JPH09230952A - Power controller for solar battery - Google Patents

Power controller for solar battery

Info

Publication number
JPH09230952A
JPH09230952A JP8065143A JP6514396A JPH09230952A JP H09230952 A JPH09230952 A JP H09230952A JP 8065143 A JP8065143 A JP 8065143A JP 6514396 A JP6514396 A JP 6514396A JP H09230952 A JPH09230952 A JP H09230952A
Authority
JP
Japan
Prior art keywords
value
voltage
operating point
battery power
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8065143A
Other languages
Japanese (ja)
Other versions
JP3563865B2 (en
Inventor
Seiji Kurokami
誠路 黒神
Nobuyoshi Takehara
信善 竹原
Kimitoshi Fukae
公俊 深江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP06514396A priority Critical patent/JP3563865B2/en
Publication of JPH09230952A publication Critical patent/JPH09230952A/en
Application granted granted Critical
Publication of JP3563865B2 publication Critical patent/JP3563865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the power controller which complements defects of a conventional power control method for a solar battery and derives maximum output from the solar battery. SOLUTION: Ordinary MPPT control is normally performed, and the operation point of the solar battery is varied in longer cycles and over a winder search range than the MPPT control to take in a voltage signal and a current signal. When voltage-power characteristics have two peaks, an original operation point if the original operation point is at the peak where maximum power is obtained or an other operation point if the operation point where the maximum power is obtained is at the other peak is selected, thereby setting the voltage at the selected operation point as a set value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力変換装置を有する太
陽光発電システムの電力制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power control device for a photovoltaic power generation system having a power converter.

【0002】[0002]

【従来の技術】今日、地球環境に対する意識の高まりか
ら、クリーンエネルギーを提供する太陽光発電、風力発
電等の電池電源システムに大きな期待が寄せられてい
る。例えば、太陽電池を電池電源として、既存の商用交
流系統と接続した場合には、家庭内負荷に給電するとと
もに商用交流系統を無限大の負荷とみなして余剰電力を
売電することができることから、その太陽電池やその出
力を交流電力に変換する電力変換装置および家庭内負荷
を含む電源システムは、全体として最も効率よく稼働す
ることが求められている。
2. Description of the Related Art Today, with increasing awareness of the global environment, great expectations are placed on battery power supply systems such as solar power generation and wind power generation that provide clean energy. For example, when a solar battery is used as a battery power source and is connected to an existing commercial AC system, the surplus power can be sold by considering the commercial AC system as an infinite load while supplying power to a home load. A power supply system including the solar cell, a power converter that converts the output of the solar cell into AC power, and a domestic load is required to operate most efficiently as a whole.

【0003】光電変換素子を用いた太陽電池では、その
出力は、日射量、温度、動作点電圧などによりかなり変
動するために、太陽電池から見た負荷を調整して、常に
最大の電力を取り出すことが要望される。このため、複
数の太陽電池から構成される太陽電池アレイの動作点の
電圧や電流を変動させて、その時の電力変動を調べて太
陽電池アレイの最大電力または最大電力近傍の動作点を
追尾する最大電力点追尾制御、いわゆるMPPT制御が
提案されている。例えば、特公昭63−57807号公
報に記載される電力の電圧微分値を利用するものや、特
開昭62−85312号公報に記載されている電力変化
量が正の方向に探索する、いわゆる山登り法などがあ
る。
Since the output of a solar cell using a photoelectric conversion element varies considerably depending on the amount of solar radiation, temperature, operating point voltage, etc., the load seen from the solar cell is adjusted to always take out the maximum power. Is required. Therefore, by varying the voltage or current at the operating point of the solar cell array consisting of multiple solar cells, and checking the power fluctuation at that time, the maximum power of the solar cell array or the operating point near the maximum power is tracked. Power point tracking control, so-called MPPT control, has been proposed. For example, a method utilizing a voltage differential value of electric power described in Japanese Patent Publication No. 63-57807 and a so-called hill climbing described in Japanese Patent Application Laid-Open No. 62-85312 in which the amount of change in electric power is searched in the positive direction. There is a law.

【0004】また、特開平7−225624号公報に記
載されるものにおいては、太陽電池の開放電圧から最低
電圧までの間で極大点を検出し、極大点の中で最大電力
となる極大点の電圧を設定している。
In Japanese Patent Laid-Open No. 7-225624, a maximum point is detected from the open voltage of the solar cell to the minimum voltage, and the maximum point of the maximum power is detected. The voltage is set.

【0005】従来は、このような方法を利用して、太陽
電池から最大電力を取り出すように電力変換装置などを
制御していた。
Conventionally, such a method has been used to control a power converter or the like so as to extract the maximum power from the solar cell.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記の方法に
は以下の問題点がある。通常、太陽電池アレイの電圧−
電力特性は、図8(a)に示したような形状(横軸は電
圧、縦軸は電力)であるが、太陽電池アレイの一部に雪
や建物の影が落ちる場合には、図8(b)に示すような
電圧−電力特性となる場合がある。図8(b)中の動作
点は太陽電池アレイから最大電力を取り出すことがで
きるが、動作点は極大点ではあるが最大電力点ではな
い。
However, the above method has the following problems. Normally, the voltage of the solar cell array −
The power characteristics have a shape as shown in FIG. 8A (horizontal axis is voltage, vertical axis is power), but when snow or a shadow of a building falls on a part of the solar cell array, FIG. In some cases, the voltage-power characteristics may be as shown in (b). Although the maximum power can be taken out from the solar cell array at the operating point in FIG. 8B, the operating point is the maximum point but not the maximum power point.

【0007】従来の山登り法では、動作点を変化させた
ことによる電力変化量の正負により、電圧−電力特性曲
線の「山」の頂上のある方向を見いだすものであるの
で、動作点がまたは近傍にある場合には、動作点は
の「山」の頂上を追いかけて、太陽電池アレイからは
最大電力を取り出すことができる。しかし、動作点が
または近傍にある場合には、動作点はの「山」の頂
上を最大電力点と誤認して追従し、太陽電池アレイから
は最大電力を取り出すことができない。
In the conventional hill-climbing method, a certain direction of the peak of the "mountain" of the voltage-power characteristic curve is found depending on whether the operating point is changed and whether the amount of power change is positive or negative. In the case of, the operating point can follow the top of the "mountain" of, and maximum power can be extracted from the solar cell array. However, when the operating point is at or near the operating point, the operating point misleads the peak of the “mountain” to follow the maximum power point and follows, and the maximum power cannot be extracted from the solar cell array.

【0008】このように、いわゆる「2山問題」が生じ
る場合がある。
As described above, the so-called "double-mountain problem" may occur.

【0009】以上、山登り法での動作について説明した
が、電力の電圧微分値を利用する制御方法でも同様の結
果となる。
Although the operation according to the hill climbing method has been described above, the same result can be obtained with a control method using the voltage differential value of electric power.

【0010】これに対して、特開平7−225624号
公報記載の方法では、2つの「山」のどちらかの電力の
大きいほうの頂上を取ることができる。しかし、太陽電
池に接続される電力変換装置の動作可能範囲は図8
(c)のように限定されるので、動作可能範囲内での最
大電力動作点は極大点にはなく、前記方法では最大電
力を取り出せない。また、前記方法は太陽電池の開放電
圧から最低電圧までという極めて広い範囲をスキャンす
るので、スキャン時の電力損失が懸念される。このため
長いインターバルで上記方法を行うと、最適動作点は常
時変動するので最適動作点からずれて精密に追尾はでき
ず、最大電力を取り出すことができない。また、広範囲
を探索する最中に日射変動が生じると、異なった電圧−
電力特性での動作点をサンプリングして、それに基づい
て動作点を設定するので、誤動作して出力が低下する恐
れがある。
On the other hand, according to the method described in Japanese Patent Laid-Open No. 7-225624, it is possible to take the summit of the larger one of the two "mountains". However, the operable range of the power converter connected to the solar cell is shown in FIG.
Since it is limited as in (c), the maximum power operating point in the operable range is not at the maximum point, and the maximum power cannot be extracted by the above method. In addition, the above method scans an extremely wide range from the open voltage to the minimum voltage of the solar cell, and thus there is a concern about power loss during scanning. For this reason, if the above method is performed at a long interval, the optimum operating point constantly fluctuates, so that it is not possible to perform precise tracking due to deviation from the optimum operating point, and maximum power cannot be extracted. In addition, if solar radiation fluctuations occur while searching a wide area, different voltage-
Since the operating point in the power characteristic is sampled and the operating point is set based on it, there is a risk that the output may decrease due to a malfunction.

【0011】本発明の目的は、従来の太陽電池の電力制
御方法の欠点を補完し、太陽電池から最大出力を取り出
す電力制御装置を提供することである。
An object of the present invention is to provide a power control device which complements the drawbacks of the conventional power control methods for solar cells and takes out the maximum output from the solar cells.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
め、本発明では、常時は、通常のMPPT制御を行うと
ともに、前記MPPT制御より長い周期にて広い探索範
囲で太陽電池の動作点を変動させてその動作点の電圧お
よび電流を取り込んで電力を算出し、電圧ー電力特性が
2山であるときは元の動作点が最大電力が得られる山に
いるか否かを判定し、最大電力が得られる山にいるなら
元の動作点を選択し、最大電力が得られる動作点が他の
山にあるならその山にある動作点を選択し、前記選択動
作点の電圧を前記MPPT制御する際の設定値とするこ
とを特徴とする。
In order to achieve the above object, in the present invention, the normal MPPT control is always performed, and the operating point of the solar cell is set in a wider search range at a longer cycle than the MPPT control. When the voltage and current at that operating point are varied and the power is calculated, the power is calculated. If the voltage-power characteristics are two peaks, it is determined whether the original operating point is in the peak that gives the maximum power, and the maximum power is calculated. The original operating point is selected if the mountain is obtained, and the operating point in the mountain is selected if the operating point where the maximum power is obtained is in another mountain, and the voltage of the selected operating point is controlled by the MPPT. It is characterized in that it is a set value at the time.

【0013】[0013]

【発明の実施の形態】より具体的には、上記目的は、電
池電源と、前記電池電源からの電力を変換して負荷に供
給する電力変換手段と、前記電池電源の電圧値を検出す
る電圧検出手段と、前記電池電源の電流値を検出する電
流検出手段と、前記電圧検出手段と前記電流検出手段の
検出値に基づいて前記電池電源の出力値を設定するため
の出力値設定手段と、前記電池電源の出力値が前記出力
値設定手段の設定値に一致するように前記電力変換手段
を制御する制御手段とを備え、前記出力値設定手段は、
第1周期にて前記電池電源の動作点を第1変動範囲で変
動させて電圧値および電流値をサンプリングし、前記電
圧値と前記電流値に基づいて前記電池電源からの電力が
最大となるように前記設定値を設定するとともに、前記
第1周期より長い周期である第2周期においては、前記
第1変動範囲より広い第2変動範囲にて動作点を変動さ
せて電圧値および電流値をサンプリングし、前記電圧値
と前記電流値に基づいて前記電池電源からの電力が最大
となるように前記設定値を設定するものであることを特
徴とする電力制御装置により達成される。
More specifically, the above object is to provide a battery power source, power conversion means for converting the power from the battery power source and supplying it to a load, and a voltage for detecting the voltage value of the battery power source. Detecting means, current detecting means for detecting the current value of the battery power source, output value setting means for setting the output value of the battery power source based on the detection values of the voltage detecting means and the current detecting means, Control means for controlling the power conversion means so that the output value of the battery power supply matches the set value of the output value setting means, and the output value setting means,
In the first cycle, the operating point of the battery power source is varied within the first variation range to sample the voltage value and the current value, and the power from the battery power source is maximized based on the voltage value and the current value. In the second cycle, which is a cycle longer than the first cycle, the operating point is varied in a second variation range wider than the first variation range, and the voltage value and the current value are sampled. However, the power control device is characterized in that the set value is set based on the voltage value and the current value so that the power from the battery power source becomes maximum.

【0014】また上記目的は、電池電源と、前記電池電
源からの電力を変換して負荷に供給する電力変換手段
と、前記電池電源の電圧値を検出する電圧検出手段と、
前記電池電源の電流値を検出する電流検出手段と、前記
電圧検出手段と前記電流検出手段の検出値に基づいて前
記電池電源の出力値を設定するための出力値設定手段
と、前記電池電源の出力値が前記出力値設定手段の設定
値に一致するように前記電力変換手段を制御する制御手
段とを備え、前記出力値設定手段は、第1周期にて前記
電池電源の動作点を第1変動範囲で変動させて電圧値お
よび電流値をサンプリングし、前記電圧値と前記電流値
に基づいて前記電池電源からの電力が最大となるように
前記設定値を設定するとともに、前記第1周期より長い
周期である第2周期においては、前記第1変動範囲より
広い第2変動範囲にて動作点を変動させて電圧値および
電流値をサンプリングし、前記電圧値と前記電流値に基
づいて第2変動範囲内の電圧−電力特性が2山以上ある
かを判断し、2山以上なら前記電圧値および電流値に基
づき最大電力が得られる動作点が存在する山の中の動作
点の電圧に前記設定値を設定するものであることを特徴
とする電力制御装置により達成される。
Further, the above object is to provide a battery power source, power conversion means for converting the power from the battery power source and supplying it to a load, and voltage detection means for detecting the voltage value of the battery power source.
Current detecting means for detecting the current value of the battery power source, output value setting means for setting the output value of the battery power source based on the detection values of the voltage detecting means and the current detecting means, and the battery power source A control unit that controls the power conversion unit so that the output value matches the set value of the output value setting unit, and the output value setting unit sets the operating point of the battery power supply to the first point in a first cycle. The voltage value and the current value are sampled by being varied within the variation range, and the set value is set based on the voltage value and the current value so that the electric power from the battery power source becomes maximum, and from the first cycle. In the second period, which is a long period, the operating point is varied in a second variation range wider than the first variation range, the voltage value and the current value are sampled, and the second value is calculated based on the voltage value and the current value. Range of fluctuation Whether there are two or more peaks in the voltage-power characteristics, and if there are two or more peaks, the set value is set to the voltage at the operating point in the mountain where the operating point at which maximum power is obtained is based on the voltage value and current value. It is achieved by a power control device characterized by being set.

【0015】また上記目的は、電池電源と、前記電池電
源からの電力を変換して負荷に供給する電力変換手段
と、前記電池電源の電圧値を検出する電圧検出手段と、
前記電池電源の電流値を検出する電流検出手段と、前記
電圧検出手段と前記電流検出手段の検出値に基づいて前
記電池電源の出力値を設定するための出力値設定手段
と、前記電池電源の出力値が前記出力値設定手段の設定
値に一致するように前記電力変換手段を制御する制御手
段とを備え、前記出力値設定手段は、第1周期にて前記
電池電源の動作点を第1変動範囲で変動させて電圧値お
よび電流値をサンプリングし、前記電圧値と前記電流値
に基づいて前記電池電源からの電力が最大となるように
前記設定値を設定するとともに、前記第1周期より長い
周期である第2周期にて、現在の動作点を基準動作点と
して電圧値および電流値をサンプリングして記憶し、前
記第1変動範囲より広い第2変動範囲にて動作点を変動
させて電圧値および電流値をサンプリングし、前記電圧
値と前記電流値から各動作点での電力値を算出し、前記
電池電源の出力電力の極大点および第2変動範囲端での
動作点を記憶し、前記極大点が1つのみの場合には、前
記極大点を前記基準動作点として設定した後、前記第2
変動範囲端の動作点と前記基準動作点の電力値を比較し
て前記第2変動範囲端の動作点の電力値のほうが大きい
時は、前記第2変動範囲端の動作点を前記基準動作点に
設定する第1比較設定を行い、前記極大点が2つ以上あ
る場合には、前記第1比較設定とともに、複数の前記極
大点の中から電力が最大となる極大点を選び、前記選ん
だ極大点と前記基準動作点の電力値を比較して前記極大
点のほうが大きい時は、前記極大点を前記基準動作点に
設定する第2比較設定を行い、前記基準動作点の電圧を
前記設定値に設定するものであることを特徴とする電力
制御装置により達成される。
Further, the above object is to provide a battery power source, a power conversion means for converting the power from the battery power source and supplying it to a load, and a voltage detection means for detecting a voltage value of the battery power source.
Current detecting means for detecting the current value of the battery power source, output value setting means for setting the output value of the battery power source based on the detection values of the voltage detecting means and the current detecting means, and the battery power source A control unit that controls the power conversion unit so that the output value matches the set value of the output value setting unit, and the output value setting unit sets the operating point of the battery power supply to the first point in a first cycle. The voltage value and the current value are sampled by being varied within the variation range, and the set value is set based on the voltage value and the current value so that the electric power from the battery power source becomes maximum, and from the first cycle. In the second cycle, which is a long cycle, voltage values and current values are sampled and stored with the current operating point as a reference operating point, and the operating point is varied in a second variation range wider than the first variation range. Voltage value and Current value is sampled, the power value at each operating point is calculated from the voltage value and the current value, the maximum point of the output power of the battery power source and the operating point at the second fluctuation range end are stored, and the maximum value is stored. When there is only one point, the maximum point is set as the reference operation point, and then the second point is set.
When the power value of the operating point at the end of the fluctuation range and the power value of the reference operating point are compared and the power value of the operating point at the end of the second fluctuation range is greater, the operating point at the end of the second fluctuation range is set to the reference operating point. If there are two or more maximum points, the maximum point that maximizes the electric power is selected from the plurality of maximum points together with the first comparative setting. When the power values of the maximum point and the reference operating point are compared and the maximum point is larger, the second comparison setting is performed to set the maximum point to the reference operating point, and the voltage of the reference operating point is set to the above-mentioned setting. It is achieved by a power control device characterized by being set to a value.

【0016】また上記目的は、電池電源と、前記電池電
源からの電力を変換して負荷に供給する電力変換手段
と、前記電池電源の電圧値を検出する電圧検出手段と、
前記電池電源の電流値を検出する電流検出手段と、前記
電圧検出手段と前記電流検出手段の検出値に基づいて前
記電池電源の出力値を設定するための出力値設定手段
と、前記電池電源の出力値が前記出力値設定手段の設定
値に一致するように前記電力変換手段を制御する制御手
段とを備え、前記出力値設定手段は、第1周期にて前記
電池電源の動作点を第1変動範囲で変動させて電圧値お
よび電流値をサンプリングし、前記電圧値と前記電流値
に基づいて前記電池電源からの電力が最大となるように
前記設定値を設定するとともに、前記第1周期より長い
周期である第2周期にて、現在の動作点を基準動作点と
して電圧値および電流値をサンプリングして記憶し、前
記第1変動範囲より広い第2変動範囲にて動作点を変動
させて電圧値および電流値をサンプリングし、前記電圧
値と前記電流値から各動作点での電力値を算出し、前記
電池電源の出力電力の極小点を検出し、前記極小点が検
出された場合には、前記極小点より前記第2変動範囲の
端側にある極大点および前記第2変動範囲端の動作点を
検出、記憶し、前記第2変動範囲端の動作点と前記基準
動作点の電力値を比較して前記第2変動範囲端の動作点
の電力値のほうが大きい時は、前記第2変動範囲端の動
作点を前記基準動作点に設定する第1比較設定を行い、
前記極大点がある場合には、前記第1比較設定ととも
に、複数の前記極大点の中から電力が最大となる極大点
を選び、前記選んだ極大点と前記基準動作点の電力値を
比較して前記極大点のほうが大きい時は、前記極大点を
前記基準動作点に設定する第2比較設定を行い、前記基
準動作点の電圧を前記設定値に設定するものであること
を特徴とする電力制御装置により達成される。
Further, the above object is to provide a battery power source, a power conversion means for converting the power from the battery power source and supplying it to a load, and a voltage detection means for detecting the voltage value of the battery power source.
Current detecting means for detecting the current value of the battery power source, output value setting means for setting the output value of the battery power source based on the detection values of the voltage detecting means and the current detecting means, and the battery power source A control unit that controls the power conversion unit so that the output value matches the set value of the output value setting unit, and the output value setting unit sets the operating point of the battery power supply to the first point in a first cycle. The voltage value and the current value are sampled by being varied within the variation range, and the set value is set based on the voltage value and the current value so that the electric power from the battery power source becomes maximum, and from the first cycle. In the second cycle, which is a long cycle, voltage values and current values are sampled and stored with the current operating point as a reference operating point, and the operating point is varied in a second variation range wider than the first variation range. Voltage value and Current value is sampled, the power value at each operating point is calculated from the voltage value and the current value, the minimum point of the output power of the battery power source is detected, and when the minimum point is detected, the The maximum point on the end side of the second fluctuation range from the minimum point and the operating point at the end of the second fluctuation range are detected and stored, and the power values of the operating point at the end of the second fluctuation range and the reference operating point are compared. Then, when the power value at the operating point at the end of the second fluctuation range is larger, the first comparison setting is performed to set the operating point at the end of the second fluctuation range as the reference operating point,
When there is the maximum point, a maximum point that maximizes the power is selected from the plurality of maximum points together with the first comparison setting, and the selected maximum point and the power value of the reference operating point are compared. When the maximum point is larger, the second comparison setting is performed to set the maximum point to the reference operating point, and the voltage at the reference operating point is set to the set value. Achieved by the controller.

【0017】また上記目的は、電池電源と、前記電池電
源からの電力を変換して負荷に供給する電力変換手段
と、前記電池電源の電圧値を検出する電圧検出手段と、
前記電池電源の電流値を検出する電流検出手段と、前記
電圧検出手段と前記電流検出手段の検出値に基づいて前
記電池電源の出力値を設定するための出力値設定手段
と、前記電池電源の出力値が前記出力値設定手段の設定
値に一致するように前記電力変換手段を制御する制御手
段とを備え、前記出力値設定手段は、第1周期にて前記
電池電源の動作点を第1変動範囲で変動させて電圧値お
よび電流値をサンプリングし、前記電圧値と前記電流値
に基づいて前記電池電源からの電力が最大となるように
前記設定値を設定するとともに、前記第1周期より長い
周期である第2周期にて、現在の動作点を基準動作点と
して電圧値および電流値をサンプリングして記憶し、前
記第1変動範囲より広い第2変動範囲にて動作点を変動
させて電圧値および電流値をサンプリングし、前記電圧
値と前記電流値から各動作点での電力値を算出し、前記
電池電源の出力電力の極小点を検出し、極小点が検出さ
れた場合には、前記極小点より前記第2変動範囲の端側
にある最大電力の動作点を検出、記憶し、前記最大電力
動作点と前記基準動作点の電力値を比較して前記最大電
力動作点の電力値のほうが大きい時は、前記最大電力動
作点を前記基準動作点に設定し、前記基準動作点の電圧
を前記設定値に設定するものであることを特徴とする電
力制御装置により達成される。
Further, the above object is to provide a battery power source, power conversion means for converting the power from the battery power source and supplying it to a load, and voltage detection means for detecting the voltage value of the battery power source.
Current detecting means for detecting the current value of the battery power source, output value setting means for setting the output value of the battery power source based on the detection values of the voltage detecting means and the current detecting means, and the battery power source A control unit that controls the power conversion unit so that the output value matches the set value of the output value setting unit, and the output value setting unit sets the operating point of the battery power supply to the first point in a first cycle. The voltage value and the current value are sampled by being varied within the variation range, and the set value is set based on the voltage value and the current value so that the electric power from the battery power source becomes maximum, and from the first cycle. In the second cycle, which is a long cycle, voltage values and current values are sampled and stored with the current operating point as a reference operating point, and the operating point is varied in a second variation range wider than the first variation range. Voltage value and Current value is sampled, the power value at each operating point is calculated from the voltage value and the current value, the minimum point of the output power of the battery power source is detected, and when the minimum point is detected, the minimum value is detected. The operating point of the maximum power on the end side of the second fluctuation range from the point is detected and stored, the power values of the maximum power operating point and the reference operating point are compared, and the power value of the maximum power operating point is When it is larger, the maximum power operating point is set to the reference operating point, and the voltage at the reference operating point is set to the set value.

【0018】また上記目的は、電池電源と、前記電池電
源からの電力を変換して負荷に供給する電力変換手段
と、前記電池電源の電圧値を検出する電圧検出手段と、
前記電池電源の電流値を検出する電流検出手段と、前記
電圧検出手段と前記電流検出手段の検出値に基づいて前
記電池電源の出力値を設定するための出力値設定手段
と、前記電池電源の出力値が前記出力値設定手段の設定
値に一致するように前記電力変換手段を制御する制御手
段とを備え、前記出力値設定手段は、第1周期にて前記
電池電源の動作点を第1変動範囲で変動させて電圧値お
よび電流値をサンプリングし、前記電圧値と前記電流値
に基づいて前記電池電源からの電力が最大となるように
前記設定値を設定するとともに、前記第1周期より長い
周期である第2周期にて、前記第1変動範囲より広い第
2変動範囲にて動作点を変動させて電圧値および電流値
をサンプリングし、前記電圧値と前記電流値から各動作
点での電力値を算出し、サンプリングされたうちの3点
以上の動作点を検出値を用いてその電圧対電力曲線を有
極関数により近似し、前記有極関数の極大値となる点の
電圧を前記設定値に設定するものであることを特徴とす
る電力制御装置により達成される。
Further, the above object is to provide a battery power source, power conversion means for converting the power from the battery power source and supplying the load, and voltage detection means for detecting the voltage value of the battery power source.
Current detecting means for detecting the current value of the battery power source, output value setting means for setting the output value of the battery power source based on the detection values of the voltage detecting means and the current detecting means, and the battery power source A control unit that controls the power conversion unit so that the output value matches the set value of the output value setting unit, and the output value setting unit sets the operating point of the battery power supply to the first point in a first cycle. The voltage value and the current value are sampled by being varied within the variation range, and the set value is set based on the voltage value and the current value so that the electric power from the battery power source becomes maximum, and from the first cycle. In the second cycle, which is a long cycle, the operating point is varied in a second variation range wider than the first variation range, the voltage value and the current value are sampled, and at each operating point from the voltage value and the current value. Calculate the power value of , Three or more operating points among the sampled points are approximated to a voltage-to-power curve by a polar function using detected values, and a voltage at a point having a maximum value of the polar function is set to the set value. It is achieved by a power control device characterized in that

【0019】また上記目的は、電池電源と、前記電池電
源からの電力を変換して負荷に供給する電力変換手段
と、前記電池電源の電圧値を検出する電圧検出手段と、
前記電池電源の電流値を検出する電流検出手段と、前記
電圧検出手段と前記電流検出手段の検出値に基づいて前
記電池電源の出力値を設定するための出力値設定手段
と、前記電池電源の出力値が前記出力値設定手段の設定
値に一致するように前記電力変換手段を制御する制御手
段とを備え、前記出力値設定手段は、第1周期にて前記
電池電源の動作点を第1変動範囲で変動させて電圧値お
よび電流値をサンプリングし、前記電圧値と前記電流値
に基づいて前記電池電源からの電力が最大となるように
前記設定値を設定するとともに、前記第1周期より長い
周期である第2周期においては、前記第1変動範囲より
広い第2変動範囲にて動作点を変動させて電圧値および
電流値をサンプリングし、同一電圧の複数の動作点の電
流値、または電圧値と電流値の乗算により算出される電
力値の差が所定値以上なら所定回数まで前記サンプリン
グをやり直すか、または、設定動作を取り消して元の動
作点を設定し、前記電力値の差が所定値未満であれば、
前記電圧値と前記電流値に基づいて前記電池電源からの
電力が最大となるように前記設定値を設定するものであ
ることを特徴とする電力制御装置により達成される。
Further, the above object is to provide a battery power source, a power conversion means for converting the power from the battery power source and supplying it to a load, and a voltage detection means for detecting a voltage value of the battery power source.
Current detecting means for detecting the current value of the battery power source, output value setting means for setting the output value of the battery power source based on the detection values of the voltage detecting means and the current detecting means, and the battery power source A control unit that controls the power conversion unit so that the output value matches the set value of the output value setting unit, and the output value setting unit sets the operating point of the battery power supply to the first point in a first cycle. The voltage value and the current value are sampled by being varied within the variation range, and the set value is set based on the voltage value and the current value so that the electric power from the battery power source becomes maximum, and from the first cycle. In the second cycle, which is a long cycle, the operating point is varied in a second variation range wider than the first variation range, the voltage value and the current value are sampled, and the current values of a plurality of operating points having the same voltage, or Voltage value If the difference between the electric power values calculated by multiplying the electric current value is equal to or larger than a predetermined value, the sampling is repeated for a predetermined number of times, or the setting operation is canceled to set the original operating point, and the difference between the electric power values is less than the predetermined value. If,
It is achieved by the power control device, wherein the set value is set so that the electric power from the battery power source becomes maximum based on the voltage value and the current value.

【0020】[0020]

【作用】本発明の電力制御装置では、第1周期の短い周
期にて第1変動範囲の狭い動作点変動範囲にてMPPT
制御を行うことで、常時は精密に太陽電池の最適動作点
を追尾する。
In the power control device of the present invention, the MPPT is operated in a narrow operating point fluctuation range of the first fluctuation range in the short first cycle.
By performing control, the optimum operating point of the solar cell is always tracked precisely.

【0021】また、第1周期と比較して長い周期の第2
周期にて、第1変動範囲より広い第2変動範囲の動作点
変動範囲を探索し、電力の極大点の数により「2山」に
なってるかを判断し、極大点および探索範囲端動作点を
元にして、「2山」の場合には電力が大きいほうの
「山」の動作点を設定することで、2山問題を解決し
て、太陽電池から最大電力と取り出すことができる。
The second cycle, which has a longer cycle than the first cycle,
In the cycle, the operating point variation range of the second variation range wider than the first variation range is searched, and it is determined whether or not there are “two peaks” depending on the number of the maximum points of the power, and the maximum point and the search range end operating point. Based on the above, by setting the operating point of the "mountain" with the larger power in the case of "2 mountains", the two-mountain problem can be solved and the maximum power can be taken out from the solar cell.

【0022】また、第1周期と比較して長い周期の第2
周期にて、第1変動範囲より広い第2変動範囲の動作点
変動範囲を探索し、電力の極小点が有るか否かにより
「2山」になっているかを判断し、極大点および探索範
囲端動作点を元にして、「2山」の場合には電力が大き
いほうの「山」の動作点を設定することで、2山問題を
解決して、太陽電池から最大電力と取り出すことができ
る。
The second cycle, which has a longer cycle than the first cycle,
In the cycle, the operating point fluctuation range of the second fluctuation range wider than the first fluctuation range is searched, and it is determined whether or not there are “two peaks” depending on whether or not there is a local minimum point of electric power, and the maximum point and the search range. In the case of “two mountains”, the operating point of the “mountain” with the larger power can be set based on the end operating point to solve the two-mountain problem and extract the maximum power from the solar cell. it can.

【0023】また、第1周期と比較して長い周期の第2
周期にて、第1変動範囲より広い第2変動範囲の動作点
変動範囲を探索し、探索範囲の一部または全部の電圧ー
電力特性曲線の有極な近似曲線の極大点の電圧に動作点
を設定することにより、2山問題を解決して、太陽電池
から最大電力と取り出すことができる。
The second cycle, which has a longer cycle than the first cycle,
In the cycle, the operating point variation range of the second variation range wider than the first variation range is searched, and the operating point is set to the voltage at the maximum point of the polar approximate curve of the voltage-power characteristic curve of part or all of the search range. By setting, it is possible to solve the two-mountain problem and extract the maximum power from the solar cell.

【0024】また、同じ電圧の複数の動作点の電流値ま
たは電力値の差に基づき日射変動の有無を判定すること
により誤動作を抑制し、出力低下を抑制できる。
Further, malfunction can be suppressed and output reduction can be suppressed by determining the presence or absence of solar radiation fluctuation based on the difference in current value or power value at a plurality of operating points of the same voltage.

【0025】[0025]

【実施例1】以下、図面を参照して本発明の実施例を説
明する。
Embodiment 1 An embodiment of the present invention will be described below with reference to the drawings.

【0026】図1に本発明の一実施例に係る電力制御装
置を用いた太陽光発電システムの構成を示す。図中、電
池電源1の直流電力は、電力変換手段2にて電力変換さ
れ、負荷3に供給される。
FIG. 1 shows the configuration of a photovoltaic power generation system using a power control device according to an embodiment of the present invention. In the figure, the DC power of the battery power source 1 is converted into power by the power conversion means 2 and supplied to the load 3.

【0027】電池電源1としては、アモルファスシリコ
ン、微結晶シリコン、多結晶シリコン、単結晶シリコン
あるいは化合物半導体などを用いた太陽電池がある。通
常は、複数の太陽電池モジュールを直並列に組み合わせ
て、所望の電圧および電流が得られるようにアレイを構
成する。
As the battery power source 1, there is a solar battery using amorphous silicon, microcrystalline silicon, polycrystalline silicon, single crystal silicon or compound semiconductor. Usually, a plurality of solar cell modules are combined in series and parallel to form an array so as to obtain a desired voltage and current.

【0028】電力変換手段2としては、パワートランジ
スタ、パワーMOSFET、IGBT、GTOなどの自
己消孤型スイッチングデバイスを用いたDC/DCコン
バータ、自動式電圧型DC/ACインバータなどがあ
る。この電力変換手段2は、ゲートパルスのオン/オフ
デューティ比を変えることで電力潮流、入出力電圧、出
力周波数などを制御できる。
The power conversion means 2 includes a DC / DC converter using a self-extinguishing type switching device such as a power transistor, a power MOSFET, an IGBT and a GTO, and an automatic voltage type DC / AC inverter. The power conversion means 2 can control the power flow, the input / output voltage, the output frequency, etc. by changing the on / off duty ratio of the gate pulse.

【0029】負荷3としては、電熱負荷や電動機負荷あ
るいは商用交流系統およびそれらの組み合わせなどがあ
る。負荷3が商用交流系統の場合は、系統連系太陽光発
電システムと呼ばれており、系統に投入され得る電力は
制限されないので、電池電源1からより多くの電力を取
出す本実施例が適用される対象として非常に好ましい。
The load 3 may be an electric heat load, an electric motor load, a commercial AC system, or a combination thereof. When the load 3 is a commercial AC system, it is called a grid-connected photovoltaic power generation system, and the power that can be input to the system is not limited. Therefore, the present embodiment that extracts more power from the battery power source 1 is applied. It is highly preferred as a target.

【0030】電池電源1の出力電圧および出力電流は、
通常用いられる電圧検出手段4および電流検出手段5に
より検出され、電圧検出信号は出力電圧設定手段6およ
び制御手段7に入力され、電流検出信号は出力電圧設定
手段6に入力される。出力電圧設定手段6はこれらの電
圧検出信号および電流検出信号を記憶する。
The output voltage and output current of the battery power source 1 are
Detected by the voltage detection means 4 and the current detection means 5 which are usually used, the voltage detection signal is input to the output voltage setting means 6 and the control means 7, and the current detection signal is input to the output voltage setting means 6. The output voltage setting means 6 stores these voltage detection signal and current detection signal.

【0031】出力電圧設定手段6は、記憶された電圧検
出信号、電流検出信号をもとに、電圧設定値を決定す
る。出力電圧設定手段6は、制御用マイクロコンピュー
タであり、CPU、RAM、ROM、I/Oなどで構成
される。
The output voltage setting means 6 determines the voltage setting value based on the stored voltage detection signal and current detection signal. The output voltage setting means 6 is a control microcomputer and includes a CPU, a RAM, a ROM, an I / O, and the like.

【0032】制御手段7は、電力変換手段2の出力制御
回路とゲート駆動回路である。例えば、出力電圧設定手
段6からの電圧設定値と電圧検出手段4からの電圧検出
信号との偏差である電圧誤差信号が入力され、これが零
となるように制御するPI制御回路と、PI制御回路か
らの出力に応じて三角波比較方式や瞬時電流追従制御な
どによりゲート駆動用のPWMパルスを生成するPWM
回路などからなる。これにより、電力変換手段2のスイ
ッチングデバイスのオン/オフデューティ比を制御し
て、太陽電池の出力電圧を制御する。
The control means 7 is an output control circuit of the power conversion means 2 and a gate drive circuit. For example, a PI control circuit that receives a voltage error signal, which is a deviation between the voltage setting value from the output voltage setting means 6 and the voltage detection signal from the voltage detection means 4, and controls so that the voltage error signal becomes zero, and a PI control circuit. PWM to generate PWM pulse for gate drive by triangular wave comparison method or instantaneous current tracking control according to the output from
It consists of circuits. This controls the on / off duty ratio of the switching device of the power conversion means 2 to control the output voltage of the solar cell.

【0033】次に、図2、図3を用いて、本実施例の電
力制御装置において最大電力が得られる動作点の探索に
ついて説明する。図2は、横軸が電圧、縦軸が電力を示
しており、電圧ー電力出力特性曲線を示している。ま
た、図3に本実施例に係るフローチャートが示されてい
る。本実施例においては、まず、初期動作電圧V0、ス
テップ変動幅dV、探索方向、変動範囲下限電圧VL、
変動範囲上限電圧VH、広範囲探索による電力制御の周
期(以下、WAS周期という)を予め決めておき、RO
Mに記憶させておくとよい。初期動作電圧V0は太陽電
池アレイの構成によって決められる。ステップ変動幅d
Vは電力変換手段2の動作可能電圧範囲の1〜3%程度
にしておく。探索方向は増加方向、減少方向のどちらで
もよい。変動範囲下限電圧VLおよび変動範囲上限電圧
VHは電力変換手段2の動作可能電圧範囲内で設定す
る。WAS周期は、通常のMPPT制御よりも長い周期
で行う広範囲探索の電力制御(ここではWAS制御と呼
ぶ)の周期であり、例えば、数十分程度となるように設
定する。
Next, the search for the operating point where the maximum power is obtained in the power control apparatus of this embodiment will be described with reference to FIGS. In FIG. 2, the horizontal axis represents voltage and the vertical axis represents power, and shows a voltage-power output characteristic curve. Further, FIG. 3 shows a flowchart according to this embodiment. In this embodiment, first, the initial operating voltage V0, the step fluctuation width dV, the search direction, the fluctuation range lower limit voltage VL,
The fluctuation range upper limit voltage VH and the cycle of power control by wide range search (hereinafter referred to as WAS cycle) are determined in advance, and RO
It is better to store it in M. The initial operating voltage V0 is determined by the configuration of the solar cell array. Step fluctuation width d
V is set to about 1 to 3% of the operable voltage range of the power conversion means 2. The search direction may be either the increasing direction or the decreasing direction. The fluctuation range lower limit voltage VL and the fluctuation range upper limit voltage VH are set within the operable voltage range of the power conversion means 2. The WAS cycle is a cycle of power control for wide area search (herein referred to as WAS control) performed at a longer cycle than the normal MPPT control, and is set to be, for example, several tens of minutes.

【0034】電力変換開始時には、動作電圧Vを初期動
作電圧V0に設定した後、常時は山登り法によるMPP
T制御を行い、時々WAS周期に応じてWAS制御を行
う。実際の動作は、以下のようになる。MPPT制御を
開始すると、まず始めに、WAS周期をカウントするタ
イマーをリセットする(StepM01)。次に、設定
されている動作点での電圧、電流をサンプリングし、電
力値P0を算出・記憶する(StepM02)。次に、
タイマーをみてWAS周期になったか否かを判定する
(StepM03)。WAS周期になっていないのであ
れば通常のMPPT制御を行うものとしてStepM0
4へ移り、WAS周期であるならWAS制御を行うもの
としてStepW00へ移動する。WAS周期は長くと
ってあるので、多くの場合は通常MPPT制御のSte
pM04へ行く。
At the start of power conversion, the operating voltage V is set to the initial operating voltage V0, and then the MPP by the hill climbing method is always used.
The T control is performed, and the WAS control is sometimes performed according to the WAS cycle. The actual operation is as follows. When the MPPT control is started, first, the timer for counting the WAS cycle is reset (Step M01). Next, the voltage and current at the set operating point are sampled, and the power value P0 is calculated and stored (Step M02). next,
The timer is checked to determine whether the WAS cycle has been reached (Step M03). If it is not in the WAS cycle, it is assumed that normal MPPT control is performed StepM0
If it is the WAS cycle, it moves to Step W00 for performing the WAS control. Since the WAS cycle is long, in most cases, the normal MPPT control step is set.
Go to pM04.

【0035】StepM04では、探索方向に応じて分
岐し、探索方向が「増加」ならStepM05へ進んで
動作点電圧を現在の電圧よりステップ変動幅dVほど高
い電圧に設定し、探索方向が「減少」ならStepM0
6へ進んで動作点電圧をステップ変動幅dVほど低い電
圧に設定する。そして、StepM07に進む。
In Step M04, the process branches in accordance with the search direction, and if the search direction is "increase", the process proceeds to Step M05 to set the operating point voltage to a voltage higher than the current voltage by the step fluctuation width dV, and the search direction is "decrease". Then StepM0
In step 6, the operating point voltage is set to a voltage as low as the step fluctuation width dV. Then, the process proceeds to Step M07.

【0036】次に、設定されている動作点での電圧およ
び電流をサンプリングし、電力値P1を算出・記憶する
(StepM07)。StepM08では現在の動作点
の電力値P1と以前の動作点の電力値P0を比較する。
もし、電力値P1が電力値P0以下であれば、最適動作
点を通りすぎたと判断し、StepM09にて探索方向
を反転させる。電力値P1が電力値P0より大きいので
あれば、最適動作点はまだ先にあるので、探索方向はそ
のままとして、StepM09はバイパスとする。そし
て、電力値P1を電力値P0として記憶してから(St
epM10)、StepM03に戻り、上記動作を繰り
返す。
Next, the voltage and current at the set operating point are sampled, and the power value P1 is calculated and stored (Step M07). In Step M08, the power value P1 at the current operating point and the power value P0 at the previous operating point are compared.
If the power value P1 is less than or equal to the power value P0, it is determined that the optimum operating point has been passed, and the search direction is reversed in Step M09. If the power value P1 is larger than the power value P0, the optimum operating point is still ahead, so the search direction is left unchanged and StepM09 is bypassed. Then, after storing the power value P1 as the power value P0 (St
epM10), and returns to StepM03, and repeats the above operation.

【0037】StepM03において、WAS周期にな
ったと判断するとStepM00のWASルーチンに飛
ぶ。WASルーチンでは、まず始めに、現在の動作点の
電圧および電流値をサンプリングして電力値を計算し、
その電圧値および電力値を基準動作点電圧VRおよび基
準動作点電力PRとして記憶する(StepW01)。
次に、変動範囲下限電圧VLから変動範囲上限電圧VH
の間の変動範囲で動作点を変動させて、電圧および電流
をサンプリングして電力値を計算する。そして、電力値
の極大点を検出し、極大点の電圧および電力を記憶す
る。また、変動範囲下限電圧VLおよび変動範囲上限電
圧VHでの動作点の電力値PVLおよびPVHを記憶す
る(StepW02)。
When it is determined in StepM03 that the WAS cycle has been reached, the process jumps to the WAS routine in StepM00. In the WAS routine, first, the voltage and current values at the current operating point are sampled to calculate the power value,
The voltage value and the power value are stored as the reference operating point voltage VR and the reference operating point power PR (Step W01).
Next, from the fluctuation range lower limit voltage VL to the fluctuation range upper limit voltage VH
The operating point is varied in a variation range between and the voltage and current are sampled to calculate the power value. Then, the maximum point of the power value is detected, and the voltage and power of the maximum point are stored. Further, the power value PVL and PVH at the operating point at the fluctuation range lower limit voltage VL and the fluctuation range upper limit voltage VH are stored (Step W02).

【0038】次に、極大点の有無を判定し、極大点が無
い場合は探索範囲内には2山は無いと判断してStep
W13へ処理を飛ばし、極大点がある場合には次のSt
epW03に進む。そして、極大点がある場合は、極大
点の数が1つだけか2つ以上あるかに応じて分岐する
(StepW04)。
Next, it is judged whether or not there is a maximum point. If there is no maximum point, it is judged that there are no two peaks in the search range, and Step is determined.
If the processing is skipped to W13 and there is a maximum point, the next St
Proceed to epW03. When there is a maximum point, the process branches depending on whether the number of maximum points is only one or two or more (Step W04).

【0039】極大点の数が1つだけの場合は、前記極大
点を前記基準動作点として前記極大点の電圧V極大点1
および電力P極大点1を前記基準動作点電圧VRおよび
電力PRに設定し(StepW08)、次のStepW
09へ進む。
When the number of maximum points is only one, the maximum point is used as the reference operating point, and the voltage at the maximum point V Maximum point 1
And the power P maximum point 1 is set to the reference operating point voltage VR and the power PR (Step W08), and the next Step W is set.
Go to 09.

【0040】極大点の数が2つ以上の場合は、前記極大
点の中から電力が最大となる極大点(電圧V極大点x、
電力P極大点x)を抽出し(StepM05)、前記電
力最大極大点の電力値P極大点xと前記基準動作点の電
力PRを比較し(StepW06)、前記基準動作点電
力PRのほうが小さい時には、前記極大点を前記基準動
作点となるよう設定して(StepW07)、次のSt
epW09へ進む。
When the number of maximum points is two or more, the maximum point (voltage V maximum point x,
The power P maximum point x) is extracted (Step M05), and the power value P maximum point x of the power maximum maximum point is compared with the power PR of the reference operating point (Step W06). When the reference operating point power PR is smaller, , The maximum point is set to be the reference operation point (Step W07), and the next St
Proceed to epW09.

【0041】StepW09では、前記基準動作点の電
力PRと前記探索範囲下限電圧VLでの電力PVLの大
小関係を比較し、前記基準動作点電力PRのほうが小さ
い時には、前記探索範囲下限電圧VLでの動作点を基準
動作点として前記動作点の電圧VLおよび電力PVLを
前記基準動作点の電圧VRおよび電力PRに設定して
(StepW10)、次のStepW11へ進む。St
epW11では、前記基準動作点の電力PRと前記探索
範囲上限電圧VHでの電力PVHの大小関係を比較し、
前記基準動作点電力PRのほうが小さい時には、前記探
索範囲上限電圧VHでの動作点を基準動作点として前記
動作点の電圧VHおよび電力PVHを前記基準動作点の
電圧VRおよび電力PRに設定して(StepW1
2)、次のStepW13へ進む。そして、StepW
13で前記基準動作点電圧VRを動作電圧Vに設定し
て、WASルーチンの処理は終了する。
At Step W09, the magnitude relationship between the power PR at the reference operating point and the power PVL at the search range lower limit voltage VL is compared. When the reference operating point power PR is smaller, the search range lower limit voltage VL is set. With the operating point as the reference operating point, the voltage VL and the power PVL at the operating point are set to the voltage VR and the power PR at the reference operating point (Step W10), and the process proceeds to the next Step W11. St
In epW11, the magnitude relation between the power PR at the reference operating point and the power PVH at the search range upper limit voltage VH is compared,
When the reference operating point power PR is smaller, the operating point at the search range upper limit voltage VH is set as the reference operating point, and the operating point voltage VH and the power PVH are set to the reference operating point voltage VR and the power PR. (StepW1
2) Go to the next Step W13. And StepW
At 13, the reference operating point voltage VR is set to the operating voltage V, and the processing of the WAS routine ends.

【0042】StepW00にてWAS制御を行った後
は、StepM01に戻りWAS周期をカウントするタ
イマーをリセットし、前述の動作を繰り返す。
After performing the WAS control in StepW00, the process returns to StepM01, the timer for counting the WAS cycle is reset, and the above-described operation is repeated.

【0043】このように、常時は通常のMPPT制御を
行うことにより、現在の「山」における最大電力点を精
密に追従し、長い周期にて広範囲探索し電圧ー電力特性
の電力カーブの極大点の数から「山」に応じた動作点を
設定するWAS制御により、「2山」があった場合でも
時々は極大点および探索範囲端動作点に基づき最大電力
が得られる「山」に移動を行う。これにより、動作中の
大部分の時間において電池電源から最大電力を取り出す
ことが出来る。
As described above, by always performing the normal MPPT control, the maximum power point in the current "mountain" is precisely followed, a wide range is searched in a long cycle, and the maximum point of the power curve of the voltage-power characteristic is searched. With the WAS control that sets the operating point according to the "mountain" from the number of "," sometimes even if there are "2 mountains", move to the "mountain" where the maximum power can be obtained based on the maximum point and the search range end operating point. To do. This allows maximum power to be taken from the battery power source during most of the time it is operating.

【0044】なお、常時行う通常のMPPT制御は、前
記山登り法だけに限定するものではなく、他の方法でも
よい。
The normal MPPT control that is always performed is not limited to the hill climbing method, and other methods may be used.

【0045】[0045]

【実施例2】次に、本発明の他の実施例について説明す
る。本発明の電力制御方法を用いた太陽光発電システム
は、実施例1と同様に図1のような構成をとる。以下、
図4および図5により実施例1とは違った電力制御方法
について説明する。図4は、横軸が電圧、縦軸が電力を
示しており、電圧ー電力出力特性曲線を示している。ま
た、図5に本実施例に係るフローチャートが示されてい
る。図5において、StepM01からStepM10
までの常時行われるMPPT制御は実施例1と同様の山
登り法であり、以下においては、実施例1と異なるWA
S制御(StepW20)について説明する。
Second Embodiment Next, another embodiment of the present invention will be described. A solar power generation system using the power control method of the present invention has a configuration as shown in FIG. 1 as in the first embodiment. Less than,
A power control method different from that of the first embodiment will be described with reference to FIGS. 4 and 5. In FIG. 4, the horizontal axis represents voltage and the vertical axis represents power, and shows a voltage-power output characteristic curve. Further, FIG. 5 shows a flowchart according to this embodiment. In FIG. 5, StepM01 to StepM10
The MPPT control that is always performed up to is the same hill climbing method as in the first embodiment.
The S control (Step W20) will be described.

【0046】StepW20のWASルーチンでは、ま
ず初めに、現在の動作点の電圧および電流をサンプリン
グして電力値を計算し、その電圧値および電力値を基準
動作点電圧VRおよび基準動作点電力PRとして記憶す
る(StepW21)。次に、変動範囲下限電圧VLか
ら変動範囲上限電圧VHの間の変動範囲で動作点を変動
させて、電圧および電流をサンプリングして電力値を計
算する。変動範囲下限電圧VLおよび変動範囲上限電圧
VHでの動作点の電力値PVLおよびPVHを記憶する
とともに、もし電力値の極小点が検出されたなら、前記
変動範囲内で前記極小点より外側における極大点の動作
点を検出して記憶する(StepW22)。
In the WAS routine of Step W20, first, the voltage and current at the current operating point are sampled to calculate the power value, and the voltage value and the power value are used as the reference operating point voltage VR and the reference operating point power PR. Memorize (Step W21). Next, the operating point is varied in the variation range between the variation range lower limit voltage VL and the variation range upper limit voltage VH, and the voltage and current are sampled to calculate the power value. The power values PVL and PVH of the operating points at the fluctuation range lower limit voltage VL and the fluctuation range upper limit voltage VH are stored, and if the minimum point of the power value is detected, the maximum value outside the minimum point within the fluctuation range is detected. The operating point of the point is detected and stored (Step W22).

【0047】次のStepW23にて極小点の有無を判
断して分岐する。もし極小点があるのなら、探索した変
動範囲内に2つ以上の山が存在しており他の山に最大電
力点がある可能性があることを意味しており、以下のよ
うに極大点および探索範囲端の動作点について吟味す
る。まず、前記極大点の中から電力が最大となる極大点
(電圧V極大点x、電力P極大点x)を抽出し(Ste
pW24)、前記最大電力極大点の電力P極大点xと前
記基準動作点の電力PRを比較し(StepW25)、
基準動作点電力PRのほうが小さいなら、前記極大点を
前記基準動作点となるよう設定して(StepW2
6)、次のStepW27へ進む。
At the next Step W23, it is judged whether or not there is a minimum point, and the process branches. If there is a minimum point, it means that there are two or more peaks within the searched fluctuation range and there is a possibility that there is a maximum power point in other peaks. And examine the operating points at the end of the search range. First, a maximum point (voltage V maximum point x, power P maximum point x) that maximizes power is extracted from the maximum points (Ste).
pW24), comparing the power P maximum point x of the maximum power maximum point and the power PR of the reference operating point (Step W25),
If the reference operating point power PR is smaller, the maximum point is set to be the reference operating point (Step W2
6) Then, proceed to the next Step W27.

【0048】StepW27では、前記基準動作点の電
力PRと前記探索範囲下限電圧VLでの電力PVLの大
小関係を比較し、前記基準動作点電力PRのほうが小さ
い時には、前記探索範囲上限電圧VLでの動作点を基準
動作点として前記動作点の電圧VLおよび電力PVLを
前記基準動作点の電圧VRおよび電力PRに設定して
(StepW28)、次のStepW29へ進む。
At Step W27, the magnitude relation between the power PR at the reference operating point and the power PVL at the search range lower limit voltage VL is compared. When the reference operating point power PR is smaller, the search range upper limit voltage VL is set. With the operating point as the reference operating point, the voltage VL and the power PVL at the operating point are set to the voltage VR and the power PR at the reference operating point (Step W28), and the process proceeds to the next Step W29.

【0049】StepW29では、前記基準動作点の電
力PRと前記探索範囲上限電圧VHでの電力PVHの大
小関係を比較し、前記基準動作点電力PRのほうが小さ
い時には、前記探索範囲上限電圧VHでの動作点を基準
動作点として前記動作点の電圧VHおよび電力PVHを
前記基準動作点の電圧VRおよび電力PRに設定して
(StepW30)、次のStepW31へ進む。
At Step W29, the magnitude relation between the power PR at the reference operating point and the power PVH at the search range upper limit voltage VH is compared. When the reference operating point power PR is smaller, the search range upper limit voltage VH is set. With the operating point as the reference operating point, the voltage VH and the power PVH at the operating point are set to the voltage VR and the power PR at the reference operating point (Step W30), and the process proceeds to the next Step W31.

【0050】もし極小点がないのであれば、探索範囲内
には1山しか存在しないので、通常のMPPT制御によ
り最大電力を取り出すことができ、StepW31へ飛
ぶ。そして、StepW31で前記基準動作点電圧VR
を動作電圧Vに設定して、WASルーチンの処理は終了
する。
If there is no minimum point, since there is only one mountain in the search range, maximum power can be taken out by normal MPPT control, and the process jumps to Step W31. Then, at Step W31, the reference operating point voltage VR
Is set to the operating voltage V, and the processing of the WAS routine ends.

【0051】StepW20にてWAS制御を行った後
は、StepM01に戻りWAS周期をカウントするタ
イマーをリセットし、前述の動作を繰り返す。
After performing the WAS control in Step W20, the process returns to Step M01, the timer for counting the WAS cycle is reset, and the above-described operation is repeated.

【0052】このように、常時は通常のMPPT制御を
行うことにより、現在の「山」における最大電力点を精
密に追従し、長い周期にて広範囲探索し電圧ー電力特性
の電力カーブの極小点の有無を判断し、極小点が有れば
「2山」であるとして極大点および探索範囲端動作点を
吟味し、「山」に応じた動作点を設定するWAS制御を
行うことにより、「2山」があった場合でも時々は最大
電力が得られる「山」に移動を行うことにより、電池電
源から最大電力を取り出すことが出来る。
As described above, by always performing the normal MPPT control, the maximum power point in the current "mountain" is accurately followed, a wide range is searched in a long cycle, and the minimum point of the power curve of the voltage-power characteristic is searched. If there is a minimum point, the maximum point and the search range end operating point are examined as if there is a minimum point, and the WAS control that sets the operating point according to the “mountain” is performed. Even if there are two peaks, sometimes the maximum power can be extracted from the battery power supply by moving to the "mountain" where the maximum power can be obtained.

【0053】[0053]

【実施例3】次に、さらに他の実施例について説明す
る。
Third Embodiment Next, still another embodiment will be described.

【0054】本発明の電力制御方法を用いた太陽光発電
システムは、実施例1および2と同様に図1のような構
成をとる。以下、図6および図7により実施例1および
2とは違った電力制御方法について説明する。図6は、
横軸が電圧、縦軸が電力を示しており、電圧ー電力出力
特性曲線を示している。また、図7に本実施例に係るフ
ローチャートが示されている。
A solar power generation system using the power control method of the present invention has a structure as shown in FIG. 1 as in the first and second embodiments. Hereinafter, a power control method different from the first and second embodiments will be described with reference to FIGS. 6 and 7. FIG.
The horizontal axis represents voltage, and the vertical axis represents power, showing a voltage-power output characteristic curve. Further, FIG. 7 shows a flowchart according to this embodiment.

【0055】StepM01からStepM10までの
常時行われるMPPT制御は実施例1および2と同様の
山登り法であり、以下、実施例1および2と異なるWA
S制御(StepW40)について説明する。
The MPPT control that is always performed from Step M01 to Step M10 is the same hill climbing method as in the first and second embodiments, and the WA different from the first and second embodiments will be described below.
The S control (Step W40) will be described.

【0056】StepW40のWASルーチンでは、ま
ず初めに、変動範囲下限電圧VLから変動範囲上限電圧
VHの間の変動範囲で動作点を変動させて、電圧および
電流をサンプリングして電力値を計算する(StepW
41)。次に、サンプリングされた動作点の中から電力
が最大となる動作点を検出し(StepW42)、前記
検出電力最大動作点および前記検出電力最大動作点のす
ぐ近傍の2つの動作点を抽出し、各々(V1、P1)
(V2、P2)(V3、P3)に設定する(StepW
43)。上記(V1、P1)(V2、P2)(V3、P
3)の3つの動作点をもとに電圧ー電力特性曲線を二次
曲線により近似し、前記近似二次曲線の電力が最大とな
る電圧Vpmaxを算出する(StepW44、Ste
pW45)。そして、StepW46で前記Vpmax
を動作電圧Vに設定して、WASルーチンの処理は終了
する。
In the WAS routine of Step W40, first, the operating point is varied within the variation range between the variation range lower limit voltage VL and the variation range upper limit voltage VH, and the voltage and current are sampled to calculate the power value ( StepW
41). Next, the operating point with the maximum power is detected from the sampled operating points (Step W42), and the operating point with the maximum detected power and two operating points in the immediate vicinity of the maximum operating point with the detected power are extracted, Each (V1, P1)
Set to (V2, P2) (V3, P3) (StepW
43). Above (V1, P1) (V2, P2) (V3, P
The voltage-power characteristic curve is approximated by a quadratic curve based on the three operating points of 3), and the voltage Vpmax at which the power of the approximate quadratic curve is maximum is calculated (Step W44, Ste).
pW45). Then, at Step W46, the above Vpmax
Is set to the operating voltage V, and the processing of the WAS routine ends.

【0057】StepW40にてWAS制御を行った後
は、StepM01に戻りタイマーをリセットし、前述
の動作を繰り返す。
After performing the WAS control in Step W40, the process returns to Step M01 to reset the timer, and the above operation is repeated.

【0058】このように、常時は通常のMPPT制御を
行うことにより、現在の「山」における最大電力点を精
密に追従し、長い周期にて広範囲探索し電圧ー電力特性
の電力カーブを有極関数により特性を近似して近似曲線
が最大となる電圧を動作点として設定するWAS制御を
行うことにより、「2山」があった場合でも時々は最大
電力が得られる「山」に移動を行い、電池電源から最大
電力を取り出すことができる。
As described above, by always performing the normal MPPT control, the maximum power point in the current "mountain" is precisely followed, a wide range is searched in a long cycle, and the power curve of the voltage-power characteristic is polarized. By performing the WAS control in which the characteristic is approximated by a function and the voltage at which the approximate curve is maximized is set as the operating point, sometimes the "peak" where maximum power can be obtained is moved even when there are "two peaks". , Maximum power can be taken from the battery power supply.

【0059】[0059]

【実施例の変形例】なお、WAS制御における曲線近似
を用いる手法に、特開平6ー348352号公報などに
開示されている方法を適用してもよい。
[Modification of Embodiment] The method disclosed in Japanese Patent Laid-Open No. 6-348352 may be applied to the method of using curve approximation in WAS control.

【0060】また、WAS制御においては、「山」の数
が2つ以上あるか否かを判定し、「山」の数が2つ以上
なら最大電力が得られる「山」に移動する(「山」と
「山」の間の「谷」を越える)ものであればよい。ま
た、必ずしも最大電力が得られる「山」の中の最大電力
が得られる動作点を設定する必要はない。これらは、本
発明の主旨に反しない。
Also, in the WAS control, it is determined whether or not the number of "mountains" is two or more, and if the number of "mountains" is two or more, the process moves to the "mountain" where the maximum power can be obtained (" Anything that crosses the "valley" between "mountain" and "mountain"). Further, it is not always necessary to set the operating point at which the maximum power is obtained in the "mountain" where the maximum power is obtained. These are not against the spirit of the present invention.

【0061】さらに、WAS制御において、同じ電圧で
電流値を2回以上、所定回数以下で毎回の電流値または
電力値の差が所定値以下になるまでサンプリングを行う
ようにしてもよい。この場合、日射変動の影響を取り除
いたより確実なWAS制御を行うことができる。この複
数回のサンプリングは、同一電圧を持続した状態で連続
して行ってもよく、電圧を繰り返しスキャンする等して
電圧を変化させながら行ってもよい。
Further, in the WAS control, the current value may be sampled twice or more at the same voltage and at a predetermined number of times or less until the difference between the current value or the power value becomes the predetermined value or less each time. In this case, more reliable WAS control can be performed by removing the influence of solar radiation fluctuation. The plurality of times of sampling may be performed continuously while the same voltage is maintained, or may be performed while changing the voltage by repeatedly scanning the voltage.

【0062】[0062]

【発明の効果】以上述べてきたように、本発明の電力制
御装置では、以下の効果を有する。 (1)電圧ー電力特性曲線で2山が生じる場合でも、電
力が大きいほうの山へ移動でき、最大電力を取り出すこ
とができる。 (2)常時は通常のMPPT制御を行っているので、最
適動作点を精密に追尾出来る。 (3)長いインターバルにてWAS制御を行うので、広
範囲探索によるロスを極力抑えられる。 (4)動作可能な範囲の中で電力が最大となる動作点が
極大点でない場合でも追従できる。 (5)WAS制御にてサンプリング動作点の間の動作点
を精密に設定できる。 (6)日射変動の有無を検出することによりWAS制御
の誤動作による出力低下を抑制出来る。
As described above, the power control device of the present invention has the following effects. (1) Even if two peaks occur in the voltage-power characteristic curve, the peak can be moved to the peak with the larger power and the maximum power can be extracted. (2) Since the normal MPPT control is always performed, the optimum operating point can be precisely tracked. (3) Since the WAS control is performed at a long interval, the loss due to the wide area search can be suppressed as much as possible. (4) It is possible to follow up even if the operating point where the electric power is maximum in the operable range is not the maximum point. (5) The operating point between sampling operating points can be precisely set by WAS control. (6) By detecting the presence or absence of solar radiation fluctuation, it is possible to suppress the output reduction due to the malfunction of the WAS control.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る電力制御装置を備え
た太陽光発電システムの一構成例を示すブロック図であ
る。
FIG. 1 is a block diagram showing a configuration example of a photovoltaic power generation system including a power control device according to an embodiment of the present invention.

【図2】 図1のシステムにおける最適動作点探索の説
明図である。
FIG. 2 is an explanatory diagram of optimum operating point search in the system of FIG.

【図3】 図1のシステムにおける最適動作点探索動作
を説明するフローチャートである。
FIG. 3 is a flowchart illustrating an optimum operating point search operation in the system of FIG.

【図4】 本発明の他の実施例に係る最適動作点探索の
説明図である。
FIG. 4 is an explanatory diagram of an optimum operating point search according to another embodiment of the present invention.

【図5】 本発明の他の実施例に係る最適動作点探索動
作を説明するフローチャートである。
FIG. 5 is a flowchart illustrating an optimum operating point searching operation according to another embodiment of the present invention.

【図6】 本発明のさらに他の実施例に係る最適動作点
探索の説明図である。
FIG. 6 is an explanatory diagram of an optimum operating point search according to still another embodiment of the present invention.

【図7】 本発明のさらに他の実施例に係る最適動作点
探索動作を説明するフローチャートである。
FIG. 7 is a flowchart illustrating an optimum operating point searching operation according to still another embodiment of the present invention.

【図8】 太陽電池の電圧ー電力特性の例を示すグラフ
である。
FIG. 8 is a graph showing an example of voltage-power characteristics of a solar cell.

【符号の説明】[Explanation of symbols]

1:電池電源、2:電力変換手段、3:負荷、4:電圧
検出手段、5:電流検出手段、6:出力電圧設定手段、
7:制御手段。
1: battery power source, 2: power conversion means, 3: load, 4: voltage detection means, 5: current detection means, 6: output voltage setting means,
7: Control means.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電池電源と、前記電池電源からの電力を
変換して負荷に供給する電力変換手段と、前記電池電源
の電圧値を検出する電圧検出手段と、前記電池電源の電
流値を検出する電流検出手段と、前記電圧検出手段と前
記電流検出手段の検出値に基づいて前記電池電源の出力
値を設定する出力値設定手段と、前記電池電源の出力値
が前記出力値設定手段の設定値に一致するように前記電
力変換手段を制御する制御手段とを備え、前記出力値設
定手段は、第1周期にて前記電池電源の動作点を第1変
動範囲で変動させて電圧値および電流値をサンプリング
し、前記電圧値と前記電流値に基づいて前記電池電源か
らの電力が最大となるように前記設定値を設定するとと
もに、前記第1周期より長い周期である第2周期におい
ては、前記第1変動範囲より広い第2変動範囲にて動作
点を変動させて電圧値および電流値をサンプリングし、
前記電圧値と前記電流値に基づいて前記電池電源からの
電力が最大となるように前記設定値を設定するものであ
ることを特徴とする電力制御装置。
1. A battery power source, power conversion means for converting power from the battery power source and supplying it to a load, voltage detection means for detecting a voltage value of the battery power source, and current value of the battery power source. Current detecting means, output value setting means for setting the output value of the battery power source based on the detection values of the voltage detecting means and the current detecting means, and the output value of the battery power source is set by the output value setting means. Control means for controlling the power conversion means so as to match the voltage value, and the output value setting means varies the operating point of the battery power supply in the first variation range in the first cycle to obtain the voltage value and the current value. A value is sampled, and the set value is set so that the electric power from the battery power source becomes maximum based on the voltage value and the current value, and in the second cycle that is a cycle longer than the first cycle, The first fluctuation The operating point is varied in the second variation range wider than the range, and the voltage value and the current value are sampled,
A power control apparatus, wherein the set value is set based on the voltage value and the current value so that the power from the battery power source becomes maximum.
【請求項2】 電池電源と、前記電池電源からの電力を
変換して負荷に供給する電力変換手段と、前記電池電源
の電圧値を検出する電圧検出手段と、前記電池電源の電
流値を検出する電流検出手段と、前記電圧検出手段と前
記電流検出手段の検出値に基づいて前記電池電源の出力
値を設定する出力値設定手段と、前記電池電源の出力値
が前記出力値設定手段の設定値に一致するように前記電
力変換手段を制御する制御手段とを備え、前記出力値設
定手段は、第1周期にて前記電池電源の動作点を第1変
動範囲で変動させて電圧値および電流値をサンプリング
し、前記電圧値と前記電流値に基づいて前記電池電源か
らの電力が最大となるように前記設定値を設定するとと
もに、前記第1周期より長い周期である第2周期におい
ては、前記第1変動範囲より広い第2変動範囲にて動作
点を変動させて電圧値および電流値をサンプリングし、
前記電圧値と前記電流値に基づいて第2変動範囲内の電
圧−電力特性が2山以上あるかを判断し、2山以上なら
前記電圧値および電流値に基づき最大電力が得られる動
作点が存在する山の中の動作点の電圧に前記設定値を設
定するものであることを特徴とする電力制御装置。
2. A battery power supply, a power conversion means for converting the power from the battery power supply and supplying it to a load, a voltage detection means for detecting a voltage value of the battery power supply, and a current value of the battery power supply. Current detecting means, output value setting means for setting the output value of the battery power source based on the detection values of the voltage detecting means and the current detecting means, and the output value of the battery power source is set by the output value setting means. Control means for controlling the power conversion means so as to match the voltage value, and the output value setting means varies the operating point of the battery power supply in the first variation range in the first cycle to obtain the voltage value and the current value. A value is sampled, and the set value is set so that the electric power from the battery power source becomes maximum based on the voltage value and the current value, and in the second cycle that is a cycle longer than the first cycle, The first fluctuation The operating point is varied in the second variation range wider than the range, and the voltage value and the current value are sampled,
Based on the voltage value and the current value, it is determined whether the voltage-power characteristic in the second fluctuation range has two or more peaks, and if there are two or more peaks, the operating point at which maximum power is obtained based on the voltage value and the current value is determined. A power control device, wherein the set value is set to a voltage at an operating point in an existing mountain.
【請求項3】 電池電源と、前記電池電源からの電力を
変換して負荷に供給する電力変換手段と、前記電池電源
の電圧値を検出する電圧検出手段と、前記電池電源の電
流値を検出する電流検出手段と、前記電圧検出手段と前
記電流検出手段の検出値に基づいて前記電池電源の出力
値を設定する出力値設定手段と、前記電池電源の出力値
が前記出力値設定手段の設定値に一致するように前記電
力変換手段を制御する制御手段とを備え、前記出力値設
定手段は、第1周期にて前記電池電源の動作点を第1変
動範囲で変動させて電圧値および電流値をサンプリング
し、前記電圧値と前記電流値に基づいて前記電池電源か
らの電力が最大となるように前記設定値を設定するとと
もに、前記第1周期より長い周期である第2周期にて、
現在の動作点を基準動作点として電圧値および電流値を
サンプリングして記憶し、前記第1変動範囲より広い第
2変動範囲にて動作点を変動させて電圧値および電流値
をサンプリングし、前記電圧値と前記電流値から各動作
点での電力値を算出し、前記電池電源の出力電力の極大
点および第2変動範囲端での動作点を記憶し、前記極大
点が1つのみの場合には、前記極大点を前記基準動作点
に設定するとともに、前記第2変動範囲端の動作点と前
記基準動作点の電力値を比較して前記第2変動範囲端の
動作点の電力値のほうが大きい時は、前記第2変動範囲
端の動作点を前記基準動作点に設定する第1比較設定を
行い、前記極大点が2つ以上ある場合には、前記第1比
較設定とともに、複数の前記極大点の中から電力が最大
となる極大点を選び、前記選択された極大点と前記基準
動作点の電力値を比較して前記極大点のほうが大きい時
は、前記極大点を前記基準動作点に設定する第2比較設
定を行い、前記基準動作点の電圧を前記設定値に設定す
るものであることを特徴とする電力制御装置。
3. A battery power supply, power conversion means for converting the power from the battery power supply and supplying it to a load, voltage detection means for detecting a voltage value of the battery power supply, and current value of the battery power supply. Current detecting means, output value setting means for setting the output value of the battery power source based on the detection values of the voltage detecting means and the current detecting means, and the output value of the battery power source is set by the output value setting means. Control means for controlling the power conversion means so as to match the voltage value, and the output value setting means varies the operating point of the battery power supply in the first variation range in the first cycle to obtain the voltage value and the current value. A value is sampled, and the set value is set based on the voltage value and the current value so that the electric power from the battery power source becomes maximum, and in a second cycle that is a cycle longer than the first cycle,
A voltage value and a current value are sampled and stored with the current operating point as a reference operating point, and the operating point is varied in a second variation range wider than the first variation range to sample the voltage value and the current value. When the power value at each operating point is calculated from the voltage value and the current value, the maximum point of the output power of the battery power source and the operating point at the end of the second fluctuation range are stored, and there is only one maximum point. In addition, the maximum point is set to the reference operating point, and the power values of the operating point at the end of the second fluctuation range and the reference operating point are compared to determine the power value of the operating point at the end of the second fluctuation range. When it is larger, the first comparison setting for setting the operation point at the end of the second fluctuation range to the reference operation point is performed, and when there are two or more maximum points, the first comparison setting and a plurality of From the maximum points, select the maximum point that maximizes the power. , Comparing the power values of the selected maximum point and the reference operating point, and when the maximum point is larger, a second comparison setting is performed to set the maximum point to the reference operating point, and the reference operating point is set. The electric power control device is characterized in that the voltage of is set to the set value.
【請求項4】 電池電源と、前記電池電源からの電力を
変換して負荷に供給する電力変換手段と、前記電池電源
の電圧値を検出する電圧検出手段と、前記電池電源の電
流値を検出する電流検出手段と、前記電圧検出手段と前
記電流検出手段の検出値に基づいて前記電池電源の出力
値を設定するための出力値設定手段と、前記電池電源の
出力値が前記出力値設定手段の設定値に一致するように
前記電力変換手段を制御する制御手段とを備え、前記出
力値設定手段は、第1周期にて前記電池電源の動作点を
第1変動範囲で変動させて電圧値および電流値をサンプ
リングし、前記電圧値と前記電流値に基づいて前記電池
電源からの電力が最大となるように前記設定値を設定す
るとともに、前記第1周期より長い周期である第2周期
にて、現在の動作点を基準動作点として電圧値および電
流値をサンプリングして記憶し、前記第1変動範囲より
広い第2変動範囲にて動作点を変動させて電圧値および
電流値をサンプリングし、前記電圧値と前記電流値から
各動作点での電力値を算出し、前記電池電源の出力電力
の極小点を検出し、前記極小点が検出された場合には、
前記極小点より前記第2変動範囲の端側にある極大点お
よび前記第2変動範囲端の動作点を検出、記憶し、前記
第2変動範囲端の動作点と前記基準動作点の電力値を比
較して前記第2変動範囲端の動作点の電力値のほうが大
きい時は、前記第2変動範囲端の動作点を前記基準動作
点に設定する第1比較設定を行い、前記極大点がある場
合には、前記第1比較設定とともに、複数の前記極大点
の中から電力が最大となる極大点を選び、前記選んだ極
大点と前記基準動作点の電力値を比較して前記極大点の
ほうが大きい時は、前記極大点を前記基準動作点に設定
する第2比較設定を行い、前記基準動作点の電圧を前記
設定値に設定するものであることを特徴とする電力制御
装置。
4. A battery power supply, a power conversion means for converting the power from the battery power supply and supplying it to a load, a voltage detection means for detecting a voltage value of the battery power supply, and a current value of the battery power supply. Current detecting means, output value setting means for setting the output value of the battery power source based on the detected values of the voltage detecting means and the current detecting means, and the output value of the battery power source is the output value setting means. And a control means for controlling the power conversion means so as to match the set value of the output value setting means, the output value setting means changing the operating point of the battery power supply in the first variation range in the first cycle to obtain the voltage value. And a current value are sampled, and the set value is set based on the voltage value and the current value so that the electric power from the battery power source becomes maximum, and the second cycle is a cycle longer than the first cycle. The current operating point Is stored as a reference operating point, and the operating point is varied in a second variation range wider than the first variation range to sample the voltage value and the current value. The power value at each operating point is calculated from the current value, the minimum point of the output power of the battery power source is detected, and when the minimum point is detected,
A maximum point on the end side of the second variation range from the minimum point and an operating point at the second variation range end are detected and stored, and the power values of the operating point at the second variation range end and the reference operating point are stored. When the power value at the operating point at the end of the second fluctuation range is larger than that at the end of the second fluctuation range, the first comparison setting is performed to set the operating point at the end of the second fluctuation range as the reference operating point, and the maximum point exists. In this case, with the first comparison setting, a maximum point at which the power is maximized is selected from a plurality of maximum points, the selected maximum point and the power value of the reference operating point are compared, and the maximum point When it is larger, the power control device is characterized in that the second comparison setting for setting the maximum point to the reference operating point is performed and the voltage at the reference operating point is set to the set value.
【請求項5】 電池電源と、前記電池電源からの電力を
変換して負荷に供給する電力変換手段と、前記電池電源
の電圧値を検出する電圧検出手段と、前記電池電源の電
流値を検出する電流検出手段と、前記電圧検出手段と前
記電流検出手段の検出値に基づいて前記電池電源の出力
値を設定するための出力値設定手段と、前記電池電源の
出力値が前記出力値設定手段の設定値に一致するように
前記電力変換手段を制御する制御手段とを備え、前記出
力値設定手段は、第1周期にて前記電池電源の動作点を
第1変動範囲で変動させて電圧値および電流値をサンプ
リングし、前記電圧値と前記電流値に基づいて前記電池
電源からの電力が最大となるように前記設定値を設定す
るとともに、前記第1周期より長い周期である第2周期
にて、現在の動作点を基準動作点として電圧値および電
流値をサンプリングして記憶し、前記第1変動範囲より
広い第2変動範囲にて動作点を変動させて電圧値および
電流値をサンプリングし、前記電圧値と前記電流値から
各動作点での電力値を算出し、前記電池電源の出力電力
の極小点を検出し、極小点が検出された場合には、前記
極小点より前記第2変動範囲の端側にある最大電力の動
作点を検出、記憶し、前記最大電力動作点と前記基準動
作点の電力値を比較して前記最大電力動作点の電力値の
ほうが大きい時は、前記最大電力動作点を前記基準動作
点に設定し、前記基準動作点の電圧を前記設定値に設定
するものであることを特徴とする電力制御装置。
5. A battery power source, power conversion means for converting the power from the battery power source and supplying it to a load, voltage detection means for detecting a voltage value of the battery power source, and current value of the battery power source. Current detecting means, output value setting means for setting the output value of the battery power source based on the detected values of the voltage detecting means and the current detecting means, and the output value of the battery power source is the output value setting means. And a control means for controlling the power conversion means so as to match the set value of the output value setting means, the output value setting means changing the operating point of the battery power supply in the first variation range in the first cycle to obtain the voltage value. And a current value are sampled, and the set value is set based on the voltage value and the current value so that the electric power from the battery power source becomes maximum, and the second cycle is a cycle longer than the first cycle. The current operating point Is stored as a reference operating point, and the operating point is varied in a second variation range wider than the first variation range to sample the voltage value and the current value. The power value at each operating point is calculated from the current value, the minimum point of the output power of the battery power source is detected, and when the minimum point is detected, the minimum point is located on the end side of the second fluctuation range. When an operating point of a certain maximum power is detected and stored, the maximum power operating point and the reference operating point are compared in power value, and when the power value of the maximum power operating point is larger, the maximum power operating point is set to A power control device, wherein the power control device is set to a reference operating point, and the voltage at the reference operating point is set to the set value.
【請求項6】 電池電源と、前記電池電源からの電力を
変換して負荷に供給する電力変換手段と、前記電池電源
の電圧値を検出する電圧検出手段と、前記電池電源の電
流値を検出する電流検出手段と、前記電圧検出手段と前
記電流検出手段の検出値に基づいて前記電池電源の出力
値を設定するための出力値設定手段と、前記電池電源の
出力値が前記出力値設定手段の設定値に一致するように
前記電力変換手段を制御する制御手段とを備え、前記出
力値設定手段は、第1周期にて前記電池電源の動作点を
第1変動範囲で変動させて電圧値および電流値をサンプ
リングし、前記電圧値と前記電流値に基づいて前記電池
電源からの電力が最大となるように前記設定値を設定す
るとともに、前記第1周期より長い周期である第2周期
にて、前記第1変動範囲より広い第2変動範囲にて動作
点を変動させて電圧値および電流値をサンプリングし、
前記電圧値と前記電流値から各動作点での電力値を算出
し、サンプリングされたうちの3点以上の動作点の検出
値を用いてその電圧対電力曲線を有極関数により近似
し、前記有極関数の極大値となる点の電圧を前記設定値
に設定するものであることを特徴とする電力制御装置。
6. A battery power source, power conversion means for converting power from the battery power source and supplying it to a load, voltage detection means for detecting a voltage value of the battery power source, and current value of the battery power source. Current detecting means, output value setting means for setting the output value of the battery power source based on the detected values of the voltage detecting means and the current detecting means, and the output value of the battery power source is the output value setting means. And a control means for controlling the power conversion means so as to match the set value of the output value setting means, the output value setting means changing the operating point of the battery power supply in the first variation range in the first cycle to obtain the voltage value. And a current value are sampled, and the set value is set based on the voltage value and the current value so that the electric power from the battery power source becomes maximum, and the second cycle is a cycle longer than the first cycle. The first fluctuation The operating point is varied in the second variation range wider than the range, and the voltage value and the current value are sampled,
The power value at each operating point is calculated from the voltage value and the current value, and the voltage-to-power curve is approximated by a polar function using the detected values of three or more operating points among the sampled points, A power control apparatus, wherein a voltage at a point having a maximum value of a polarized function is set to the set value.
【請求項7】 電池電源と、前記電池電源からの電力を
変換して負荷に供給する電力変換手段と、前記電池電源
の電圧値を検出する電圧検出手段と、前記電池電源の電
流値を検出する電流検出手段と、前記電圧検出手段と前
記電流検出手段の検出値に基づいて前記電池電源の出力
値を設定するための出力値設定手段と、前記電池電源の
出力値が前記出力値設定手段の設定値に一致するように
前記電力変換手段を制御する制御手段とを備え、前記出
力値設定手段は、第1周期にて前記電池電源の動作点を
第1変動範囲で変動させて電圧値および電流値をサンプ
リングし、前記電圧値と前記電流値に基づいて前記電池
電源からの電力が最大となるように前記設定値を設定す
るとともに、前記第1周期より長い周期である第2周期
においては、前記第1変動範囲より広い第2変動範囲に
て動作点を変動させて電圧値および電流値をサンプリン
グし、同一電圧の複数の動作点の電流値、または電圧値
と電流値の乗算により算出される電力値の差が所定値以
上なら所定回数まで前記サンプリングをやり直すか、ま
たは、設定動作を取り消して元の動作点を設定し、前記
電力値の差が所定値未満であれば、前記電圧値と前記電
流値に基づいて前記電池電源からの電力が最大となるよ
うに前記設定値を設定するものであることを特徴とする
電力制御装置。
7. A battery power supply, power conversion means for converting the power from the battery power supply and supplying it to a load, voltage detection means for detecting a voltage value of the battery power supply, and current value of the battery power supply. Current detecting means, output value setting means for setting the output value of the battery power source based on the detected values of the voltage detecting means and the current detecting means, and the output value of the battery power source is the output value setting means. And a control means for controlling the power conversion means so as to match the set value of the output value setting means, the output value setting means changing the operating point of the battery power supply in the first variation range in the first cycle to obtain the voltage value. And a current value are sampled, and the set value is set based on the voltage value and the current value so that the power from the battery power source becomes maximum, and in the second cycle that is a cycle longer than the first cycle. Is the above Electric power calculated by varying the operating point in a second variation range wider than the first variation range, sampling the voltage value and the current value, and multiplying the current value at a plurality of operating points at the same voltage, or by multiplying the voltage value and the current value. If the difference between the values is greater than or equal to a predetermined value, the sampling is repeated a predetermined number of times, or the setting operation is canceled to set the original operating point, and if the difference between the power values is less than the predetermined value, the voltage value and the A power control device, wherein the set value is set so that the power from the battery power source becomes maximum based on a current value.
JP06514396A 1996-02-28 1996-02-28 Solar cell power controller Expired - Fee Related JP3563865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06514396A JP3563865B2 (en) 1996-02-28 1996-02-28 Solar cell power controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06514396A JP3563865B2 (en) 1996-02-28 1996-02-28 Solar cell power controller

Publications (2)

Publication Number Publication Date
JPH09230952A true JPH09230952A (en) 1997-09-05
JP3563865B2 JP3563865B2 (en) 2004-09-08

Family

ID=13278375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06514396A Expired - Fee Related JP3563865B2 (en) 1996-02-28 1996-02-28 Solar cell power controller

Country Status (1)

Country Link
JP (1) JP3563865B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107425A (en) * 2004-09-13 2006-04-20 Daihen Corp Control method for photovoltaic power generation system
JP2006119696A (en) * 2004-10-19 2006-05-11 Daihen Corp Control method for photovoltaic power generation system
JP2009170640A (en) * 2008-01-16 2009-07-30 Aisin Seiki Co Ltd Photovoltaic power generator using dye-sensitized solar cell
WO2012063304A1 (en) * 2010-11-08 2012-05-18 株式会社日立製作所 Photovoltaic power generation system
JP2013033365A (en) * 2011-08-01 2013-02-14 Kyocera Corp Control device
JP2013077065A (en) * 2011-09-29 2013-04-25 Omron Corp Power controller, power conditioner, power supply system, program, and power control method
WO2014002476A1 (en) * 2012-06-25 2014-01-03 京セラ株式会社 Power generation control apparatus, solar power system, and power generation control method
CN103995560A (en) * 2014-05-26 2014-08-20 东南大学 Photovoltaic array multi-peak maximum power point tracking method
DE102014110472A1 (en) 2013-07-25 2015-03-12 Daihen Corporation A method of controlling devices provided with a communication function and apparatus used in the execution of the method
JP2015072667A (en) * 2013-10-03 2015-04-16 株式会社ニプロン Power supply device with maximum-power-point tracking means
JP2016038816A (en) * 2014-08-08 2016-03-22 株式会社東芝 Photovoltaic power generation system monitoring controller, monitor control program and photovoltaic power generation system
JP2020077131A (en) * 2018-11-06 2020-05-21 太陽誘電株式会社 Power conversion device, power generation system, and power control method
JP2020077132A (en) * 2018-11-06 2020-05-21 太陽誘電株式会社 Power conversion device, power generation system, and power control method
JP2020077129A (en) * 2018-11-06 2020-05-21 太陽誘電株式会社 Power conversion device, power generation system, and power control method
JP2022009818A (en) * 2018-03-29 2022-01-14 住友電気工業株式会社 Power conversion apparatus and maximum power point follow-up control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873091A (en) * 2010-07-12 2010-10-27 中电电气集团有限公司 Method for tracking solar double-peak maximum power point

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107425A (en) * 2004-09-13 2006-04-20 Daihen Corp Control method for photovoltaic power generation system
JP4606935B2 (en) * 2004-09-13 2011-01-05 株式会社ダイヘン Control method of photovoltaic power generation system
JP2006119696A (en) * 2004-10-19 2006-05-11 Daihen Corp Control method for photovoltaic power generation system
JP4541828B2 (en) * 2004-10-19 2010-09-08 株式会社ダイヘン Control method of photovoltaic power generation system
JP2009170640A (en) * 2008-01-16 2009-07-30 Aisin Seiki Co Ltd Photovoltaic power generator using dye-sensitized solar cell
WO2012063304A1 (en) * 2010-11-08 2012-05-18 株式会社日立製作所 Photovoltaic power generation system
JP5659240B2 (en) * 2010-11-08 2015-01-28 株式会社日立製作所 Solar power system
JP2013033365A (en) * 2011-08-01 2013-02-14 Kyocera Corp Control device
JP2013077065A (en) * 2011-09-29 2013-04-25 Omron Corp Power controller, power conditioner, power supply system, program, and power control method
WO2014002476A1 (en) * 2012-06-25 2014-01-03 京セラ株式会社 Power generation control apparatus, solar power system, and power generation control method
JP2014006747A (en) * 2012-06-25 2014-01-16 Kyocera Corp Power generation control apparatus, solar power generation system, and power generation control method
US9608561B2 (en) 2012-06-25 2017-03-28 Kyocera Corporation Power generation control apparatus, solar power generation system, and power generation control method
DE102014110472A1 (en) 2013-07-25 2015-03-12 Daihen Corporation A method of controlling devices provided with a communication function and apparatus used in the execution of the method
US10247764B2 (en) 2013-07-25 2019-04-02 Daihen Corporation Method for controlling devices provided with communication function, and device used in implementing the method
US11029345B2 (en) 2013-07-25 2021-06-08 Daihen Corporation Method for controlling devices provided with communication function, and device used in implementing the method
US11624760B2 (en) 2013-07-25 2023-04-11 Daihen Corporation Method for controlling devices provided with communication function, and device used in implementing the method
JP2015072667A (en) * 2013-10-03 2015-04-16 株式会社ニプロン Power supply device with maximum-power-point tracking means
CN103995560B (en) * 2014-05-26 2017-03-22 东南大学 Photovoltaic array multi-peak maximum power point tracking method
CN103995560A (en) * 2014-05-26 2014-08-20 东南大学 Photovoltaic array multi-peak maximum power point tracking method
JP2016038816A (en) * 2014-08-08 2016-03-22 株式会社東芝 Photovoltaic power generation system monitoring controller, monitor control program and photovoltaic power generation system
JP2022009818A (en) * 2018-03-29 2022-01-14 住友電気工業株式会社 Power conversion apparatus and maximum power point follow-up control method
JP2020077131A (en) * 2018-11-06 2020-05-21 太陽誘電株式会社 Power conversion device, power generation system, and power control method
JP2020077132A (en) * 2018-11-06 2020-05-21 太陽誘電株式会社 Power conversion device, power generation system, and power control method
JP2020077129A (en) * 2018-11-06 2020-05-21 太陽誘電株式会社 Power conversion device, power generation system, and power control method

Also Published As

Publication number Publication date
JP3563865B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
JP3554116B2 (en) Power control device and solar power generation system using the same
JPH09230952A (en) Power controller for solar battery
EP0653692B1 (en) Method and apparatus for controlling the power of a battery power source
Mutoh et al. A controlling method for charging photovoltaic generation power obtained by a MPPT control method to series connected ultraelectric double layer capacitors
Sera et al. Improved MPPT method for rapidly changing environmental conditions
US9461561B2 (en) Method and apparatus for improved burst mode during power conversion
US5892354A (en) Voltage control apparatus and method for power supply
JP2005235082A (en) Method for tracking and controlling maximum power, and power converting device
US20130063117A1 (en) Maximum power point tracking method
US10193347B2 (en) Method and apparatus for improved burst mode during power conversion
Yang et al. A modified P&O MPPT algorithm for single-phase PV systems based on deadbeat control
JPH08123563A (en) Photovoltaic power generation system, device and method for controlling power for the same
JP3301861B2 (en) Inverter output control device
Noguchi et al. Short‐current pulse‐based adaptive maximum‐power‐point tracking for a photovoltaic power generation system
JPH08123561A (en) Method and device for maximum output following control for photovoltaic power generation system
Fapi et al. Design and hardware realization of an asymmetrical fuzzy logic-based MPPT control for photovoltaic applications
JPH10117440A (en) Photovoltaic power generation system
JP3359206B2 (en) Battery power control device
CN116581763A (en) Method for selectively switching working modes of photovoltaic inverter system in power distribution network
KR20100023511A (en) Power control device and power control method for wireless sensor network
Kumari et al. Maximum power point tracking algorithms for grid-connected photovoltaic energy conversion system
Díaz et al. Hybrid MPPT Control Applied to a Push-Pull based pseudo DC-link PV microinverter
Zhu et al. A sliding mode control based maximum power point tracking method of PV arrays under partially shaded conditions
CN113162019A (en) Photovoltaic power generation system and control method thereof
Sharma et al. A novel control methodology for stand-alone photovoltaic systems utilizing maximum power point tracking

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees