電等の電池電源システムに大きな期待が寄せられている。例えば、太陽電池を電池電源として、既存の商用交流系統と接続した場合には、家庭内負荷に給電するとともに商用交流系統を無限大の負荷とみなして余剰電力を売電することができることから、その太陽電池やその出力を交流電力に変換する電力変換装置および家庭内負荷を含む電源システムは、全体として最も効率よく稼働することが求められている。
【0003】
光電変換素子を用いた太陽電池では、その出力は、日射量、温度、動作点電圧などによりかなり変動するために、太陽電池から見た負荷を調整して、常に最大の電力を取り出すことが要望される。このため、複数の太陽電池から構成される太陽電池アレイの動作点の電圧や電流を変動させて、その時の電力変動を調べて太陽電池アレイの最大電力または最大電力近傍の動作点を追尾する最大電力点追尾制御、いわゆるMPPT制御が提案されている。例えば、特公昭63−57807号公報に記載される電力の電圧微分値を利用するものや、特開昭62−85312号公報に記載されている電力変化量が正の方向に探索する、いわゆる山登り法などがある。
【0004】
また、特開平7−225624号公報に記載されるものにおいては、太陽電池の開放電圧から最低電圧までの間で極大点を検出し、極大点の中で最大電力となる極大点の電圧を設定している。
【0005】
従来は、このような方法を利用して、太陽電池から最大電力を取り出すように電力変換装置などを制御していた。
【0006】
【発明が解決しようとする課題】
しかし、上記の方法には以下の問題点がある。
通常、太陽電池アレイの電圧−電力特性は、図8(a)に示したような形状(横軸は電圧、縦軸は電力)であるが、太陽電池アレイの一部に雪や建物の影が落ちる場合には、図8(b)に示すような電圧−電力特性となる場合がある。図8(b)中の動作点▲1▼は太陽電池アレイから最大電力を取り出すことができるが、動作点▲2▼は極大点ではあるが最大電力点ではない。
【0007】
従来の山登り法では、動作点を変化させたことによる電力変化量の正負により、電圧−電力特性曲線の「山」の頂上のある方向を見いだすものであるので、動作点が▲1▼または▲1▼近傍にある場合には、動作点は▲1▼の「山」の頂上を追いかけて、太陽電池アレイからは最大電力を取り出すことができる。しかし、動作点が▲2▼または▲2▼近傍にある場合には、動作点は▲2▼の「山」の頂上を最大電力点と誤認して追従し、太陽電池アレイからは最大電力を取り出すことができない。
【0008】
このように、いわゆる「2山問題」が生じる場合がある。
【0009】
以上、山登り法での動作について説明したが、電力の電圧微分値を利用する制御方法でも同様の結果となる。
【0010】
これに対して、特開平7−225624号公報記載の方法では、2つの「山」のどちらかの電力の大きいほうの頂上を取ることができる。しかし、太陽電池に接続される電力変換装置の動作可能範囲は図8(c)のように限定されるので、動作可能範囲内での最大電力動作点▲3▼は極大点にはなく、前記方法では最大電力を取り出せない。また、前記方法は太陽電池の開放電圧から最低電圧までという極めて広い範囲をスキャンするので、スキャン時の電力損失が懸念される。このため長いインターバルで上記方法を行うと、最適動作点は常時変動するので最適動作点からずれて精密に追尾はできず、最大電力を取り出すことができない。また、広範囲を探索する最中に日射変動が生じると、異なった電圧−電力特性での動作点をサンプリングして、それに基づいて動作点を設定するので、誤動作して出力が低下する恐れがある。
【0011】
本発明の目的は、従来の太陽電池の電力制御方法の欠点を補完し、太陽電池から最大出力を取り出す電力制御装置を提供することである。
【0012】
【課題を解決するための手段】
上記の目的を達成するため、本発明では、常時は、通常のMPPT制御を行うとともに、前記MPPT制御より長い周期にて広い探索範囲で太陽電池の動作点を変動させてその動作点の電圧および電流を取り込んで電力を算出し、電圧ー電力特性が2山であるときは元の動作点が最大電力が得られる山にいるか否かを判定し、最大電力が得られる山にいるなら元の動作点を選択し、最大電力が得られる動作点が他の山にあるならその山にある動作点を選択し、前記選択動作点の電圧を前記MPPT制御する際の設定値とすることを特徴とする。
【0013】
【発明の実施の形態】
より具体的には、上記目的は、電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定するための出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期においては、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するものであることを特徴とする電力制御装置により達成される。
【0014】
また上記目的は、電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定するための出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期においては、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて第2変動範囲内の電圧−電力特性が2山以上あるかを判断し、2山以上なら前記電圧値および電流値に基づき最大電力が得られる動作点が存在する山の中の動作点の電圧に前記設定値を設定するものであることを特徴とする電力制御装置により達成される。
【0015】
また上記目的は、電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定するための出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期にて、現在の動作点を基準動作点として電圧値および電流値をサンプリングして記憶し、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値から各動作点での電力値を算出し、前記電池電源の出力電力の極大点および第2変動範囲端での動作点を記憶し、前記極大点が1つのみの場合には、前記極大点を前記基準動作点として設定した後、前記第2変動範囲端の動作点と前記基準動作点の電力値を比較して前記第2変動範囲端の動作点の電力値のほうが大きい時は、前記第2変動範囲端の動作点を前記基準動作点に設定する第1比較設定を行い、前記極大点が2つ以上ある場合には、前記第1比較設定とともに、複数の前記極大点の中から電力が最大となる極大点を選び、前記選んだ極大点と前記基準動作点の電力値を比較して前記極大点のほうが大きい時は、前記極大点を前記基準動作点に設定する第2比較設定を行い、前記基準動作点の電圧を前記設定値に設定するものであることを特徴とする電力制御装置により達成される。
【0016】
また上記目的は、電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定するための出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期にて、現在の動作点を基準動作点として電圧値および電流値をサンプリングして記憶し、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値から各動作点での電力値を算出し、前記電池電源の出力電力の極小点を検出し、前記極小点が検出された場合には、前記極小点より前記第2変動範囲の端側にある極大点および前記第2変動範囲端の動作点を検出、記憶し、前記第2変動範囲端の動作点と前記基準動作点の電力値を比較して前記第2変動範囲端の動作点の電力値のほうが大きい時は、前記第2変動範囲端の動作点を前記基準動作点に設定する第1比較設定を行い、前記極大点がある場合には、前記第1比較設定とともに、複数の前記極大点の中から電力が最大となる極大点を選び、前記選んだ極大点と前記基準動作点の電力値を比較して前記極大点のほうが大きい時は、前記極大点を前記基準動作点に設定する第2比較設定を行い、前記基準動作点の電圧を前記設定値に設定するものであることを特徴とする電力制御装置により達成される。
【0017】
また上記目的は、電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定するための出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期にて、現在の動作点を基準動作点として電圧値および電流値をサンプリングして記憶し、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値から各動作点での電力値を算出し、前記電池電源の出力電力の極小点を検出し、極小点が検出された場合には、前記極小点より前記第2変動範囲の端側にある最大電力の動作点を検出、記憶し、前記最大電力動作点と前記基準動作点の電力値を比較して前記最大電力動作点の電力値のほうが大きい時は、前記最大電力動作点を前記基準動作点に設定し、前記基準動作点の電圧を前記設定値に設定するものであることを特徴とする電力制御装置により達成される。
【0018】
また上記目的は、電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定するための出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期にて、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値から各動作点での電力値を算出し、サンプリングされたうちの3点以上の動作点を検出値を用いてその電圧対電力曲線を有極関数により近似し、前記有極関数の極大値となる点の電圧を前記設定値に設定するものであることを特徴とする電力制御装置により達成される。
【0019】
また上記目的は、電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定するための出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期においては、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、同一電圧の複数の動作点の電流値、または電圧値と電流値の乗算により算出される電力値の差が所定値以上なら所定回数まで前記サンプリングをやり直すか、または、設定動作を取り消して元の動作点を設定し、前記電力値の差が所定値未満であれば、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するものであることを特徴とする電力制御装置により達成される。
【0020】
【作用】
本発明の電力制御装置では、第1周期の短い周期にて第1変動範囲の狭い動作点変動範囲にてMPPT制御を行うことで、常時は精密に太陽電池の最適動作点を追尾する。
【0021】
また、第1周期と比較して長い周期の第2周期にて、第1変動範囲より広い第2変動範囲の動作点変動範囲を探索し、電力の極大点の数により「2山」になってるかを判断し、極大点および探索範囲端動作点を元にして、「2山」の場合には電力が大きいほうの「山」の動作点を設定することで、2山問題を解決して、太陽電池から最大電力と取り出すことができる。
【0022】
また、第1周期と比較して長い周期の第2周期にて、第1変動範囲より広い第2変動範囲の動作点変動範囲を探索し、電力の極小点が有るか否かにより「2山」になっているかを判断し、極大点および探索範囲端動作点を元にして、「2山」の場合には電力が大きいほうの「山」の動作点を設定することで、2山問題を解決して、太陽電池から最大電力と取り出すことができる。
【0023】
また、第1周期と比較して長い周期の第2周期にて、第1変動範囲より広い第2変動範囲の動作点変動範囲を探索し、探索範囲の一部または全部の電圧ー電力特性曲線の有極な近似曲線の極大点の電圧に動作点を設定することにより、2山問題を解決して、太陽電池から最大電力と取り出すことができる。
【0024】
また、同じ電圧の複数の動作点の電流値または電力値の差に基づき日射変動の有無を判定することにより誤動作を抑制し、出力低下を抑制できる。
【0025】
【実施例1】
以下、図面を参照して本発明の実施例を説明する。
【0026】
図1に本発明の一実施例に係る電力制御装置を用いた太陽光発電システムの構成を示す。図中、電池電源1の直流電力は、電力変換手段2にて電力変換され、負荷3に供給される。
【0027】
電池電源1としては、アモルファスシリコン、微結晶シリコン、多結晶シリコン、単結晶シリコンあるいは化合物半導体などを用いた太陽電池がある。通常は、複数の太陽電池モジュールを直並列に組み合わせて、所望の電圧および電流が得られるようにアレイを構成する。
【0028】
電力変換手段2としては、パワートランジスタ、パワーMOSFET、IGBT、GTOなどの自己消孤型スイッチングデバイスを用いたDC/DCコンバータ、自動式電圧型DC/ACインバータなどがある。この電力変換手段2は、ゲートパルスのオン/オフデューティ比を変えることで電力潮流、入出力電圧、出力周波数などを制御できる。
【0029】
負荷3としては、電熱負荷や電動機負荷あるいは商用交流系統およびそれらの組み合わせなどがある。負荷3が商用交流系統の場合は、系統連系太陽光発電システムと呼ばれており、系統に投入され得る電力は制限されないので、電池電源1からより多くの電力を取出す本実施例が適用される対象として非常に好ましい。
【0030】
電池電源1の出力電圧および出力電流は、通常用いられる電圧検出手段4および電流検出手段5により検出され、電圧検出信号は出力電圧設定手段6および制御手段7に入力され、電流検出信号は出力電圧設定手段6に入力される。出力電圧設定手段6はこれらの電圧検出信号および電流検出信号を記憶する。
【0031】
出力電圧設定手段6は、記憶された電圧検出信号、電流検出信号をもとに、電圧設定値を決定する。出力電圧設定手段6は、制御用マイクロコンピュータであり、CPU、RAM、ROM、I/Oなどで構成される。
【0032】
制御手段7は、電力変換手段2の出力制御回路とゲート駆動回路である。例えば、出力電圧設定手段6からの電圧設定値と電圧検出手段4からの電圧検出信号との偏差である電圧誤差信号が入力され、これが零となるように制御するPI制御回路と、PI制御回路からの出力に応じて三角波比較方式や瞬時電流追従制御などによりゲート駆動用のPWMパルスを生成するPWM回路などからなる。これにより、電力変換手段2のスイッチングデバイスのオン/オフデューティ比を制御して、太陽電池の出力電圧を制御する。
【0033】
次に、図2、図3を用いて、本実施例の電力制御装置において最大電力が得られる動作点の探索について説明する。図2は、横軸が電圧、縦軸が電力を示しており、電圧ー電力出力特性曲線を示している。また、図3に本実施例に係るフローチャートが示されている。
本実施例においては、まず、初期動作電圧V0、ステップ変動幅dV、探索方向、変動範囲下限電圧VL、変動範囲上限電圧VH、広範囲探索による電力制御の周期(以下、WAS周期という)を予め決めておき、ROMに記憶させておくとよい。初期動作電圧V0は太陽電池アレイの構成によって決められる。ステップ変動幅dVは電力変換手段2の動作可能電圧範囲の1〜3%程度にしておく。探索方向は増加方向、減少方向のどちらでもよい。変動範囲下限電圧VLおよび変動範囲上限電圧VHは電力変換手段2の動作可能電圧範囲内で設定する。WAS周期は、通常のMPPT制御よりも長い周期で行う広範囲探索の電力制御(ここではWAS制御と呼ぶ)の周期であり、例えば、数十分程度となるように設定する。
【0034】
電力変換開始時には、動作電圧Vを初期動作電圧V0に設定した後、常時は山登り法によるMPPT制御を行い、時々WAS周期に応じてWAS制御を行う。
実際の動作は、以下のようになる。
MPPT制御を開始すると、まず始めに、WAS周期をカウントするタイマーをリセットする(StepM01)。
次に、設定されている動作点での電圧、電流をサンプリングし、電力値P0を算出・記憶する(StepM02)。
次に、タイマーをみてWAS周期になったか否かを判定する(StepM03)。WAS周期になっていないのであれば通常のMPPT制御を行うものとしてStepM04へ移り、WAS周期であるならWAS制御を行うものとしてStepW00へ移動する。WAS周期は長くとってあるので、多くの場合は通常MPPT制御のStepM04へ行く。
【0035】
StepM04では、探索方向に応じて分岐し、探索方向が「増加」ならStepM05へ進んで動作点電圧を現在の電圧よりステップ変動幅dVほど高い電圧に設定し、探索方向が「減少」ならStepM06へ進んで動作点電圧をステップ変動幅dVほど低い電圧に設定する。そして、StepM07に進む。
【0036】
次に、設定されている動作点での電圧および電流をサンプリングし、電力値P1を算出・記憶する(StepM07)。
StepM08では現在の動作点の電力値P1と以前の動作点の電力値P0を比較する。もし、電力値P1が電力値P0以下であれば、最適動作点を通りすぎたと判断し、StepM09にて探索方向を反転させる。電力値P1が電力値P0より大きいのであれば、最適動作点はまだ先にあるので、探索方向はそのままとして、StepM09はバイパスとする。
そして、電力値P1を電力値P0として記憶してから(StepM10)、StepM03に戻り、上記動作を繰り返す。
【0037】
StepM03において、WAS周期になったと判断するとStepM00のWASルーチンに飛ぶ。
WASルーチンでは、まず始めに、現在の動作点の電圧および電流値をサンプリングして電力値を計算し、その電圧値および電力値を基準動作点電圧VRおよび基準動作点電力PRとして記憶する(StepW01)。
次に、変動範囲下限電圧VLから変動範囲上限電圧VHの間の変動範囲で動作点を変動させて、電圧および電流をサンプリングして電力値を計算する。そして、電力値の極大点を検出し、極大点の電圧および電力を記憶する。また、変動範囲下限電圧VLおよび変動範囲上限電圧VHでの動作点の電力値PVLおよびPVHを記憶する(StepW02)。
【0038】
次に、極大点の有無を判定し、極大点が無い場合は探索範囲内には2山は無いと判断してStepW13へ処理を飛ばし、極大点がある場合には次のStepW03に進む。
そして、極大点がある場合は、極大点の数が1つだけか2つ以上あるかに応じて分岐する(StepW04)。
【0039】
極大点の数が1つだけの場合は、前記極大点を前記基準動作点として前記極大点の電圧V極大点1および電力P極大点1を前記基準動作点電圧VRおよび電力PRに設定し(StepW08)、次のStepW09へ進む。
【0040】
極大点の数が2つ以上の場合は、前記極大点の中から電力が最大となる極大点(電圧V極大点x、電力P極大点x)を抽出し(StepM05)、前記電力最大極大点の電力値P極大点xと前記基準動作点の電力PRを比較し(StepW06)、前記基準動作点電力PRのほうが小さい時には、前記極大点を前記基準動作点となるよう設定して(StepW07)、次のStepW09へ進む。
【0041】
StepW09では、前記基準動作点の電力PRと前記探索範囲下限電圧VLでの電力PVLの大小関係を比較し、前記基準動作点電力PRのほうが小さい時には、前記探索範囲下限電圧VLでの動作点を基準動作点として前記動作点の電圧VLおよび電力PVLを前記基準動作点の電圧VRおよび電力PRに設定して(StepW10)、次のStepW11へ進む。
StepW11では、前記基準動作点の電力PRと前記探索範囲上限電圧VHでの電力PVHの大小関係を比較し、前記基準動作点電力PRのほうが小さい時には、前記探索範囲上限電圧VHでの動作点を基準動作点として前記動作点の電圧VHおよび電力PVHを前記基準動作点の電圧VRおよび電力PRに設定して(StepW12)、次のStepW13へ進む。
そして、StepW13で前記基準動作点電圧VRを動作電圧Vに設定して、WASルーチンの処理は終了する。
【0042】
StepW00にてWAS制御を行った後は、StepM01に戻りWAS周期をカウントするタイマーをリセットし、前述の動作を繰り返す。
【0043】
このように、常時は通常のMPPT制御を行うことにより、現在の「山」における最大電力点を精密に追従し、長い周期にて広範囲探索し電圧ー電力特性の電力カーブの極大点の数から「山」に応じた動作点を設定するWAS制御により、「2山」があった場合でも時々は極大点および探索範囲端動作点に基づき最大電力が得られる「山」に移動を行う。これにより、動作中の大部分の時間において電池電源から最大電力を取り出すことが出来る。
【0044】
なお、常時行う通常のMPPT制御は、前記山登り法だけに限定するものではなく、他の方法でもよい。
【0045】
【実施例2】
次に、本発明の他の実施例について説明する。
本発明の電力制御方法を用いた太陽光発電システムは、実施例1と同様に図1のような構成をとる。以下、図4および図5により実施例1とは違った電力制御方法について説明する。図4は、横軸が電圧、縦軸が電力を示しており、電圧ー電力出力特性曲線を示している。また、図5に本実施例に係るフローチャートが示されている。
図5において、StepM01からStepM10までの常時行われるMPPT制御は実施例1と同様の山登り法であり、以下においては、実施例1と異なるWAS制御(StepW20)について説明する。
【0046】
StepW20のWASルーチンでは、まず初めに、現在の動作点の電圧および電流をサンプリングして電力値を計算し、その電圧値および電力値を基準動作点電圧VRおよび基準動作点電力PRとして記憶する(StepW21)。
次に、変動範囲下限電圧VLから変動範囲上限電圧VHの間の変動範囲で動作点を変動させて、電圧および電流をサンプリングして電力値を計算する。変動範囲下限電圧VLおよび変動範囲上限電圧VHでの動作点の電力値PVLおよびPVHを記憶するとともに、もし電力値の極小点が検出されたなら、前記変動範囲内で前記極小点より外側における極大点の動作点を検出して記憶する(StepW22)。
【0047】
次のStepW23にて極小点の有無を判断して分岐する。
もし極小点があるのなら、探索した変動範囲内に2つ以上の山が存在しており他の山に最大電力点がある可能性があることを意味しており、以下のように極大点および探索範囲端の動作点について吟味する。
まず、前記極大点の中から電力が最大となる極大点(電圧V極大点x、電力P極大点x)を抽出し(StepW24)、前記最大電力極大点の電力P極大点xと前記基準動作点の電力PRを比較し(StepW25)、基準動作点電力PRのほうが小さいなら、前記極大点を前記基準動作点となるよう設定して(StepW26)、次のStepW27へ進む。
【0048】
StepW27では、前記基準動作点の電力PRと前記探索範囲下限電圧VLでの電力PVLの大小関係を比較し、前記基準動作点電力PRのほうが小さい時には、前記探索範囲上限電圧VLでの動作点を基準動作点として前記動作点の電圧VLおよび電力PVLを前記基準動作点の電圧VRおよび電力PRに設定して(StepW28)、次のStepW29へ進む。
【0049】
StepW29では、前記基準動作点の電力PRと前記探索範囲上限電圧VHでの電力PVHの大小関係を比較し、前記基準動作点電力PRのほうが小さい時には、前記探索範囲上限電圧VHでの動作点を基準動作点として前記動作点の電圧VHおよび電力PVHを前記基準動作点の電圧VRおよび電力PRに設定して(StepW30)、次のStepW31へ進む。
【0050】
もし極小点がないのであれば、探索範囲内には1山しか存在しないので、通常のMPPT制御により最大電力を取り出すことができ、StepW31へ飛ぶ。そして、StepW31で前記基準動作点電圧VRを動作電圧Vに設定して、WASルーチンの処理は終了する。
【0051】
StepW20にてWAS制御を行った後は、StepM01に戻りWAS周期をカウントするタイマーをリセットし、前述の動作を繰り返す。
【0052】
このように、常時は通常のMPPT制御を行うことにより、現在の「山」における最大電力点を精密に追従し、長い周期にて広範囲探索し電圧ー電力特性の電力カーブの極小点の有無を判断し、極小点が有れば「2山」であるとして極大点および探索範囲端動作点を吟味し、「山」に応じた動作点を設定するWAS制御を行うことにより、「2山」があった場合でも時々は最大電力が得られる「山」に移動を行うことにより、電池電源から最大電力を取り出すことが出来る。
【0053】
【実施例3】
次に、さらに他の実施例について説明する。
【0054】
本発明の電力制御方法を用いた太陽光発電システムは、実施例1および2と同様に図1のような構成をとる。以下、図6および図7により実施例1および2とは違った電力制御方法について説明する。図6は、横軸が電圧、縦軸が電力を示しており、電圧ー電力出力特性曲線を示している。また、図7に本実施例に係るフローチャートが示されている。
【0055】
StepM01からStepM10までの常時行われるMPPT制御は実施例1および2と同様の山登り法であり、以下、実施例1および2と異なるWAS制御(StepW40)について説明する。
【0056】
StepW40のWASルーチンでは、まず初めに、変動範囲下限電圧VLから変動範囲上限電圧VHの間の変動範囲で動作点を変動させて、電圧および電流をサンプリングして電力値を計算する(StepW41)。
次に、サンプリングされた動作点の中から電力が最大となる動作点を検出し(StepW42)、前記検出電力最大動作点および前記検出電力最大動作点のすぐ近傍の2つの動作点を抽出し、各々(V1、P1)(V2、P2)(V3、P3)に設定する(StepW43)。
上記(V1、P1)(V2、P2)(V3、P3)の3つの動作点をもとに電圧ー電力特性曲線を二次曲線により近似し、前記近似二次曲線の電力が最大となる電圧Vpmaxを算出する(StepW44、StepW45)。
そして、StepW46で前記Vpmaxを動作電圧Vに設定して、WASルーチンの処理は終了する。
【0057】
StepW40にてWAS制御を行った後は、StepM01に戻りタイマーをリセットし、前述の動作を繰り返す。
【0058】
このように、常時は通常のMPPT制御を行うことにより、現在の「山」における最大電力点を精密に追従し、長い周期にて広範囲探索し電圧ー電力特性の電力カーブを有極関数により特性を近似して近似曲線が最大となる電圧を動作点として設定するWAS制御を行うことにより、「2山」があった場合でも時々は最大電力が得られる「山」に移動を行い、電池電源から最大電力を取り出すことができる。
【0059】
【実施例の変形例】
なお、WAS制御における曲線近似を用いる手法に、特開平6ー348352号公報などに開示されている方法を適用してもよい。
【0060】
また、WAS制御においては、「山」の数が2つ以上あるか否かを判定し、「山」の数が2つ以上なら最大電力が得られる「山」に移動する(「山」と「山」の間の「谷」を越える)ものであればよい。また、必ずしも最大電力が得られる「山」の中の最大電力が得られる動作点を設定する必要はない。これらは、本発明の主旨に反しない。
【0061】
さらに、WAS制御において、同じ電圧で電流値を2回以上、所定回数以下で毎回の電流値または電力値の差が所定値以下になるまでサンプリングを行うようにしてもよい。この場合、日射変動の影響を取り除いたより確実なWAS制御を行うことができる。この複数回のサンプリングは、同一電圧を持続した状態で連続して行ってもよく、電圧を繰り返しスキャンする等して電圧を変化させながら行ってもよい。
【0062】
【発明の効果】
以上述べてきたように、本発明の電力制御装置では、以下の効果を有する。
(1)電圧ー電力特性曲線で2山が生じる場合でも、電力が大きいほうの山へ移動でき、最大電力を取り出すことができる。
(2)常時は通常のMPPT制御を行っているので、最適動作点を精密に追尾出来る。
(3)長いインターバルにてWAS制御を行うので、広範囲探索によるロスを極力抑えられる。
(4)動作可能な範囲の中で電力が最大となる動作点が極大点でない場合でも追従できる。
(5)WAS制御にてサンプリング動作点の間の動作点を精密に設定できる。
(6)日射変動の有無を検出することによりWAS制御の誤動作による出力低下を抑制出来る。
【図面の簡単な説明】
【図1】本発明の一実施例に係る電力制御装置を備えた太陽光発電システムの一構成例を示すブロック図である。
【図2】図1のシステムにおける最適動作点探索の説明図である。
【図3】図1のシステムにおける最適動作点探索動作を説明するフローチャートである。
【図4】本発明の他の実施例に係る最適動作点探索の説明図である。
【図5】本発明の他の実施例に係る最適動作点探索動作を説明するフローチャートである。
【図6】本発明のさらに他の実施例に係る最適動作点探索の説明図である。
【図7】本発明のさらに他の実施例に係る最適動作点探索動作を説明するフローチャートである。
【図8】太陽電池の電圧ー電力特性の例を示すグラフである。
【符号の説明】1:電池電源、2:電力変換手段、3:負荷、4:電圧検出手段、5:電流検出手段、6:出力電圧設定手段、7:制御手段。
[0001]
[Industrial applications]
The present invention relates to a power control device of a photovoltaic power generation system having a power conversion device.
[0002]
[Prior art]
Today, with increasing awareness of the global environment, great expectations are placed on battery power systems such as solar power generation and wind power generation that provide clean energy. For example, when a solar battery is used as a battery power source and connected to an existing commercial AC system, it is possible to supply surplus electric power to the domestic load while considering the commercial AC system as an infinite load. A power supply system including the solar cell, a power conversion device that converts the output into AC power, and a domestic load is required to operate most efficiently as a whole.
[0003]
Since the output of a solar cell using a photoelectric conversion element fluctuates considerably depending on the amount of solar radiation, temperature, operating point voltage, etc., it is necessary to adjust the load seen from the solar cell and always extract the maximum power. Is done. For this reason, the voltage or current at the operating point of a solar cell array composed of a plurality of solar cells is varied, the power fluctuation at that time is examined, and the maximum power of the solar cell array or the operating point near the maximum power is tracked. Power point tracking control, so-called MPPT control, has been proposed. For example, a method using a voltage differential value of power described in JP-B-63-57807 or a so-called hill-climbing method in which the amount of power change described in JP-A-62-25312 is searched in a positive direction. There is a law.
[0004]
Further, in Japanese Patent Application Laid-Open No. 7-225624, a local maximum point is detected between the open voltage of the solar cell and the minimum voltage, and a local maximum voltage at which the maximum electric power is set among the local maximum points is set. are doing.
[0005]
Conventionally, such a method has been used to control a power converter or the like so as to extract the maximum power from the solar cell.
[0006]
[Problems to be solved by the invention]
However, the above method has the following problems.
Normally, the voltage-power characteristic of the solar cell array has a shape (horizontal axis is voltage and vertical axis is power) as shown in FIG. Falls, a voltage-power characteristic as shown in FIG. 8B may be obtained. The operating point (1) in FIG. 8B can extract the maximum power from the solar cell array, but the operating point (2) is the maximum point but not the maximum power point.
[0007]
In the conventional hill-climbing method, since a certain direction at the top of the “mountain” of the voltage-power characteristic curve is found by the sign of the amount of power change caused by changing the operating point, the operating point is (1) or (1). If it is near 1), the operating point can follow the top of the "mountain" of 1) and extract the maximum power from the solar cell array. However, when the operating point is located at or near (2), the operating point mistakenly follows the peak of the "mountain" of (2) as the maximum power point, and follows the peak power from the solar cell array. I can't take it out.
[0008]
Thus, a so-called “two-mountain problem” may occur.
[0009]
Although the operation in the hill-climbing method has been described above, the same result is obtained in the control method using the voltage differential value of the electric power.
[0010]
On the other hand, in the method described in Japanese Patent Application Laid-Open No. Hei 7-225624, it is possible to take the peak of one of the two “mountains” with the larger power. However, since the operable range of the power converter connected to the solar cell is limited as shown in FIG. 8C, the maximum power operating point {circle around (3)} within the operable range is not the maximum point. The method cannot extract the maximum power. In addition, since the above method scans a very wide range from the open voltage of the solar cell to the minimum voltage, there is a concern about power loss during scanning. Therefore, if the above method is performed at a long interval, the optimum operating point constantly fluctuates, so that the tracking cannot be performed precisely because the optimum operating point deviates from the optimum operating point, and the maximum power cannot be extracted. In addition, when solar radiation fluctuations occur while searching for a wide range, operating points with different voltage-power characteristics are sampled, and the operating points are set based on the sampling points. .
[0011]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a power control device that supplements the drawbacks of the conventional solar cell power control method and extracts the maximum output from the solar cell.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, the normal MPPT control is always performed, and the operating point of the solar cell is varied over a wide search range in a longer cycle than the MPPT control to change the operating point voltage and The power is calculated by taking in the current, and when the voltage-power characteristic is two peaks, it is determined whether or not the original operating point is on the peak where the maximum power can be obtained. An operating point is selected, and if the operating point at which the maximum power is obtained is on another peak, an operating point on that peak is selected, and the voltage of the selected operating point is set as a set value for the MPPT control. And
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
More specifically, the object is to provide a battery power supply, power conversion means for converting power from the battery power supply to supply the load to a load, voltage detection means for detecting a voltage value of the battery power supply, Current detection means for detecting the current value of the power supply, output value setting means for setting the output value of the battery power supply based on the detection value of the voltage detection means and the current detection means, the output value of the battery power supply Control means for controlling the power conversion means so as to match a set value of the output value setting means, wherein the output value setting means sets an operating point of the battery power supply in a first variation range in a first cycle. The voltage value and the current value are sampled by fluctuating, and the set value is set so that the power from the battery power supply is maximized based on the voltage value and the current value, and at a period longer than the first period. In a certain second cycle That is, a voltage value and a current value are sampled by varying an operating point in a second variation range wider than the first variation range, and the power from the battery power source is determined to be maximum based on the voltage value and the current value. The power control device is characterized in that the set value is set so as to be as follows.
[0014]
The above object is also achieved by a battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and detecting a current value of the battery power supply. Current detection means, output value setting means for setting the output value of the battery power supply based on the detection values of the voltage detection means and the current detection means, and the output value of the battery power supply being the output value setting means Control means for controlling the power conversion means so as to match the set value of the power supply means, wherein the output value setting means changes the operating point of the battery power supply in a first fluctuation range in a first cycle to obtain a voltage value. And the current value is sampled, and the set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized, and in a second cycle that is longer than the first cycle. Is before A voltage value and a current value are sampled by varying an operating point in a second variation range wider than the first variation range, and a voltage-power characteristic in the second variation range is two peaks based on the voltage value and the current value. It is determined whether or not there is more than two peaks, and if the number is two or more, the set value is set to the voltage of the operating point in the mountain where the operating point at which the maximum power is obtained is based on the voltage value and the current value. This is achieved by a power control device.
[0015]
The above object is also achieved by a battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and detecting a current value of the battery power supply. Current detection means, output value setting means for setting the output value of the battery power supply based on the detection values of the voltage detection means and the current detection means, and the output value of the battery power supply being the output value setting means Control means for controlling the power conversion means so as to match the set value of the power supply means, wherein the output value setting means changes the operating point of the battery power supply in a first fluctuation range in a first cycle to obtain a voltage value. And the current value is sampled, and the set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized, and in a second cycle that is longer than the first cycle. The current movement The voltage value and the current value are sampled and stored using the point as a reference operating point, and the voltage value and the current value are sampled by changing the operating point in a second variation range wider than the first variation range. Calculate the power value at each operating point from the current value, store the local maximum point of the output power of the battery power source and the operating point at the end of the second fluctuation range, and when there is only one local maximum point, After setting the maximum point as the reference operating point, comparing the power value of the operating point at the end of the second variation range with the power value of the reference operating point, the power value of the operating point at the end of the second variation range is larger. Performs a first comparison setting for setting the operating point at the end of the second variation range to the reference operating point, and when there are two or more local maximum points, a plurality of the local maximum points together with the first comparative setting Of the maximum power from the When the local maximum point is compared with the power value of the reference operating point and the local maximum point is larger, a second comparison setting for setting the local maximum point to the reference operating point is performed, and the voltage of the standard operating point is set to the voltage. This is achieved by a power control device characterized by setting to a set value.
[0016]
The above object is also achieved by a battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and detecting a current value of the battery power supply. Current detection means, output value setting means for setting the output value of the battery power supply based on the detection values of the voltage detection means and the current detection means, and the output value of the battery power supply being the output value setting means Control means for controlling the power conversion means so as to match the set value of the power supply means, wherein the output value setting means changes the operating point of the battery power supply in a first fluctuation range in a first cycle to obtain a voltage value. And the current value is sampled, and the set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized, and in a second cycle that is longer than the first cycle. The current movement The voltage value and the current value are sampled and stored using the point as a reference operating point, and the voltage value and the current value are sampled by changing the operating point in a second variation range wider than the first variation range. An electric power value at each operating point is calculated from the current value, a minimum point of the output power of the battery power supply is detected, and when the minimum point is detected, an end of the second fluctuation range is calculated from the minimum point. The maximum value on the side and the operating point at the end of the second variable range are detected and stored, and the operating point at the end of the second variable range is compared with the power value at the reference operating point to operate at the end of the second variable range. When the power value of the point is larger, a first comparison setting for setting the operating point at the end of the second fluctuation range to the reference operating point is performed, and when there is the maximum point, together with the first comparison setting, The maximum point where the electric power is maximum from among the plurality of maximum points The power value of the selected maximum point and the reference operation point are compared, and when the maximum point is larger, a second comparison setting for setting the maximum point to the reference operation point is performed, and the reference operation point is set. Is set to the set value by the power control apparatus.
[0017]
The above object is also achieved by a battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and detecting a current value of the battery power supply. Current detection means, output value setting means for setting the output value of the battery power supply based on the detection values of the voltage detection means and the current detection means, and the output value of the battery power supply being the output value setting means Control means for controlling the power conversion means so as to match the set value of the power supply means, wherein the output value setting means changes the operating point of the battery power supply in a first fluctuation range in a first cycle to obtain a voltage value. And the current value is sampled, and the set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized, and in a second cycle that is longer than the first cycle. The current movement The voltage value and the current value are sampled and stored using the point as a reference operating point, and the voltage value and the current value are sampled by changing the operating point in a second variation range wider than the first variation range. Calculating the power value at each operating point from the current value, detecting the minimum point of the output power of the battery power supply, and detecting the minimum point, the end point of the second fluctuation range from the minimum point. The maximum power operating point is detected and stored, and the maximum power operating point is compared with the power value of the reference operating point, and when the power value of the maximum power operating point is larger, the maximum power operating point is determined. The power control device is set at the reference operating point, and the voltage at the reference operating point is set at the set value.
[0018]
The above object is also achieved by a battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and detecting a current value of the battery power supply. Current detection means, output value setting means for setting the output value of the battery power supply based on the detection values of the voltage detection means and the current detection means, and the output value of the battery power supply being the output value setting means Control means for controlling the power conversion means so as to match the set value of the power supply means, wherein the output value setting means changes the operating point of the battery power supply in a first fluctuation range in a first cycle to obtain a voltage value. And the current value is sampled, and the set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized, and in a second cycle that is longer than the first cycle. And the first The operating point is varied in a second variation range wider than the dynamic range, and the voltage value and the current value are sampled. The power value at each operating point is calculated from the voltage value and the current value. The operating point above the point is approximated by a polar function with respect to a voltage-power curve using a detected value, and a voltage at a point at which the local maximum of the polar function is set to the set value. This is achieved by a power control device.
[0019]
The above object is also achieved by a battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and detecting a current value of the battery power supply. Current detection means, output value setting means for setting the output value of the battery power supply based on the detection values of the voltage detection means and the current detection means, and the output value of the battery power supply being the output value setting means Control means for controlling the power conversion means so as to match the set value of the power supply means, wherein the output value setting means changes the operating point of the battery power supply in a first fluctuation range in a first cycle to obtain a voltage value. And the current value is sampled, and the set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized, and in a second cycle that is longer than the first cycle. Is before A voltage value and a current value are sampled by varying the operating point in a second variation range wider than the first variation range, and the current value is calculated by multiplying the current value or the voltage value and the current value at a plurality of operating points of the same voltage. If the difference between the power values is equal to or more than a predetermined value, the sampling is repeated up to a predetermined number of times, or the original operation point is set by canceling the setting operation, and if the difference between the power values is less than a predetermined value, the voltage value and the The power control apparatus is characterized in that the set value is set so that the power from the battery power supply is maximized based on the current value.
[0020]
[Action]
In the power control apparatus of the present invention, the optimal operating point of the solar cell is always accurately tracked by performing the MPPT control in the short operating range of the first variable range in the short cycle of the first cycle.
[0021]
Also, in the second cycle longer than the first cycle, the operating point variation range of the second variation range that is wider than the first variation range is searched, and the number of peaks of the power becomes “two peaks”. Judgment is made based on the maximum point and the operating point at the end of the search range, and in the case of “two peaks”, the operating point of the “mountain” with the larger power is set to solve the two-peak problem. Thus, the maximum power can be extracted from the solar cell.
[0022]
Also, in the second cycle longer than the first cycle, the operating point variation range of the second variation range wider than the first variation range is searched, and “two peaks” is determined based on whether or not there is a minimum point of power. Is determined, and based on the local maximum point and the operating point at the end of the search range, in the case of “two peaks”, the operating point of the “mountain” with the larger power is set, thereby solving the two-peak problem. And the maximum power can be extracted from the solar cell.
[0023]
Further, in a second cycle longer than the first cycle, an operating point variation range of a second variation range wider than the first variation range is searched, and a voltage-power characteristic curve of part or all of the search range is searched. By setting the operating point to the voltage at the maximum point of the polar approximation curve, the two-mountain problem can be solved and the maximum power can be extracted from the solar cell.
[0024]
Further, by determining the presence or absence of the fluctuation of the solar radiation based on the difference between the current values or the electric power values of a plurality of operating points of the same voltage, it is possible to suppress the malfunction and to suppress the output reduction.
[0025]
Embodiment 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0026]
FIG. 1 shows a configuration of a photovoltaic power generation system using a power control device according to one embodiment of the present invention. In the figure, DC power of a battery power supply 1 is converted into power by a power conversion means 2 and supplied to a load 3.
[0027]
As the battery power supply 1, there is a solar battery using amorphous silicon, microcrystalline silicon, polycrystalline silicon, single crystal silicon, a compound semiconductor, or the like. Usually, a plurality of solar cell modules are combined in series and parallel to form an array so as to obtain a desired voltage and current.
[0028]
Examples of the power conversion means 2 include a DC / DC converter using a self-extinguishing switching device such as a power transistor, a power MOSFET, an IGBT, and a GTO, and an automatic voltage-type DC / AC inverter. The power converter 2 can control the power flow, input / output voltage, output frequency, and the like by changing the on / off duty ratio of the gate pulse.
[0029]
The load 3 includes an electric heat load, a motor load, a commercial AC system, and a combination thereof. When the load 3 is a commercial AC system, it is called a grid-connected solar power generation system, and the power that can be supplied to the system is not limited. It is very preferable as a target.
[0030]
The output voltage and output current of the battery power supply 1 are detected by voltage detection means 4 and current detection means 5 which are usually used, a voltage detection signal is input to output voltage setting means 6 and control means 7, and a current detection signal is output voltage It is input to the setting means 6. The output voltage setting means 6 stores these voltage detection signal and current detection signal.
[0031]
The output voltage setting means 6 determines a voltage set value based on the stored voltage detection signal and current detection signal. The output voltage setting means 6 is a control microcomputer and includes a CPU, a RAM, a ROM, an I / O, and the like.
[0032]
The control means 7 is an output control circuit and a gate drive circuit of the power conversion means 2. For example, a PI control circuit which receives a voltage error signal which is a deviation between a voltage setting value from the output voltage setting means 6 and a voltage detection signal from the voltage detecting means 4 and controls the voltage error signal to be zero, And a PWM circuit that generates a PWM pulse for gate drive by a triangular wave comparison method, instantaneous current tracking control, or the like in accordance with the output from the controller. This controls the on / off duty ratio of the switching device of the power conversion means 2 to control the output voltage of the solar cell.
[0033]
Next, a search for an operating point at which the maximum power is obtained in the power control device of the present embodiment will be described with reference to FIGS. FIG. 2 shows a voltage-power output characteristic curve, with the horizontal axis representing voltage and the vertical axis representing power. FIG. 3 shows a flowchart according to the present embodiment.
In the present embodiment, first, an initial operation voltage V0, a step variation width dV, a search direction, a variation range lower limit voltage VL, a variation range upper limit voltage VH, and a cycle of power control by a wide range search (hereinafter, referred to as a WAS cycle) are predetermined. It is better to store it in a ROM. The initial operation voltage V0 is determined by the configuration of the solar cell array. The step fluctuation width dV is set to be about 1 to 3% of the operable voltage range of the power conversion means 2. The search direction may be either the increasing direction or the decreasing direction. The fluctuation range lower limit voltage VL and the fluctuation range upper limit voltage VH are set within the operable voltage range of the power conversion means 2. The WAS cycle is a cycle of power control (herein referred to as WAS control) for a wide range search performed in a longer cycle than normal MPPT control, and is set to be, for example, about several tens of minutes.
[0034]
At the start of power conversion, after setting the operating voltage V to the initial operating voltage V0, the MPPT control is always performed by the hill-climbing method, and the WAS control is sometimes performed according to the WAS cycle.
The actual operation is as follows.
When the MPPT control is started, first, a timer for counting the WAS cycle is reset (Step M01).
Next, the voltage and current at the set operating point are sampled, and the power value P0 is calculated and stored (Step M02).
Next, it is determined whether the WAS cycle has been reached by looking at the timer (Step M03). If it is not the WAS cycle, the process proceeds to Step M04 as to perform the normal MPPT control, and if it is the WAS cycle, the process proceeds to Step W00 as to perform the WAS control. Since the WAS cycle is set to be long, in most cases, the process goes to Step M04 of the normal MPPT control.
[0035]
In Step M04, the process branches in accordance with the search direction. If the search direction is "increase", the process proceeds to Step M05, and the operating point voltage is set to a voltage higher than the current voltage by the step variation width dV, and if the search direction is "decrease", the process proceeds to Step M06. Then, the operating point voltage is set to a voltage lower by the step variation width dV. Then, the process proceeds to Step M07.
[0036]
Next, the voltage and current at the set operating point are sampled, and the power value P1 is calculated and stored (Step M07).
In Step M08, the power value P1 at the current operating point is compared with the power value P0 at the previous operating point. If the power value P1 is equal to or less than the power value P0, it is determined that the vehicle has passed the optimum operating point, and the search direction is reversed in Step M09. If the power value P1 is larger than the power value P0, the optimum operating point is still ahead, so that the search direction is left as it is, and Step M09 is bypassed.
Then, after storing the power value P1 as the power value P0 (Step M10), the process returns to Step M03, and the above operation is repeated.
[0037]
If it is determined in Step M03 that the WAS cycle has been reached, the process jumps to the WAS routine of Step M00.
In the WAS routine, first, a voltage and a current value of a current operating point are sampled to calculate a power value, and the voltage value and the power value are stored as a reference operating point voltage VR and a reference operating point power PR (Step W01). ).
Next, the operating point is varied in the fluctuation range between the fluctuation range lower limit voltage VL and the fluctuation range upper limit voltage VH, and the voltage and current are sampled to calculate the power value. Then, the maximum point of the power value is detected, and the voltage and the power at the maximum point are stored. Also, the power values PVL and PVH at the operating point at the fluctuation range lower limit voltage VL and the fluctuation range upper limit voltage VH are stored (Step W02).
[0038]
Next, it is determined whether or not there is a local maximum point. If there is no local maximum point, it is determined that there are no two peaks in the search range, and the process is skipped to Step W13. If there is a local maximum point, the process proceeds to the next Step W03.
If there is a local maximum point, the process branches depending on whether the number of local maximum points is one or two or more (Step W04).
[0039]
When the number of the local maximum points is only one, the local maximum point is set as the reference operating point, and the voltage V local maximum point 1 and the power P local maximum point 1 of the local maximum point are set as the reference operating point voltage VR and the power PR ( (StepW08), and proceed to the next StepW09.
[0040]
When the number of local maximum points is two or more, local maximum points (voltage V local maximum x, power P local maximum x) at which the power becomes maximum are extracted from the local maximum points (Step M05), and the power maximum local point is obtained. Is compared with the power PR of the reference operating point (Step W06), and when the reference operating point power PR is smaller, the maximum point is set to be the reference operating point (Step W07). Then, the process proceeds to the next Step W09.
[0041]
In Step W09, the magnitude relationship between the power PR at the reference operating point and the power PVL at the search range lower limit voltage VL is compared. When the reference operating point power PR is smaller, the operating point at the search range lower limit voltage VL is determined. The voltage VL and the power PVL of the operating point are set as the reference operating point as the voltage VR and the power PR of the reference operating point (Step W10), and the process proceeds to the next Step W11.
In Step W11, the magnitude relation between the power PR at the reference operating point and the power PVH at the search range upper limit voltage VH is compared. When the reference operating point power PR is smaller, the operating point at the search range upper limit voltage VH is determined. The voltage VH and the power PVH at the operating point are set as the reference operating point as the voltage VR and the power PR at the reference operating point (Step W12), and the process proceeds to the next Step W13.
Then, in step W13, the reference operating point voltage VR is set to the operating voltage V, and the processing of the WAS routine ends.
[0042]
After performing the WAS control in Step W00, the process returns to Step M01, resets the timer for counting the WAS cycle, and repeats the above operation.
[0043]
As described above, by always performing the normal MPPT control, the current maximum power point in the “mountain” is accurately followed, and a wide range search is performed in a long cycle, and the number of the maximum points in the power curve of the voltage-power characteristic is calculated. By the WAS control for setting the operating point according to the "mountain", even when there is "two peaks", the vehicle sometimes moves to the "mountain" where the maximum power can be obtained based on the local maximum point and the search range end operating point. As a result, the maximum power can be extracted from the battery power supply during most of the operation.
[0044]
The normal MPPT control that is always performed is not limited to the hill-climbing method, but may be another method.
[0045]
Embodiment 2
Next, another embodiment of the present invention will be described.
A solar power generation system using the power control method of the present invention has a configuration as shown in FIG. Hereinafter, a power control method different from that of the first embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 shows a voltage-power output characteristic curve, with the horizontal axis representing voltage and the vertical axis representing power. FIG. 5 shows a flowchart according to the present embodiment.
In FIG. 5, the MPPT control that is always performed from Step M01 to Step M10 is a hill-climbing method similar to that of the first embodiment. Hereinafter, a WAS control (Step W20) different from that of the first embodiment will be described.
[0046]
In the WAS routine of Step W20, first, the voltage and current at the current operating point are sampled to calculate a power value, and the voltage value and the power value are stored as the reference operating point voltage VR and the reference operating point power PR ( StepW21).
Next, the operating point is varied in the fluctuation range between the fluctuation range lower limit voltage VL and the fluctuation range upper limit voltage VH, and the voltage and current are sampled to calculate the power value. The power values PVL and PVH at the operating point at the fluctuation range lower limit voltage VL and the fluctuation range upper limit voltage VH are stored, and if the minimum point of the power value is detected, the maximum outside the minimum point within the fluctuation range is detected. The operating point is detected and stored (Step W22).
[0047]
In the next Step W23, it is determined whether or not there is a minimum point, and the process branches.
If there is a minimum point, it means that there are two or more peaks in the searched fluctuation range, and there is a possibility that the maximum power point exists in other peaks. And the operating point at the end of the search range.
First, a maximum point (voltage V maximum point x, power P maximum point x) at which the power is maximum is extracted from the maximum points (Step W24), and the power P maximum point x of the maximum power maximum point and the reference operation are extracted. The power PR at the points is compared (Step W25). If the reference operating point power PR is smaller, the maximum point is set to be the reference operating point (Step W26), and the process proceeds to the next Step W27.
[0048]
In Step W27, the magnitude relationship between the power PR at the reference operating point and the power PVL at the search range lower limit voltage VL is compared. When the reference operating point power PR is smaller, the operating point at the search range upper limit voltage VL is determined. The voltage VL and the power PVL at the operating point are set as the reference operating point as the voltage VR and the power PR at the reference operating point (Step W28), and the process proceeds to the next Step W29.
[0049]
In Step W29, the magnitude relation between the power PR at the reference operating point and the power PVH at the search range upper limit voltage VH is compared. The voltage VH and the power PVH at the operating point are set as the reference operating point as the voltage VR and the power PR at the reference operating point (Step W30), and the process proceeds to the next Step W31.
[0050]
If there is no minimum point, since only one peak exists in the search range, the maximum power can be extracted by ordinary MPPT control, and the process jumps to Step W31. Then, in Step W31, the reference operating point voltage VR is set to the operating voltage V, and the processing of the WAS routine ends.
[0051]
After performing the WAS control in Step W20, the process returns to Step M01, resets the timer for counting the WAS cycle, and repeats the above operation.
[0052]
As described above, by always performing the normal MPPT control, the current maximum power point in the “mountain” is accurately tracked, and a wide range is searched in a long cycle to determine whether or not there is a minimum point in the power curve of the voltage-power characteristic. Judgment is made, and if there is a minimum point, the maximum point and the operating point at the end of the search range are determined as "two peaks", and the WAS control for setting an operating point according to "mountain" is performed, thereby "two peaks". Even if there is, sometimes the maximum power can be obtained from the battery power source by moving to the “mountain” where the maximum power can be obtained.
[0053]
Embodiment 3
Next, still another embodiment will be described.
[0054]
A solar power generation system using the power control method of the present invention has a configuration as shown in FIG. 1 as in the first and second embodiments. Hereinafter, a power control method different from the first and second embodiments will be described with reference to FIGS. 6 and 7. FIG. 6 shows a voltage-power output characteristic curve in which the horizontal axis represents voltage and the vertical axis represents power. FIG. 7 shows a flowchart according to the present embodiment.
[0055]
The MPPT control that is constantly performed from Step M01 to Step M10 is a hill-climbing method similar to the first and second embodiments. Hereinafter, a WAS control (Step W40) different from the first and second embodiments will be described.
[0056]
In the WAS routine of Step W40, first, the operating point is changed in the fluctuation range between the fluctuation range lower limit voltage VL and the fluctuation range upper limit voltage VH, and the voltage and current are sampled to calculate the power value (Step W41).
Next, from the sampled operating points, an operating point at which the power becomes the maximum is detected (Step W42), and two operating points immediately adjacent to the detected power maximum operating point and the detected power maximum operating point are extracted, Each is set to (V1, P1) (V2, P2) (V3, P3) (Step W43).
A voltage-power characteristic curve is approximated by a quadratic curve based on the three operating points (V1, P1) (V2, P2) (V3, P3), and a voltage at which the power of the approximate quadratic curve is maximized. Vpmax is calculated (StepW44, StepW45).
Then, in step W46, the Vpmax is set to the operating voltage V, and the processing of the WAS routine ends.
[0057]
After performing the WAS control in Step W40, the process returns to Step M01, resets the timer, and repeats the above-described operation.
[0058]
As described above, by always performing the normal MPPT control, the maximum power point in the current “mountain” is accurately tracked, a wide range search is performed in a long cycle, and the power curve of the voltage-power characteristic is characterized by a polar function. By performing the WAS control that sets the voltage at which the approximation curve becomes the maximum as the operating point by approximating the equation (2), even if there are "two peaks", the peak power is sometimes moved to the "mountain" where the maximum power can be obtained. From the maximum power.
[0059]
[Modification of Embodiment]
It should be noted that a method disclosed in Japanese Patent Application Laid-Open No. 6-348352 may be applied to a method using curve approximation in WAS control.
[0060]
Also, in the WAS control, it is determined whether or not the number of “mountains” is two or more, and if the number of “mountains” is two or more, it moves to the “mountain” where the maximum power can be obtained (the “mountain”). Anything that crosses the "valley" between "mountains" may be used. In addition, it is not always necessary to set the operating point at which the maximum power is obtained in the “mountain” where the maximum power is obtained. These do not contradict the gist of the present invention.
[0061]
Further, in the WAS control, the current value may be sampled at the same voltage twice or more, a predetermined number of times or less, and the difference between the current value or the power value at each time becomes a predetermined value or less. In this case, it is possible to perform more reliable WAS control by removing the influence of the solar radiation fluctuation. The plurality of samplings may be performed continuously while maintaining the same voltage, or may be performed while changing the voltage by repeatedly scanning the voltage.
[0062]
【The invention's effect】
As described above, the power control device of the present invention has the following effects.
(1) Even when two peaks occur in the voltage-power characteristic curve, it is possible to move to the peak with the larger power and to extract the maximum power.
(2) Since normal MPPT control is always performed, the optimum operating point can be accurately tracked.
(3) Since the WAS control is performed at a long interval, loss due to a wide range search can be minimized.
(4) Even if the operating point where the electric power becomes maximum in the operable range is not the maximum point, it can be followed.
(5) The operating point between the sampling operating points can be set precisely by WAS control.
(6) By detecting the presence or absence of solar radiation fluctuation, it is possible to suppress a decrease in output due to a malfunction of the WAS control.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration example of a photovoltaic power generation system including a power control device according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of an optimum operating point search in the system of FIG. 1;
FIG. 3 is a flowchart illustrating an optimum operation point search operation in the system of FIG. 1;
FIG. 4 is an explanatory diagram of an optimum operating point search according to another embodiment of the present invention.
FIG. 5 is a flowchart illustrating an optimal operation point search operation according to another embodiment of the present invention.
FIG. 6 is an explanatory diagram of an optimum operating point search according to still another embodiment of the present invention.
FIG. 7 is a flowchart illustrating an optimal operation point search operation according to still another embodiment of the present invention.
FIG. 8 is a graph showing an example of voltage-power characteristics of a solar cell.
[Description of Signs] 1: battery power source, 2: power conversion means, 3: load, 4: voltage detection means, 5: current detection means, 6: output voltage setting means, 7: control means.

Claims (7)

電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定する出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期においては、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するものであることを特徴とする電力制御装置。A battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and current detection means for detecting a current value of the battery power supply; An output value setting unit that sets an output value of the battery power supply based on the detection values of the voltage detection unit and the current detection unit; and an output value of the battery power supply matches the set value of the output value setting unit. Control means for controlling the power conversion means, and the output value setting means samples a voltage value and a current value by changing an operating point of the battery power supply in a first change range in a first cycle, The set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized, and in a second cycle that is longer than the first cycle, the first variation range is set. Wider The operating point is varied in two variation ranges to sample a voltage value and a current value, and the set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized. A power control device, comprising: 電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定する出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期においては、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて第2変動範囲内の電圧−電力特性が2山以上あるかを判断し、2山以上なら前記電圧値および電流値に基づき最大電力が得られる動作点が存在する山の中の動作点の電圧に前記設定値を設定するものであることを特徴とする電力制御装置。A battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and current detection means for detecting a current value of the battery power supply; An output value setting unit that sets an output value of the battery power supply based on the detection values of the voltage detection unit and the current detection unit; and an output value of the battery power supply matches the set value of the output value setting unit. Control means for controlling the power conversion means, and the output value setting means samples a voltage value and a current value by changing an operating point of the battery power supply in a first change range in a first cycle, The set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized, and in a second cycle that is longer than the first cycle, the first variation range is set. Wider A voltage value and a current value are sampled by changing an operating point in two fluctuation ranges, and it is determined whether there are two or more voltage-power characteristics in a second fluctuation range based on the voltage value and the current value, A power control device, wherein the set value is set to a voltage at an operating point in a mountain where an operating point at which the maximum power is obtained exists based on the voltage value and the current value if there are two or more peaks. 電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定する出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期にて、現在の動作点を基準動作点として電圧値および電流値をサンプリングして記憶し、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値から各動作点での電力値を算出し、前記電池電源の出力電力の極大点および第2変動範囲端での動作点を記憶し、前記極大点が1つのみの場合には、前記極大点を前記基準動作点に設定するとともに、前記第2変動範囲端の動作点と前記基準動作点の電力値を比較して前記第2変動範囲端の動作点の電力値のほうが大きい時は、前記第2変動範囲端の動作点を前記基準動作点に設定する第1比較設定を行い、前記極大点が2つ以上ある場合には、前記第1比較設定とともに、複数の前記極大点の中から電力が最大となる極大点を選び、前記選択された極大点と前記基準動作点の電力値を比較して前記極大点のほうが大きい時は、前記極大点を前記基準動作点に設定する第2比較設定を行い、前記基準動作点の電圧を前記設定値に設定するものであることを特徴とする電力制御装置。A battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and current detection means for detecting a current value of the battery power supply; An output value setting unit that sets an output value of the battery power supply based on the detection values of the voltage detection unit and the current detection unit; and an output value of the battery power supply matches the set value of the output value setting unit. Control means for controlling the power conversion means, and the output value setting means samples a voltage value and a current value by changing an operating point of the battery power supply in a first change range in a first cycle, The set value is set so that the power from the battery power supply is maximized based on the voltage value and the current value, and the current operating point is set in a second cycle that is longer than the first cycle. As a reference operating point The voltage value and the current value are sampled and stored, and the voltage value and the current value are sampled by changing the operating point in a second fluctuation range wider than the first fluctuation range, and each operation is performed based on the voltage value and the current value. Calculating the power value at the point, storing the maximum point of the output power of the battery power source and the operating point at the end of the second fluctuation range, and when there is only one maximum point, sets the maximum point to the reference point. When the power value at the operating point at the end of the second fluctuation range is greater than the power value at the operation point at the end of the second fluctuation range and the power value at the reference operating point, A first comparison setting for setting the operating point at the end of the range to the reference operating point is performed. If there are two or more local maximum points, the power is maximized from among the plurality of local maximum points together with the first comparative setting. Is selected, and the selected maximum point and the When the power value at the quasi-operation point is compared and the maximum point is larger, a second comparison setting for setting the maximum point to the reference operation point is performed, and the voltage at the reference operation point is set to the set value. A power control device, characterized in that: 電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定するための出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期にて、現在の動作点を基準動作点として電圧値および電流値をサンプリングして記憶し、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値から各動作点での電力値を算出し、前記電池電源の出力電力の極小点を検出し、前記極小点が検出された場合には、前記極小点より前記第2変動範囲の端側にある極大点および前記第2変動範囲端の動作点を検出、記憶し、前記第2変動範囲端の動作点と前記基準動作点の電力値を比較して前記第2変動範囲端の動作点の電力値のほうが大きい時は、前記第2変動範囲端の動作点を前記基準動作点に設定する第1比較設定を行い、前記極大点がある場合には、前記第1比較設定とともに、複数の前記極大点の中から電力が最大となる極大点を選び、前記選んだ極大点と前記基準動作点の電力値を比較して前記極大点のほうが大きい時は、前記極大点を前記基準動作点に設定する第2比較設定を行い、前記基準動作点の電圧を前記設定値に設定するものであることを特徴とする電力制御装置。A battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and current detection means for detecting a current value of the battery power supply; Output value setting means for setting the output value of the battery power supply based on the detection values of the voltage detection means and the current detection means; and the output value of the battery power supply matches the set value of the output value setting means. Control means for controlling the power conversion means so that the operation value of the battery power source is varied in a first variation range in a first cycle to sample a voltage value and a current value. The set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized, and the current operation is performed in a second cycle that is longer than the first cycle. Point as reference operating point Sample and store the voltage value and the current value, and sample the voltage value and the current value by changing the operating point in the second fluctuation range wider than the first fluctuation range. A power value at each operating point is calculated, a minimum point of the output power of the battery power supply is detected, and when the minimum point is detected, the maximum value located on the end side of the second fluctuation range from the minimum point is detected. And the operating point at the end of the second variable range is detected and stored, and the operating value at the end of the second variable range is compared with the power value at the reference operating point to determine the power value at the operating point at the second variable range end. Is larger, the first comparison setting for setting the operating point at the end of the second variation range to the reference operating point is performed. If there is the maximum point, the plurality of local maximums are set together with the first comparison setting. From the points, select the maximum point where the power is the maximum, When the local maximum point is compared with the power value of the reference operating point and the local maximum point is larger, a second comparison setting for setting the local maximum point to the reference operating point is performed, and the voltage of the standard operating point is set. A power control device characterized in that it is set to a value. 電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定するための出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期にて、現在の動作点を基準動作点として電圧値および電流値をサンプリングして記憶し、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値から各動作点での電力値を算出し、前記電池電源の出力電力の極小点を検出し、極小点が検出された場合には、前記極小点より前記第2変動範囲の端側にある最大電力の動作点を検出、記憶し、前記最大電力動作点と前記基準動作点の電力値を比較して前記最大電力動作点の電力値のほうが大きい時は、前記最大電力動作点を前記基準動作点に設定し、前記基準動作点の電圧を前記設定値に設定するものであることを特徴とする電力制御装置。A battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and current detection means for detecting a current value of the battery power supply; Output value setting means for setting the output value of the battery power supply based on the detection values of the voltage detection means and the current detection means; and the output value of the battery power supply matches the set value of the output value setting means. Control means for controlling the power conversion means so that the operation value of the battery power source is varied in a first variation range in a first cycle to sample a voltage value and a current value. The set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized, and the current operation is performed in a second cycle that is longer than the first cycle. Point as reference operating point Sample and store the voltage value and the current value, and sample the voltage value and the current value by changing the operating point in the second fluctuation range wider than the first fluctuation range. Calculate the power value at each operating point, detect the minimum point of the output power of the battery power supply, and if the minimum point is detected, the maximum power on the end side of the second fluctuation range from the minimum point. The operating point is detected and stored, and when the power value of the maximum power operating point is larger by comparing the power value of the maximum power operating point and the power value of the reference operating point, the maximum power operating point is set to the reference operating point. And the voltage at the reference operating point is set to the set value. 電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定するための出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期にて、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値から各動作点での電力値を算出し、サンプリングされたうちの3点以上の動作点の検出値を用いてその電圧対電力曲線を有極関数により近似し、前記有極関数の極大値となる点の電圧を前記設定値に設定するものであることを特徴とする電力制御装置。A battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and current detection means for detecting a current value of the battery power supply; Output value setting means for setting the output value of the battery power supply based on the detection values of the voltage detection means and the current detection means; and the output value of the battery power supply matches the set value of the output value setting means. Control means for controlling the power conversion means so that the operation value of the battery power source is varied in a first variation range in a first cycle to sample a voltage value and a current value. The set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized, and the first value is set in a second cycle that is longer than the first cycle. Wider than fluctuation range (2) The operating point is varied in the variation range, the voltage value and the current value are sampled, the power value at each operating point is calculated from the voltage value and the current value, and three or more operating points are sampled. The power control device is characterized in that the voltage vs. power curve is approximated by a polar function using the detected values of the above, and a voltage at a point where the polar function has a local maximum value is set to the set value. 電池電源と、前記電池電源からの電力を変換して負荷に供給する電力変換手段と、前記電池電源の電圧値を検出する電圧検出手段と、前記電池電源の電流値を検出する電流検出手段と、前記電圧検出手段と前記電流検出手段の検出値に基づいて前記電池電源の出力値を設定するための出力値設定手段と、前記電池電源の出力値が前記出力値設定手段の設定値に一致するように前記電力変換手段を制御する制御手段とを備え、前記出力値設定手段は、第1周期にて前記電池電源の動作点を第1変動範囲で変動させて電圧値および電流値をサンプリングし、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するとともに、前記第1周期より長い周期である第2周期においては、前記第1変動範囲より広い第2変動範囲にて動作点を変動させて電圧値および電流値をサンプリングし、同一電圧の複数の動作点の電流値、または電圧値と電流値の乗算により算出される電力値の差が所定値以上なら所定回数まで前記サンプリングをやり直すか、または、設定動作を取り消して元の動作点を設定し、前記電力値の差が所定値未満であれば、前記電圧値と前記電流値に基づいて前記電池電源からの電力が最大となるように前記設定値を設定するものであることを特徴とする電力制御装置。A battery power supply, power conversion means for converting power from the battery power supply and supplying the load to a load, voltage detection means for detecting a voltage value of the battery power supply, and current detection means for detecting a current value of the battery power supply; Output value setting means for setting the output value of the battery power supply based on the detection values of the voltage detection means and the current detection means; and the output value of the battery power supply matches the set value of the output value setting means. Control means for controlling the power conversion means so that the operation value of the battery power source is varied in a first variation range in a first cycle to sample a voltage value and a current value. The set value is set based on the voltage value and the current value so that the power from the battery power supply is maximized, and in the second cycle that is longer than the first cycle, the first The fluctuation range A voltage value and a current value are sampled by varying an operating point in a wide second variation range, and a current value of a plurality of operating points of the same voltage or a difference between power values calculated by multiplying the voltage value and the current value is determined. If the value is equal to or greater than a predetermined value, the sampling is repeated up to a predetermined number of times, or the setting operation is canceled and the original operating point is set. And setting the set value such that the power from the battery power supply is maximized.
JP06514396A 1996-02-28 1996-02-28 Solar cell power controller Expired - Fee Related JP3563865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06514396A JP3563865B2 (en) 1996-02-28 1996-02-28 Solar cell power controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06514396A JP3563865B2 (en) 1996-02-28 1996-02-28 Solar cell power controller

Publications (2)

Publication Number Publication Date
JPH09230952A JPH09230952A (en) 1997-09-05
JP3563865B2 true JP3563865B2 (en) 2004-09-08

Family

ID=13278375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06514396A Expired - Fee Related JP3563865B2 (en) 1996-02-28 1996-02-28 Solar cell power controller

Country Status (1)

Country Link
JP (1) JP3563865B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873091A (en) * 2010-07-12 2010-10-27 中电电气集团有限公司 Method for tracking solar double-peak maximum power point

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606935B2 (en) * 2004-09-13 2011-01-05 株式会社ダイヘン Control method of photovoltaic power generation system
JP4541828B2 (en) * 2004-10-19 2010-09-08 株式会社ダイヘン Control method of photovoltaic power generation system
JP4962792B2 (en) * 2008-01-16 2012-06-27 アイシン精機株式会社 Photovoltaic power generation device using dye-sensitized solar cell
WO2012063304A1 (en) * 2010-11-08 2012-05-18 株式会社日立製作所 Photovoltaic power generation system
JP5806544B2 (en) * 2011-08-01 2015-11-10 京セラ株式会社 Control device
JP5797509B2 (en) * 2011-09-29 2015-10-21 オムロン株式会社 Power supply control device, power conditioner, power supply system, program, and power supply control method
JP5903341B2 (en) * 2012-06-25 2016-04-13 京セラ株式会社 Power generation control device, solar power generation system, and power generation control method
US10247764B2 (en) 2013-07-25 2019-04-02 Daihen Corporation Method for controlling devices provided with communication function, and device used in implementing the method
JP5764638B2 (en) * 2013-10-03 2015-08-19 株式会社ニプロン Power supply device with maximum power point tracking means
CN103995560B (en) * 2014-05-26 2017-03-22 东南大学 Photovoltaic array multi-peak maximum power point tracking method
JP6334312B2 (en) * 2014-08-08 2018-05-30 株式会社東芝 Photovoltaic power generation system monitoring control device, monitoring control program, and solar power generation system
JP7226505B2 (en) * 2018-03-29 2023-02-21 住友電気工業株式会社 Power conversion device and maximum power point tracking control method
JP2020077131A (en) * 2018-11-06 2020-05-21 太陽誘電株式会社 Power conversion device, power generation system, and power control method
JP2020077129A (en) * 2018-11-06 2020-05-21 太陽誘電株式会社 Power conversion device, power generation system, and power control method
JP2020077132A (en) * 2018-11-06 2020-05-21 太陽誘電株式会社 Power conversion device, power generation system, and power control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873091A (en) * 2010-07-12 2010-10-27 中电电气集团有限公司 Method for tracking solar double-peak maximum power point

Also Published As

Publication number Publication date
JPH09230952A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
JP3554116B2 (en) Power control device and solar power generation system using the same
JP3563865B2 (en) Solar cell power controller
EP0653692B1 (en) Method and apparatus for controlling the power of a battery power source
Jain et al. Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems
Mutoh et al. A controlling method for charging photovoltaic generation power obtained by a MPPT control method to series connected ultraelectric double layer capacitors
JP4294346B2 (en) Photovoltaic power generation system and its maximum power point tracking control method
KR102242814B1 (en) String-optima having possible output optimal equal voltage
Harashima et al. Microprocessor-controlled SIT inverter for solar energy system
JPH08123563A (en) Photovoltaic power generation system, device and method for controlling power for the same
Noguchi et al. Short‐current pulse‐based adaptive maximum‐power‐point tracking for a photovoltaic power generation system
Abbes et al. An improved MPPT incremental conductance algorithm using TS Fuzzy system for photovoltaic panel
JPH08123561A (en) Method and device for maximum output following control for photovoltaic power generation system
Fapi et al. Design and hardware realization of an asymmetrical fuzzy logic-based MPPT control for photovoltaic applications
Saad Enhancement of solar cell modeling with MPPT command practice with an electronic edge filter
KR101007283B1 (en) Power control device and power control method for wireless sensor network
JP3359206B2 (en) Battery power control device
JPH10117440A (en) Photovoltaic power generation system
Ansari et al. Control of MPPT for photovoltaic systems using advanced algorithm EPP
Kumari et al. Maximum power point tracking algorithms for grid-connected photovoltaic energy conversion system
Triki et al. An improved incremental conductance based MPPT algorithm for photovoltaic systems
Routray et al. A brief review and comparative analysis of two classical MPPT techniques
JPH10240361A (en) Photovoltaic power generator
Khalf et al. A PV generation system based on P&O MPPT algorithm and SVPWM inverter for standalone applications
JP3021244B2 (en) Power control device and power supply device using the same
Ali Design of Maximum Power Point Tracking Solar Charge Controller using Incremental Method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees