JP3563460B2 - Fiber guide and manufacturing method thereof - Google Patents

Fiber guide and manufacturing method thereof Download PDF

Info

Publication number
JP3563460B2
JP3563460B2 JP27084794A JP27084794A JP3563460B2 JP 3563460 B2 JP3563460 B2 JP 3563460B2 JP 27084794 A JP27084794 A JP 27084794A JP 27084794 A JP27084794 A JP 27084794A JP 3563460 B2 JP3563460 B2 JP 3563460B2
Authority
JP
Japan
Prior art keywords
fiber guide
fiber
weight
raw material
voids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27084794A
Other languages
Japanese (ja)
Other versions
JPH08133596A (en
Inventor
俊之 井原
実 中須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27084794A priority Critical patent/JP3563460B2/en
Publication of JPH08133596A publication Critical patent/JPH08133596A/en
Application granted granted Critical
Publication of JP3563460B2 publication Critical patent/JP3563460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Guides For Winding Or Rewinding, Or Guides For Filamentary Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、アルミナセラミックスからなる繊維ガイド及びその製造方法に関する。
【0002】
【従来の技術】
繊維機械における繊維の案内のためにガイドが用いられている。この繊維ガイドの材質としては、天然繊維に対しては金属やガラス材が用いられているが、合成繊維用の紡糸、巻取り、延伸には、糸にダメージを与えることなく耐摩耗性に優れた素材が求められている。
【0003】
具体的な従来の合成繊維用ガイドの材質としては、金属または金属に硬質クロムメッキを施したもの、あるいは特に耐摩耗性の高いアルミナ、チタニア等のセラミックスが用いられている。
【0004】
しかし、近年、繊維機械のめざましい進歩に伴い、加工糸の糸速はますます高速化され、使用時における糸の通路及び強力制御要素として、上記繊維ガイドの表面状態が問題となっている。つまり、繊維機械の高速化に伴い、繊維ガイドの表面状態により糸質を劣化させることが大きな問題として取り上げられているのである。そのため、耐摩耗性が高いだけでなく、糸にダメージを与えることがなく糸質を劣化させにくいような材質の繊維ガイドが求められている。
【0005】
【発明が解決しようとする課題】
これらの要求特性に対し、金属材にクロムメッキを施した繊維ガイドでは、摩擦係数が低いため糸質を劣化させることは少ないが、クロムメッキが摩耗、剥離しやすいため寿命が短いという問題があった。
【0006】
一方、アルミナセラミックス製の繊維ガイドは硬度が高く摩耗が少ないものの、繊維に対する抵抗が大きいために糸質を劣化させやすいという問題があった。また、チタニアセラミックスは糸質を劣化させにくいが、摩耗が生じやすいものであった。
【0007】
そこで、特公52−48647号公報に示すように、アルミナセラミックス製の繊維ガイドを焼成後に再焼成することによって、結晶を丸くすることも考えられていたが、実際にはこのような方法により結晶を丸くすることは困難であり、また得られた焼結体は表面の凹凸が大きくなって表面が粗くなりすぎるという問題点があった。
【0008】
そのため、糸質を劣化させず、かつ耐摩耗性に優れて寿命を長くできるという両方の特性を兼ね備えた繊維ガイドは存在していなかった。
【0009】
なお、上述のように、アルミナセラミックスは耐摩耗性に優れ寿命が長いという条件は満たしているため、表面状態の改良により糸質劣化を防止できれば要求特性を全て満足することになる。そこで、アルミナセラミックスの表面状態について種々実験を行った結果、アルミナ等の多結晶セラミックスには気孔や空孔等のボイドと結晶粒界が存在し、このボイドのシャープエッジで糸質を劣化させることがわかった。また、結晶粒界も同様に摺動時の抵抗となり、糸質劣化の原因となるだけでなく、不純物による結晶粒界は摩耗しやすく耐摩耗性を低下させる原因ともなることがわかった。
【0010】
そこで、本発明は、アルミナセラミックス製の繊維ガイドの表面状態を改良し、糸質を劣化させず、かつ耐摩耗性に優れた繊維ガイドを得ることを目的とする。
【0011】
【課題を解決するための手段】
まず、第1の本発明は、繊維ガイドの少なくとも繊維との摺動面を99.9重量%以上のAlを主成分とし、Alの平均結晶粒径が2μm以下のセラミックスで形成し、摺動面に10μmを超えるボイドが存在しないようにしたことを特徴とする。なお、繊維との摺動面とは、繊維ガイドとしての使用時に繊維と摺動する、または摺動する可能性のある面のことを言う。
【0012】
また、このような繊維ガイドは、Al2 3 純度が99.9重量%以上で、平均粒径0.1〜0.5μmのアルミナ原料粉末を焼結助剤を添加せずに所望のガイド形状に成形した後、1400〜1700℃で焼成する工程により製造することができる。
【0013】
あるいは、低純度のアルミナ等からなる繊維ガイドにおける繊維との摺動面に、上記高純度の微細原料から成るスラリーを塗布した後焼成することによって得ることもできる。
【0014】
つまり、第1の本発明は高純度で極めて微細なAl原料を用いることにより、焼結体中のボイドと結晶粒界を少なくしたものである。
【0015】
ここで、Al含有量を99.9重量%以上としたのは、99.9重量%未満であると結晶粒界の存在のために、糸質を劣化させやすくなるためである。そして、この高純度アルミナ原料に焼結助剤を添加せずに成形し、焼成する。このような高純度原料は焼結性が悪いが、後述するように原料粉末を極めて微細にすることにより、比較的低温で焼成することができる。なお、Al以外の成分としては、不純物としてMgOやSiOを合計0.1重量%以下含んでいても良い。
【0016】
また、原料粉末の平均粒径を0.1〜0.5μmとしたのは、0.1μm未満の粉末は製造が極めて困難であり、一方0.5μmを超えるとボイドを小さくする効果が乏しいだけでなく、上記高純度アルミナ原料の焼結性が悪くなるためである。また、最終焼結体の平均結晶粒径を2μmとしたのは、2μmを超えるとボイドが大きくなるだけでなく、硬度が低くなって耐摩耗性が低下してしまうためである。
【0017】
そして、本発明は、上記のように高純度で微細な原料を用いることにより、直径10μm以上のボイドが存在しないようにした。これは、ボイドが10μmを超えると糸に対するダメージを与えやすいためである。
【0018】
さらに、本発明のアルミナセラミックスの焼成温度は、1400℃未満であると緻密化が不十分であり、一方1700℃を超えると結晶が成長しすぎて、いずれも焼結体の硬度が低くなるため、1400〜1700℃の範囲内とする。
【0019】
次に第2の本発明は、繊維ガイドの少なくとも繊維との摺動面を99重量%以上のAl2 3 を主成分とするセラミックスで形成し、着色剤としてのCrあるいはその他の金属酸化物を0.1〜1重量%含み、Al2 3 の平均結晶粒径が3〜20μmで、ビッカース硬度が1800kgf/mm2以上で、30μmを超えるボイドが存在しないようにしたことを特徴とする。
【0020】
また、この繊維ガイドは、Al2 3 純度が99重量%以上のアルミナ原料に着色剤としてのCrあるいはその他の金属酸化物を0.1〜1重量%加え、所定形状に成形した後、大気雰囲気下で1300〜1600℃で一次焼成し、次にアルゴン、窒素等の不活性雰囲気のガス圧1800〜2200kgf/cm2 で、1400〜1900℃の温度で二次焼成する工程により製造することができる。
【0021】
つまり、第2の本発明は、通常の焼成を行った後、熱間静水圧処理(HIP)等のガス圧下での二次焼成を行うことにより、極めて緻密に焼結させて焼結体中のボイドを小さくし、かつ適当に結晶成長させて結晶粒界を少なくしたものである。
【0022】
この発明において、Al2 3含有量については、硬度を高くするために99重量%以上必要であり、さらに、着色剤としてCrあるいはその他の金属酸化物を合計0.1〜1重量%含んでいる。なお、Al2 3以外の成分として焼結助剤であるSiO、MgO等を1重量%以下の範囲で含んでいても良い。
【0023】
また、焼結体の平均結晶粒径については、3μm未満であると、結晶成長が不十分であることから結晶粒界を少なくする効果が乏しく、一方20μmを超えると強度が低下するため、平均結晶粒径は3〜20μmの範囲内とする。なお、本発明ではガス圧下の焼成を行って極めて緻密に焼結することから、3μm以上の大きな結晶粒径であっても、焼結体のビッカース硬度は1800kgf/mm以上と高硬度にすることができる。
【0024】
そして、上記のようにガス圧焼成を行うことにより、直径30μm以上のボイドが存在しないようにした。これは、ボイドが30μmを超えると糸に対するダメージを与えやすいためであり、好ましくは直径10μm以上のボイドが存在しないようにする。
【0025】
さらに、本発明のアルミナセラミックスのガス圧下での二次焼成温度は、1400℃未満であるとボイドを小さくする効果が乏しく、一方1900℃を超えると結晶が成長しすぎて焼結体の硬度が低くなるため、1400〜1900℃の範囲内とする。
【0026】
【実施例】
実施例1
以下、第1の本発明の実施例を説明する。
【0027】
アルミナ原料として純度99.90〜99.99重量%で、平均粒径0.1〜0.5μmの粉末を用いた。この原料粉末は、乾式プレス成形、射出成形、及び押出成形のそれぞれのプロセスに合わせたバインダーを加えて処理し、棒状に成形した。得られた成形体を400〜600℃で仮焼して脱脂を行い、次に大気雰囲気下1300〜1800℃の種々の温度で焼成を行い、図1に示す棒状の繊維ガイド1を得た。
【0028】
一方、比較例としてAl含有量が96%で、平均粒径が2μmの原料を用いたアルミナセラミックスからなる従来の繊維ガイドを用意した。
【0029】
それぞれについて、焼結体の密度、平均結晶粒径、ビッカース硬度、ボイドの直径を測定した。なお、ボイド径については、鏡面加工面を走査型電子顕微鏡による1500倍の拡大写真で測定した。結果は表1に示す通りである。
【0030】
この表1より、比較例として低純度で粒径の大きい原料を用いたもの(No.7)は平均結晶粒径が2μmを超えており、ボイドについては平均径が50μm程度と大きく、直径100μmに近いボイドも存在していた。また、高純度原料を用いたものでも、焼成温度が1300℃と低いもの(No.1)では緻密化が不十分であるためビッカース硬度が1600kgf/mm以下と低く、逆に焼成温度が1800℃と高いもの(No.6)では粒成長のために平均結晶粒径が2μmを超え、ビッカース硬度が1600kgf/mm以下と低くなった。
【0031】
これらに対し、高純度原料を用いて焼成温度を1400〜1700℃とした本発明の実施例(No.2〜5)では、平均結晶粒径1〜2μmで、ビッカース硬度1900〜2000kgf/mmと高く、ボイドについては1〜10μmの範囲内のボイドしか観察されず、10μmを超えるものは存在していなかった。これは、高純度原料を用いるために結晶粒界が少なく、しかも微細な原料であるためボイドを小さくできるものと考えられる。
【0032】
【表1】

Figure 0003563460
【0033】
次に、図1に示すように繊維ガイド1に繊維2を摺動させる実験を行った。比較例として表1中のNo.7と、本発明実施例としてNo.4の繊維ガイドを用い、それぞれ糸質ポリエステルで太さ75デニールの繊維を糸速1000m/分で摺動させた。テスト後、繊維ガイドの摩耗や、繊維の糸切れ、擦り切れ屑や毛羽等のスノーの発生状況を比較した。結果は表2に示す通りである。
【0034】
この結果より明らかに、本発明の繊維ガイドを用いれば、高速走行する繊維に対しても糸切れやスノーの発生がほとんどなく、ガイド自体の摩耗も極めて少なくできることがわかる。
【0035】
なお、上記実施例では、繊維ガイド全体を高純度で微細な原料を用いて形成した例を示したが、予め低純度原料を用いて成形しておいて、その摺動面のみに高純度で微細な原料から成るスラリーを塗布して焼成したものであっても同様であった。
【0036】
【表2】
Figure 0003563460
【0037】
実施例2
以下、第2の本発明の実施例を説明する。
【0038】
アルミナ原料として純度99.5〜99.7重量%で、平均粒径0.6μm、比表面積8m/gの原料粉末に、平均粒径0.6μm、比表面積8m/gの酸化クロム(Cr)粉末0.1〜2.0重量%を加えた。この原料粉末は、乾式プレス成形、射出成形、及び押出成形のそれぞれのプロセスに合わせたバインダーを加えて処理し、棒状に成形した。得られた成形体を400〜600℃で仮焼して脱脂を行い、大気雰囲気下1300〜1600℃の温度で一次焼成を行った。次に得られた焼結体に、Arガス雰囲気下で熱間静水圧処理(HIP)により二次焼成を行った。二次焼成時のガス圧は1800〜2200kgf/cmとし、焼成温度は1300〜2000℃の種々の温度として、図1に示す棒状の繊維ガイド1を得た。
【0039】
一方、比較例として二次焼成を行わず、上記一次焼成が終了した時点のものを用意した。
【0040】
それぞれについて、焼結体の密度、平均結晶粒径、ビッカース硬度、ボイドの個数を測定した。なお、ボイド個数については、鏡面加工面9.4cmを30倍の光学顕微鏡で観察し、ボイド径毎の個数をカウントして行った。結果は表3に示す通りである。
【0041】
この表1より、二次焼成を行っていない比較例(No.17)は、直径30〜49μmのボイドが60〜70個、直径50μm以上のボイドが5〜15個と、大きなボイドが存在していた。また、熱間静水圧処理を施したものでも二次焼成温度が1300℃(No.11)では同様に大きなボイドが存在していた。一方、焼成温度が2000℃(No.16)では焼結体の平均結晶粒径が20μmを超え、ビッカース硬度が1400khgf/mm以下と低かった。
【0042】
これらに対し、本発明実施例である焼成温度1400〜1900℃のもの(No.12〜15)は、平均結晶粒径が3〜20μmで、ビッカース硬度が1800kgf/mm以上であり、ボイドについては29μm以下が3〜7個と、30μmを超えるボイドが存在していなかった。これは、熱間静水圧処理を施すことによって焼結体を緻密化し、かつ結晶を適当に成長させたため結晶粒界を減少させることができたものと考えられる。
【0043】
また、一次焼成品(No.17)では酸化クロムの添加によってピンク色を呈色していたが、熱間静水圧処理を施した本発明実施例(No.12〜15)は透光性を有しておりルビー状の呈色を示すようになった。
【0044】
【表3】
Figure 0003563460
【0045】
次に、図1に示すように繊維ガイド1に繊維2を摺動させる実験を行った。比較例として表3中のNo.17と、本発明実施例としてNo.14の繊維ガイドを用い、糸質ポリエステルで太さ75デニールの繊維を糸速1000m/分で摺動させた。摺動時の摩擦抵抗によって繊維ガイドの摺動特性を評価し、テスト後の繊維の糸切れやスノーの有無によって糸質を評価した。結果は表4に示す通りである。
【0046】
この結果より明らかに、本発明の繊維ガイドを用いれば、高速走行する繊維に対しても摺動特性が高く、かつ糸切れやスノーの発生がほとんどないため高い糸質を維持できることがわかる。また、本発明実施例の繊維ガイドは、ルビー状の呈色であるため、比較例に比べて繊維の識別が容易であった。
【0047】
【表4】
Figure 0003563460
【0048】
また、以上の実施例では棒状の繊維ガイド1を示したが、繊維ガイド1の形状は、公知のさまざまなものとできることは言うまでもない。
【0049】
【発明の効果】
以上のように本発明によれば、純度99.9重量%以上で平均粒径0.1〜0.5μmのAl原料を用いて、Alの平均結晶粒径2μm以下で、30μm以上のボイドが存在しないようなアルミナセラミックスの繊維ガイドを構成したことによって、高い耐摩耗性を維持したまま、繊維に対するダメージを少なくし糸質の劣化を防止することができ、繊維を高精度に案内することができる。
【0050】
また本発明によれば、純度90重量%以上のAl原料を用いて、常圧焼成後にガス圧下での二次焼成を行い、Alの平均結晶粒径3〜20μmで、ビッカース硬度1800kgf/mm以上で、30μm以上のボイドが存在しないようなアルミナセラミックスの繊維ガイドを構成したことによって、高い耐摩耗性を維持したまま、繊維に対するダメージを少なくし糸質の劣化を防止することができ、繊維を高精度に案内することができる。
【0051】
その結果、糸速が1000m/分以上であるような高速走行の繊維を良好に案内することができ、高品質の繊維を効率良く生産することができる。
【図面の簡単な説明】
【図1】本発明の繊維ガイドを示す斜視図である。
【符号の説明】
1:繊維ガイド
2:繊維[0001]
[Industrial applications]
The present invention relates to a fiber guide made of alumina ceramics and a method for manufacturing the same.
[0002]
[Prior art]
Guides are used for guiding fibers in textile machines. As the material of this fiber guide, metal or glass material is used for natural fiber, but it is excellent in abrasion resistance without damaging the yarn for spinning, winding and stretching for synthetic fiber Material is required.
[0003]
As a specific material of the conventional synthetic fiber guide, a metal or a material obtained by applying a hard chrome plating to a metal, or a ceramic such as alumina or titania having particularly high wear resistance is used.
[0004]
However, in recent years, with the remarkable progress of the textile machine, the yarn speed of the processed yarn has been further increased, and the surface condition of the fiber guide has become a problem as a yarn passage and a strong control element during use. That is, with the speeding up of the fiber machine, deterioration of the yarn quality due to the surface condition of the fiber guide is taken up as a major problem. Therefore, there is a demand for a fiber guide having a material that not only has high abrasion resistance but also does not damage the yarn and does not easily deteriorate the yarn quality.
[0005]
[Problems to be solved by the invention]
In contrast to these required properties, fiber guides with chromium plating on a metal material have a low coefficient of friction and therefore do not deteriorate the yarn quality, but have a problem that the chrome plating is easily worn and peeled, resulting in a short life. Was.
[0006]
On the other hand, although a fiber guide made of alumina ceramics has high hardness and little wear, it has a problem that the yarn quality is easily deteriorated due to high resistance to the fiber. In addition, the titania ceramics hardly deteriorated the yarn quality, but were liable to wear.
[0007]
Therefore, as shown in Japanese Patent Publication No. 52-48647, it has been considered that a fiber guide made of alumina ceramics is fired and then refired to round the crystal. Is difficult to round, and the obtained sintered body has a problem that the unevenness of the surface becomes large and the surface becomes too rough.
[0008]
For this reason, there has been no fiber guide that has both characteristics of not deteriorating the yarn quality, being excellent in abrasion resistance and extending the life.
[0009]
As described above, since the alumina ceramics satisfies the condition that they have excellent wear resistance and long life, if the surface quality can be prevented from deteriorating the yarn quality, all the required characteristics will be satisfied. Therefore, as a result of conducting various experiments on the surface condition of alumina ceramics, voids such as pores and vacancies and crystal grain boundaries exist in polycrystalline ceramics such as alumina, and the sharp edge of these voids deteriorates the yarn quality. I understood. In addition, it was also found that the crystal grain boundary similarly causes resistance during sliding and causes not only the deterioration of the yarn quality but also the crystal grain boundary due to impurities, which is liable to be worn and causes the wear resistance to be reduced.
[0010]
Therefore, an object of the present invention is to improve the surface condition of a fiber guide made of alumina ceramics, to obtain a fiber guide which does not degrade yarn quality and has excellent wear resistance.
[0011]
[Means for Solving the Problems]
First, the present invention provides a ceramic material in which at least 99.9% by weight of Al 2 O 3 is used as a main component and the average crystal grain size of Al 2 O 3 is 2 μm or less. Characterized in that a void exceeding 10 μm does not exist on the sliding surface. The sliding surface with the fiber refers to a surface that slides on or may slide with the fiber when used as a fiber guide.
[0012]
In addition, such a fiber guide can be prepared by adding an alumina raw material powder having an Al 2 O 3 purity of 99.9% by weight or more and an average particle size of 0.1 to 0.5 μm to a desired guide without adding a sintering aid. After being formed into a shape, it can be manufactured by a process of firing at 1400 to 1700 ° C.
[0013]
Alternatively, it can be obtained by applying a slurry made of the high-purity fine raw material to a sliding surface of the fiber guide made of a low-purity alumina or the like with a fiber, followed by firing.
[0014]
In other words, the first aspect of the present invention is to reduce the voids and crystal grain boundaries in the sintered body by using a high-purity and extremely fine Al 2 O 3 raw material.
[0015]
Here, the reason why the Al 2 O 3 content is set to 99.9% by weight or more is that if the content is less than 99.9% by weight, the yarn quality is liable to be deteriorated due to the existence of crystal grain boundaries. Then, the high-purity alumina raw material is molded and fired without adding a sintering aid. Such a high-purity raw material has poor sinterability, but can be fired at a relatively low temperature by making the raw material powder extremely fine as described later. In addition, as a component other than Al 2 O 3 , a total of 0.1% by weight or less of MgO or SiO 2 may be contained as an impurity.
[0016]
The reason why the average particle size of the raw material powder is set to 0.1 to 0.5 μm is that it is extremely difficult to produce a powder having a particle size of less than 0.1 μm, whereas if it exceeds 0.5 μm, the effect of reducing voids is poor. This is because the sinterability of the high-purity alumina raw material is deteriorated. The reason why the average crystal grain size of the final sintered body is 2 μm is that if it exceeds 2 μm, not only the voids become large, but also the hardness becomes low and the wear resistance is lowered.
[0017]
Further, in the present invention, by using a fine material having high purity as described above, voids having a diameter of 10 μm or more do not exist. This is because if the voids exceed 10 μm, the yarn is likely to be damaged.
[0018]
Further, if the firing temperature of the alumina ceramic of the present invention is less than 1400 ° C., the densification is insufficient, while if it exceeds 1700 ° C., the crystals grow too much, and the hardness of the sintered body becomes low in any case. , 1400-1700 ° C.
[0019]
Next, in a second aspect of the present invention, at least a sliding surface of the fiber guide with the fiber is formed of ceramics containing 99% by weight or more of Al 2 O 3 as a main component, and Cr 2 O 3 or another colorant as a coloring agent. 0.1 to 1% by weight of metal oxide, average grain size of Al 2 O 3 is 3 to 20 μm, Vickers hardness is 1800 kgf / mm 2 or more, and no voids exceeding 30 μm are present. Features.
[0020]
This fiber guide was formed into a predetermined shape by adding 0.1 to 1% by weight of Cr 2 O 3 or other metal oxide as a coloring agent to an alumina raw material having an Al 2 O 3 purity of 99% by weight or more. Thereafter, it is first fired at 1300 to 1600 ° C. in an air atmosphere, and then second fired at a temperature of 1400 to 1900 ° C. under a gas pressure of 1800 to 2200 kgf / cm 2 in an inert atmosphere such as argon or nitrogen. can do.
[0021]
That is, in the second invention, after performing normal firing, by performing secondary firing under a gas pressure such as hot isostatic pressure treatment (HIP), very dense sintering is performed, and The crystal grain boundaries are reduced by reducing the voids and appropriately growing crystals.
[0022]
In the present invention, the content of Al 2 O 3 is required to be 99% by weight or more in order to increase the hardness, and a total of 0.1 to 1% by weight of Cr 2 O 3 or other metal oxides as a coloring agent. % Included. As a component other than Al 2 O 3 , sintering aids such as SiO 2 and MgO may be contained in a range of 1% by weight or less.
[0023]
When the average crystal grain size of the sintered body is less than 3 μm, the effect of reducing the crystal grain boundaries is insufficient due to insufficient crystal growth. On the other hand, when it exceeds 20 μm, the strength is reduced. The crystal grain size is in the range of 3 to 20 μm. In the present invention, the sintered body is sintered under a gas pressure to perform extremely dense sintering, so that the sintered body has a high Vickers hardness of 1800 kgf / mm 2 or more even with a large crystal grain size of 3 μm or more. be able to.
[0024]
By performing gas pressure firing as described above, voids having a diameter of 30 μm or more did not exist. This is because if the voids exceed 30 μm, the yarn is likely to be damaged. Preferably, voids having a diameter of 10 μm or more do not exist.
[0025]
Furthermore, the secondary firing temperature under the gas pressure of the alumina ceramics of the present invention is less than 1400 ° C., the effect of reducing voids is poor. On the other hand, if it exceeds 1900 ° C., crystals grow too much, and the hardness of the sintered body is reduced. Therefore, the temperature is in the range of 1400 to 1900 ° C.
[0026]
【Example】
Example 1
Hereinafter, a first embodiment of the present invention will be described.
[0027]
As the alumina raw material, powder having a purity of 99.90 to 99.99% by weight and an average particle size of 0.1 to 0.5 μm was used. This raw material powder was processed by adding a binder suitable for each of the processes of dry press molding, injection molding, and extrusion molding, and formed into a rod shape. The obtained molded body was calcined at 400 to 600 ° C. to perform degreasing, and then calcined at various temperatures of 1300 to 1800 ° C. in the atmosphere to obtain a rod-shaped fiber guide 1 shown in FIG.
[0028]
On the other hand, as a comparative example, a conventional fiber guide made of alumina ceramics using a raw material having an Al 2 O 3 content of 96% and an average particle diameter of 2 μm was prepared.
[0029]
For each, the density, average crystal grain size, Vickers hardness, and void diameter of the sintered body were measured. The void diameter was measured on a mirror-finished surface with a scanning electron microscope at a magnification of 1500 times. The results are as shown in Table 1.
[0030]
From Table 1, as a comparative example, a material using low purity and a large particle size (No. 7) has an average crystal grain size exceeding 2 μm, and the void has a large average size of about 50 μm and a diameter of 100 μm. There was also a void close to. Further, even in the case of using a high-purity raw material, if the firing temperature is as low as 1300 ° C. (No. 1), the Vickers hardness is as low as 1600 kgf / mm 2 or less because the densification is insufficient. When the temperature was as high as 0 ° C. (No. 6), the average crystal grain size exceeded 2 μm due to grain growth, and the Vickers hardness was as low as 1600 kgf / mm 2 or less.
[0031]
On the other hand, in Examples (Nos. 2 to 5) of the present invention in which the firing temperature was 1400 to 1700 ° C. using high-purity raw materials, the average crystal grain size was 1 to 2 μm, and the Vickers hardness was 1900 to 2000 kgf / mm 2. As for voids, only voids within the range of 1 to 10 μm were observed, and none of the voids exceeding 10 μm were present. This is presumably because the use of a high-purity raw material has a small number of crystal grain boundaries, and the fine raw material can reduce voids.
[0032]
[Table 1]
Figure 0003563460
[0033]
Next, an experiment was conducted in which the fiber 2 was slid on the fiber guide 1 as shown in FIG. As a comparative example, No. 1 in Table 1 was used. 7 and No. 7 as an example of the present invention. Using the fiber guide of No. 4, fibers having a thickness of 75 denier were each slid with a yarn polyester at a yarn speed of 1000 m / min. After the test, the abrasion of the fiber guide, the occurrence of snow such as fiber breakage, frayed chips and fluff were compared. The results are as shown in Table 2.
[0034]
The results clearly show that the use of the fiber guide of the present invention hardly causes thread breakage or snow even for fibers running at high speed, and can minimize wear of the guide itself.
[0035]
Note that, in the above-described embodiment, an example in which the entire fiber guide is formed using a high-purity and fine raw material is shown. The same applies to the case where a slurry composed of fine raw materials is applied and fired.
[0036]
[Table 2]
Figure 0003563460
[0037]
Example 2
Hereinafter, a second embodiment of the present invention will be described.
[0038]
As a raw material of alumina, a raw material powder having a purity of 99.5 to 99.7% by weight, an average particle diameter of 0.6 μm and a specific surface area of 8 m 2 / g was added to chromium oxide having an average particle diameter of 0.6 μm and a specific surface area of 8 m 2 / g ( 0.1-2.0% by weight of Cr 2 O 3 ) powder was added. This raw material powder was processed by adding a binder suitable for each of the processes of dry press molding, injection molding, and extrusion molding, and formed into a rod shape. The obtained molded body was calcined at 400 to 600 ° C. to perform degreasing, and subjected to primary firing at a temperature of 1300 to 1600 ° C. in an air atmosphere. Next, secondary sintering was performed on the obtained sintered body by hot isostatic pressure treatment (HIP) in an Ar gas atmosphere. The gas pressure during the secondary firing was set to 1800 to 2200 kgf / cm 2 , and the firing temperature was set to various temperatures of 1300 to 2000 ° C. to obtain a rod-shaped fiber guide 1 shown in FIG.
[0039]
On the other hand, as a comparative example, one prepared at the time when the above-described primary firing was completed without performing the secondary firing was prepared.
[0040]
For each, the density, average crystal grain size, Vickers hardness, and number of voids of the sintered body were measured. The number of voids was determined by observing a mirror-finished surface of 9.4 cm 2 with a 30-fold optical microscope and counting the number of voids for each void diameter. The results are as shown in Table 3.
[0041]
From Table 1, in the comparative example (No. 17) in which the secondary firing was not performed, 60 to 70 voids having a diameter of 30 to 49 μm and 5 to 15 voids having a diameter of 50 μm or more had large voids. I was In addition, even in the case where the hot isostatic pressure treatment was performed, a large void similarly existed when the secondary firing temperature was 1300 ° C. (No. 11). On the other hand, when the firing temperature was 2000 ° C. (No. 16), the average crystal grain size of the sintered body exceeded 20 μm, and the Vickers hardness was as low as 1400 khgf / mm 2 or less.
[0042]
On the other hand, those having a firing temperature of 1400 to 1900 ° C. (Nos. 12 to 15), which are examples of the present invention, have an average crystal grain size of 3 to 20 μm, a Vickers hardness of 1800 kgf / mm 2 or more, and 3 to 7 of 29 μm or less, and no voids exceeding 30 μm were present. This is presumably because the sintered body was densified by performing the hot isostatic pressure treatment, and the crystal grain boundaries were reduced because the crystals were appropriately grown.
[0043]
In addition, the primary baked product (No. 17) had a pink color due to the addition of chromium oxide, but the examples of the present invention (Nos. 12 to 15) which were subjected to the hot isostatic pressure treatment exhibited light transmittance. And showed a ruby-like coloration.
[0044]
[Table 3]
Figure 0003563460
[0045]
Next, an experiment was conducted in which the fiber 2 was slid on the fiber guide 1 as shown in FIG. No. in Table 3 as a comparative example. 17 and No. 17 as an embodiment of the present invention. Using a fiber guide of No. 14, a 75-denier fiber made of fibrous polyester was slid at a yarn speed of 1000 m / min. The sliding characteristics of the fiber guide were evaluated by the frictional resistance during sliding, and the yarn quality was evaluated by the presence or absence of thread breakage or snow after the test. The results are as shown in Table 4.
[0046]
These results clearly show that the use of the fiber guide of the present invention can maintain a high yarn quality even with fibers running at high speed, and has almost no breakage or snow. Further, since the fiber guide of the example of the present invention had a ruby-like coloration, the identification of the fiber was easier than in the comparative example.
[0047]
[Table 4]
Figure 0003563460
[0048]
Although the rod-shaped fiber guide 1 has been described in the above embodiment, it is needless to say that the shape of the fiber guide 1 can be various known ones.
[0049]
【The invention's effect】
According to the present invention as described above, using Al 2 O 3 raw material having an average particle diameter of 0.1~0.5μm with a purity of 99.9% by weight or more, or less average grain size 2μm of Al 2 O 3 , A fiber guide made of alumina ceramics having no voids of 30 μm or more makes it possible to reduce damage to the fiber and prevent deterioration of the yarn quality while maintaining high abrasion resistance. Can guide to accuracy.
[0050]
Further, according to the present invention, secondary firing under gas pressure is performed after firing under normal pressure using an Al 2 O 3 raw material having a purity of 90% by weight or more, and the average crystal grain size of Al 2 O 3 is 3 to 20 μm. A fiber guide made of alumina ceramics having a Vickers hardness of 1800 kgf / mm 2 or more and having no voids of 30 μm or more is formed, thereby reducing damage to fibers and preventing deterioration of yarn quality while maintaining high wear resistance. And the fiber can be guided with high precision.
[0051]
As a result, high-speed running fibers having a yarn speed of 1000 m / min or more can be favorably guided, and high-quality fibers can be efficiently produced.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a fiber guide of the present invention.
[Explanation of symbols]
1: fiber guide 2: fiber

Claims (5)

繊維との摺動面が、99.9重量%以上のAlを主成分とし、Alの平均結晶粒径が2μm以下のセラミックスから成り、上記摺動面に10μmを超えるボイドが存在しないことを特徴とする繊維ガイド。The sliding surface with the fiber is made of ceramics containing 99.9% by weight or more of Al 2 O 3 as a main component and having an average crystal grain size of Al 2 O 3 of 2 μm or less, and the sliding surface exceeds 10 μm. A fiber guide characterized by the absence of voids. Al2 3 純度が99.9重量%以上で、平均粒径0.1〜0.5μmのアルミナ原料粉末を焼結助剤を添加せずに所望のガイド形状に成形した後、1400〜1700℃で焼成する工程からなる繊維ガイドの製造方法。After forming an alumina raw material powder having an Al 2 O 3 purity of 99.9% by weight or more and an average particle size of 0.1 to 0.5 μm into a desired guide shape without adding a sintering aid , 1400 to 1700 A method for producing a fiber guide comprising a step of firing at a temperature of ° C. セラミックス製の繊維ガイドにおける繊維との摺動面に、Al2 3 純度が99.9重量%以上で、焼結助剤の添加されていない平均粒径0.1〜0.5μmのアルミナ原料粉末から成るスラリーを塗布した後、1400〜1700℃で焼成する工程からなる繊維ガイドの製造方法。Alumina raw material having an Al 2 O 3 purity of 99.9% by weight or more and an average particle size of 0.1 to 0.5 μm to which a sintering aid is not added is provided on the sliding surface of the ceramic fiber guide with the fiber. A method for producing a fiber guide, comprising a step of applying a slurry made of a powder and baking it at 1400 to 1700 ° C. 繊維との摺動面が、99重量%以上のAl2 3 を主成分とし、着色剤としての金属酸化物を0.1〜1重量%含み、Al2 3 の平均結晶粒径が3〜20μmで、ビッカース硬度が1800kgf/mm2以上のセラミックスから成り、上記摺動面に30μmを超えるボイドが存在しないことを特徴とする繊維ガイド。Sliding surfaces of the fibers, and mainly composed of Al 2 O 3 of more than 99 wt%, the metal oxide as the colorant comprises 0.1 to 1 wt%, an average grain size of Al 2 O 3 is 3 A fiber guide comprising a ceramic having a Vickers hardness of 1800 kgf / mm 2 or more and a sliding surface having no voids exceeding 30 μm. Al2 3 純度が99重量%以上のアルミナ原料に着色剤としての金属酸化物を0.1〜1重量%加え、所定形状に成形した後、大気雰囲気下で1300〜1600℃で一次焼成し、次にアルゴン、窒素等の不活性雰囲気のガス圧1800〜2200kgf/cm2 で、1400〜1900℃の温度で二次焼成する工程からなる、少なくとも繊維との摺動面が平均結晶粒径3〜20μmアルミナセラミックスの繊維ガイドの製造方法。Alumina raw material having an Al 2 O 3 purity of 99 % by weight or more is added with a metal oxide as a colorant in an amount of 0.1 to 1% by weight , formed into a predetermined shape, and then subjected to primary firing at 1300 to 1600 ° C. in an air atmosphere. , then argon gas pressure of 1800~2200kgf / cm 2 of an inert atmosphere such as nitrogen, comprising the step of secondary firing at a temperature of from 1,400 to 1,900 ° C., the sliding surface of at least fiber average grain size 3 A method for producing a fiber guide of alumina ceramics having a thickness of about 20 μm .
JP27084794A 1994-11-04 1994-11-04 Fiber guide and manufacturing method thereof Expired - Fee Related JP3563460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27084794A JP3563460B2 (en) 1994-11-04 1994-11-04 Fiber guide and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27084794A JP3563460B2 (en) 1994-11-04 1994-11-04 Fiber guide and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08133596A JPH08133596A (en) 1996-05-28
JP3563460B2 true JP3563460B2 (en) 2004-09-08

Family

ID=17491825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27084794A Expired - Fee Related JP3563460B2 (en) 1994-11-04 1994-11-04 Fiber guide and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3563460B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753805B2 (en) * 2006-06-28 2011-08-24 京セラ株式会社 Oil supply roller and spinning take-up device using the same
CN103469325A (en) * 2013-09-13 2013-12-25 常熟市建华织造有限责任公司 Manufacturing method for high-performance yarn guiding wheel

Also Published As

Publication number Publication date
JPH08133596A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
WO2011016325A1 (en) Transparent zirconia sintered body, method for producing same, and use of same
KR0177893B1 (en) Sintered silicon nitride-based body and process for producing the same
JP3563460B2 (en) Fiber guide and manufacturing method thereof
Sayir et al. High temperature mechanical properties of Al2O3/ZrO2 (Y2O3) fibers
US4292049A (en) Ceramic materials for high-speed cutting
Lipowitz et al. Structure and Properties of Polymer‐Derived Stoichiometric SiC Fiber
Bates Efg Growth of Alumina‐Zirconia Eutectic Fiber
EP0311289B1 (en) Sic-al2o3 composite sintered bodies and method of producing the same
JP2569662B2 (en) Method for producing translucent zirconia sintered body
JP3488748B2 (en) Fiber guide and manufacturing method thereof
JP3380291B2 (en) Guide member
JP2001158658A (en) Guide member for fiber
JP3152774B2 (en) Alumina ceramics for sliding members
JPH1045327A (en) Abrasion resistant guide material and thread guide using this
JP3031730B2 (en) Ceramics molded body and method of manufacturing ceramics molded body
US20060138715A1 (en) Doped ceramic materials and methods of forming the same
JPH10102330A (en) Thread guide and its production
JP2000053463A (en) Jig for can manufacturing
JP3034113B2 (en) Sliding members for textile machines
JP4900547B2 (en) Needle for weft insertion nozzle and weft insertion nozzle using the same
JP3502738B2 (en) Fiber guide
Sayir et al. High temperature mechanical properties of Al 2 O 3/ZrO 2 (Y 2 O 3) fibers
JPH09175735A (en) Fiber guidance member
GB2246346A (en) Method of densification of amorphous ceramic material
US10508056B1 (en) Method to form silicon carbide fibers by single stage pyrolysis of polysilazane precursors

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees