JP3563213B2 - Automotive heating system with heat storage device - Google Patents

Automotive heating system with heat storage device Download PDF

Info

Publication number
JP3563213B2
JP3563213B2 JP24795396A JP24795396A JP3563213B2 JP 3563213 B2 JP3563213 B2 JP 3563213B2 JP 24795396 A JP24795396 A JP 24795396A JP 24795396 A JP24795396 A JP 24795396A JP 3563213 B2 JP3563213 B2 JP 3563213B2
Authority
JP
Japan
Prior art keywords
cooling water
heat storage
water passage
storage device
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24795396A
Other languages
Japanese (ja)
Other versions
JPH1086645A (en
Inventor
理一 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP24795396A priority Critical patent/JP3563213B2/en
Publication of JPH1086645A publication Critical patent/JPH1086645A/en
Application granted granted Critical
Publication of JP3563213B2 publication Critical patent/JP3563213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は蓄熱装置を備えた自動車用暖房装置に関する。
【0002】
【従来の技術】
従来の自動車用暖房装置には、水冷式エンジンの冷却水を用いて車内を暖房するための熱交換器と、過冷却特性を備えた蓄熱材を有し且つ前記熱交換器に接続された蓄熱装置と、前記水冷式エンジン、前記蓄熱装置、及び前記熱交換器を直列に接続して、前記水冷式エンジン、前記蓄熱装置、及び前記熱交換器の間で前記冷却水を循環させるための第1の冷却水路と、該第1の冷却水路に設けられ、前記冷却水を循環させる第1のポンプと、一端が前記熱交換器の出口付近で前記第1の冷却水路に接続され、他端が前記蓄熱装置の入口付近で前記第1の冷却水路に接続され、前記熱交換器から流出した前記冷却水を前記蓄熱装置に戻す第2の冷却水路と、該第2の冷却水路に設けられた第2のポンプと、前記蓄熱装置の入口付近から前記熱交換器の出口付近に掛けての前記第1の冷却水路の部分と前記第2の冷却水路とで構成される循環冷却水路を前記水冷式エンジンから切り離すために前記第1の冷却水路に設けられた第1及び第2の電磁弁と、前記第2のポンプの出口側に位置するように前記第2の冷却水路に設けられ、該第2の冷却水路を開閉する第3の電磁弁と、前記蓄熱材の過冷却状態を解除する解除手段とを含むものがある(例えば、特開平2−31913号公報、特開平2−41919号公報、特開平2−45214号公報参照)。
【0003】
この種の自動車用暖房装置では、水冷式エンジンを冷却する際に加熱された冷却水を、蓄熱装置に通すことにより、冷却水の熱を蓄熱装置の蓄熱材によって潜熱の形で蓄えるように成っている。そして、水冷式エンジンの始動後、間もない時、即ち、冷却水がまだ十分に加熱されていない時、解除手段により蓄熱材の過冷却状態を解除して蓄熱材から潜熱を放出させ、この潜熱により蓄熱装置内で冷却水を加熱し、この冷却水を熱交換器を通すことにより、逸早く暖房を行うことができるように成っている。
【0004】
【発明が解決しようとする課題】
しかしながら、水冷式エンジンが始動後しばらくして十分暖まり、この水冷式エンジンを循環する冷却水が十分加熱されるようになっても、従来の自動車用暖房装置では、水冷式エンジン、蓄熱装置、及び熱交換器が直列に接続されているので、水冷式エンジンにより十分加熱された冷却水は、蓄熱装置を通過する際に熱を奪われ、このようにして温度の低下した冷却水が熱交換器内に流れ込むので、蓄熱材に潜熱が蓄え終わるまで、十分な暖房感を得られなかった。
【0005】
それ故に、本発明の課題は、冷却水が暖房及び蓄熱をするのに十分な熱量を持つようになってから蓄熱をするようにした蓄熱装置を備えた自動車用暖房装置を提供することにある。
【0006】
【課題を解決するための手段】
請求項1記載の発明によれば、水冷式エンジンの冷却水を用いて車内を暖房するための熱交換器と、過冷却特性を備えた蓄熱材を有し且つ前記熱交換器に接続された蓄熱装置と、前記水冷式エンジン、前記蓄熱装置、及び前記熱交換器を直列に接続して、前記水冷式エンジン、前記蓄熱装置、及び前記熱交換器の間で前記冷却水を循環させるための第1の冷却水路と、該第1の冷却水路に設けられ、前記冷却水を循環させる第1のポンプと、一端が前記熱交換器の出口付近で前記第1の冷却水路に接続され、他端が前記蓄熱装置の入口付近で前記第1の冷却水路に接続され、前記熱交換器から流出した前記冷却水を前記蓄熱装置に戻す第2の冷却水路と、該第2の冷却水路に設けられた第2のポンプと、前記蓄熱装置の入口付近から前記熱交換器の出口付近に掛けての前記第1の冷却水路の部分と前記第2の冷却水路とで構成される循環冷却水路を前記水冷式エンジンから切り離すために前記第1の冷却水路に設けられた第1及び第2の電磁弁と、前記第2のポンプの出口側に位置するように前記第2の冷却水路に設けられ、該第2の冷却水路を開閉する第3の電磁弁と、前記蓄熱材の過冷却状態を解除する解除手段とを含む蓄熱装置を備えた自動車用暖房装置において、一端が前記蓄熱装置の出口から前記熱交換器の入口の間で前記第1の冷却水路に接続され、他端が前記第3の電磁弁の出口から前記第2の冷却水路の他端の間で前記第2の冷却水路に接続され、前記蓄熱装置をバイパスするバイパス冷却水路と、該バイパス冷却水路を開閉する第4の電磁弁と、前記第2の冷却水路の他端から前記蓄熱装置の入口の間に位置するように前記第1の冷却水路に設けられ、該第1の冷却水路を開閉する第5の電磁弁とを具備し、前記水冷式エンジンからの前記冷却水の熱量が暖房を行う上では十分であるが、蓄熱には不十分である場合に、前記第3及び第5の電磁弁を閉じるとともに前記第1,第2及び第4の電磁弁を開いて、前記水冷式エンジンからの前記冷却水を前記蓄熱装置をバイパスさせて直接前記熱交換器に流入させるようにしたことを特徴とする蓄熱装置を備えた自動車用暖房装置が得られる。
【0007】
請求項2記載の発明によれば、請求項1記載の蓄熱装置を備えた自動車用暖房装置において、前記熱交換器の放熱量を調整するエアーミックスダンパと、該エアーミックスダンパの開度を検出する開度検出器とを備え、前記エアーミックスダンパの開度が所定値以下の時に前記冷却水を前記蓄熱装置に導いて蓄熱をするようにしたことを特徴とする蓄熱装置を備えた自動車用暖房装置が得られる。
【0008】
【作用】
本発明では、水冷式エンジンの始動直後から水冷式エンジンが暖まる間まで、第1、第2及び第4の電磁弁が閉じられ、第3及び第5の電磁弁が開き、第2のポンプが作動する。これにより、蓄熱装置の入口付近から熱交換器の出口付近の掛けての第1の冷却水路の部分と、第2の冷却水路とで循環冷却水路が構成され、この循環冷却水路内を冷却水が循環する。一方、水冷式エンジンの始動と共に蓄熱装置内において解除手段により蓄熱材の過冷却状態が解除され、蓄熱材が潜熱を放出する。したがって、循環冷却水路内を循環する冷却水は蓄熱装置内で加熱され、この加熱された冷却水が熱交換器内を流れるので、水冷式エンジンの始動直後から暖房が可能と成る。
【0009】
水冷式エンジンの始動後しばらくして、水冷式エンジンが暖まり、冷却水の熱量が、暖房には十分だが、蓄熱を同時に行うには熱量が不足している状態となる。このような状態になると、第2のポンプが停止し、第3及び第5の電磁弁が閉じられ、第1、第2、及び第4の電磁弁が開く。これにより、第2の冷却水路の一部とバイパス冷却水路とで蓄熱装置がバイパスされる。この結果、水冷式エンジンで加熱された冷却水は直接熱交換器内を流れるようになるので、十分な暖房が得られる。
【0010】
水冷式エンジンが十分に暖まって、冷却水の熱量が、暖房及び蓄熱を同時に行うのに十分に成った時、第4の電磁弁が閉じられ、第5の電磁弁が開く。これにより、水冷式エンジンにより十分加熱された冷却水が蓄熱装置内を流れ、蓄熱装置内で蓄熱が行われ、また、蓄熱装置内から流出した冷却水でも十分に暖房が行える。
【0011】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。図1は本発明の一実施形態による蓄熱装置を備えた自動車用暖房装置の構成略図、図2は図1に示す蓄熱装置を備えた自動車用暖房装置の熱交換器の配置状態を示す構成略図である。
【0012】
図1及び図2を参照して、水冷式エンジン11には冷却水を循環させるための第1のポンプ12を介して冷却水路(ラジエター用冷却水路)Aによってラジエター13が接続されている。この冷却水路Aには、ラジエーター13の入口側及び出口側にそれぞれ電磁弁20,21が備えられている。一方、この第1のポンプ12には、車内熱交換器14が冷却水路(第1の冷却水路)Bによって連結され、この熱交換器14には、過冷却作用を有する蓄熱材15aを有し断熱材15bで覆われた蓄熱装置15に連結されている。熱交換器14は図2に示すように、ダクト50内に配置されている。また、この熱交換器14には、これを開閉するエアーミックスダン51が回動自在に設けられ、更に、このエアーミックスダンパ51には、この開度を検出する開度検出器52が設けられている。また、蓄熱装置15は冷却水路Bによってエンジン11に連結されている。即ち、図示のように熱交換器14と蓄熱装置15とは冷却水路Bによって直列に接続されている。また、冷却水路Bには、後述する冷却水路Cを水冷式エンジン11から切り放なせる位置において第1及び第2の電磁弁17及び18が備えられている。
【0013】
熱交換器14と蓄熱装置15に並列に冷却水路(第2の冷却水路)Cが配設され、この冷却水路Cは冷却水路Bに結合されている。具体的に言うと、冷却水路Cは、一端が熱交換器14の出口付近で冷却水路Bに接続され、他端が蓄熱装置15の入口付近で冷却水路Bに接続され、熱交換器14から流出した冷却水を蓄熱装置15に戻すように成っている。この冷却水路Cには第2のポンプ16及び第3の電磁弁19が備えられている。
【0014】
更に、冷却水路Bと冷却水路Cとの間には、冷却水路(バイパス冷却水路)Dが配設されている。具体的に言うと、この冷却水路Dは、一端が蓄熱装置15の出口から熱交換器14の入口の間で冷却水路Bに接続され、他端が第3の電磁弁19の出口から冷却水路Cの他端の間で冷却水路Cに接続され、蓄熱装置15をバイパスするように成っている。この冷却水路Dには、これを開閉する第4の電磁弁30が設けられ、また、冷却水路Cの他端から蓄熱装置15の入口の間に位置するように冷却水路Bに第5の電磁弁31が設けられ、この部分で冷却水路Bは第5の電磁弁31により開閉されるように成っている。更に、水冷式エンジン11の冷却水出口付近には、エンジン出口水温センサ32が設けられ、蓄熱装置15の出口付近には、蓄熱装置出口水温センサ33が設けられている。
【0015】
上述の蓄熱材としては、例えば、NaCHCOO・3HOに多糖類を添加したものが用いられる。
【0016】
この蓄熱材は60℃以上に加熱されると、ゲル状となり、潜熱を蓄える。一旦蓄えられた潜熱は、蓄熱材が冷却されても放出されない(例えば、室温でゲル状が保たれる。即ち、過冷却状態に保たれる)。この潜熱を蓄えた蓄熱材は断熱なしに長期貯蔵可能となる。一方、適当な刺激を加えると、活性化して固体に戻る。この際、58℃の温熱を放出する。
【0017】
図3は図1に示す自動車用暖房装置に用いられる電源回路の一実施形態を示す回路図、図4はエンジン冷却水温度と蓄熱材発熱温度との関係を示すグラフである。次に図3を参照して、自動車のバッテリー41にはメインスイッチ42を介して並列にセルモータ43及び蓄熱材15aに刺激を与えるための電極装置44が接続されている。また、このバッテリー41にはスイッチ45を介して並列にポンプ16及び電磁弁19が接続されている。
【0018】
ここで、図1及び図3を参照して、上述の暖房装置の基本的な動作について説明する。なお、ここでは、蓄熱材15aにはすでに潜熱が蓄えられているものとする。
【0019】
メインスイッチ42を閉じると、セルモータ43が駆動され、これによってエンジン11が始動される。この際、電極装置44の電極44aから放電が行われ、これによって蓄熱材15aの過冷却状態が解除されて、蓄熱材15aから潜熱が放出される。なお、エンジン始動の後には、メインスイッチ42は開とされる。
【0020】
エンジン11の始動直後に、暖房を行う場合には、暖房用スイッチ45が閉じられる。これによってポンプ16が駆動されるとともに電磁弁19が開かれる。その結果、冷却水が冷却水路C、蓄熱装置15、及び熱交換器14を通って循環する。この際、ブロアー14aが駆動される。
【0021】
冷却水は蓄熱材15aからの放熱により暖められ、熱交換器14で放熱して、車内が暖房される。なお、ブロアーの駆動は冷却水が所定の温度に上昇した時、あるいは、蓄熱材に刺激を加えて、所定時間経過の後駆動することが望ましい。
【0022】
エンジン11の温度が所定温度に達すると、電磁弁20及び21が開かれるとともにポンプ12が駆動されて冷却水の循環が行われる。この際、電磁弁17及び18が開かれるとともにスイッチ45が開かれ、ポンプ16が停止し、電磁弁19が閉じられる。
【0023】
従って、エンジン11で加熱された冷却水はポンプ12によってラジエター13で放熱し、一方、エンジン11からの冷却水は蓄熱装置15、熱交換器14を通ってエンジン11へ戻る。この際、蓄熱装置15では、加熱された冷却水から蓄熱材15aに熱(潜熱)を吸収して、固体状からゲル状となる。即ち、蓄熱材15aは冷却水から吸熱する。
【0024】
なお、ここでは、蓄熱材15aからの放熱温度を58℃、蓄熱材15a使用時における冷却水温度を50〜55℃、エンジン11からの冷却水温度を95〜105℃と設定した。
【0025】
ところで、蓄熱材15aの蓄熱が完了する前にエンジン11が停止されると、即ち、蓄熱不足であると、蓄熱材15aが過冷却状態となる前に放熱が行われてしまう。
【0026】
例えば、図4に示すように時間Tまでエンジン11を駆動すれば、蓄熱材15aへの蓄熱が完了する場合に、時間tでエンジン11を止めたとする。
【0027】
この場合、蓄熱材15aの蓄熱に必要な熱量は、図4の面積EBCであり、時間tまでに蓄熱された熱量は面積EADである。従って、時間tでエンジン11を停止した場合には、蓄熱不足によって、過冷却状態となる前に蓄熱材15aから放熱してしまう。
【0028】
この放熱を防ぐため、即ち、蓄熱材15aに正常に蓄熱を行うため、エンジン停止後も、バッテリー41によってポンプ16を駆動する。これによって、エンジン11を通過した冷却水が蓄熱装置15及び蒸発器14を通って循環する。この循環によって、蓄熱材15aは冷却水(温水)から吸熱を行い、その結果、図4に破線で示すように冷却水の温度が降下したとする。
【0029】
このように、エンジン11が停止された後、電磁弁20及び21を閉じて、即ち、放熱ラジエター13に冷却水が循環しないようにして、バッテリー41によってポンプ16を駆動することにより、冷却水から有効に吸熱することができる。その吸熱量は面積EAFであり、面積EBC<面積EAFであれば、時間tでエンジンを停止しても問題はない。
【0030】
次に本実施形態の特徴的な動作について図1及び図2を参照して説明する。先ず、水冷式エンジン11の始動直後から水冷式エンジン11が暖まる間まで、第1、第2及び第4の電磁弁17,18,30が閉じられ、第3及び第5の電磁弁19,31が開き、第2のポンプ16が作動する。これにより、蓄熱装置15の入口付近から熱交換器14の出口付近の掛けての第1の冷却水路Bの部分と、第2の冷却水路Cとで循環冷却水路が構成され、この循環冷却水路内を冷却水が循環する。一方、水冷式エンジン11の始動と共に蓄熱装置15内において解除手段24により蓄熱材15aの過冷却状態が解除され、蓄熱材15aが潜熱を放出する。したがって、循環冷却水路内を循環する冷却水は蓄熱装置15内で加熱され、この加熱された冷却水が熱交換器14内を流れるので、水冷式エンジン11の始動直後から暖房が可能と成る。
【0031】
水冷式エンジン11の始動後しばらくして、水冷式エンジン11が暖まり、エンジン出口水温センサ32で検出される水温が、蓄熱装置出口水温センサ33で検出される水温を上回ると、第2のポンプ16が停止し、第3及び第5の電磁弁19,31が閉じられ、第1及び第2の電磁弁17,18が開く。この時の冷却水の熱量は、暖房には十分だが、しかし蓄熱を同時に行うには、熱量が不足している。これにより、第2の冷却水路Cの一部とバイパス冷却水路Dとで蓄熱装置15がバイパスされる。この結果、水冷式エンジン11で加熱された冷却水は直接熱交換器14内を流れるようになるので、十分な暖房が得られる。
【0032】
水冷式エンジン11が十分に暖まって、冷却水の熱量が、暖房及び蓄熱を同時に行うのに十分に成った時、第4の電磁弁が閉じられ、第5の電磁弁が開く。これにより、水冷式エンジンにより十分加熱された冷却水が蓄熱装置15内を流れ、蓄熱装置15内で蓄熱が行われ、また、蓄熱装置15内から流出した冷却水で暖房が行われる。冷却水の熱量が暖房及び蓄熱を同時に行うのに十分に成った状態では、エアーミックスダンパ51が全開の状態から少し閉じられた状態になるので、本実施形態では、開度検出器52によって検出されるエアーミックスダンパ51の開度が、所定以下に成った時に、上述のように第4の電磁弁30を閉じ、第5の電磁弁31を開くようにし、これにより蓄熱装置15をバイパスすることが中止されるように成っている。
【0033】
なお、図3に示した電源回路の代わりに図5に示す電源回路を用いてもよい。図5に示す電源回路では、自動車のバッテリー41にはメインスイッチ42を介して並列にセルモータ43が接続されている。また、このバッテリー41にはスイッチ45を介してポンプ16、電磁弁19、及び蓄熱材15aに刺激を与えるための抵抗体46が並列に接続されている。
【0034】
この電源回路を用いれば、エンジン11が駆動されているかどうかに関係なく、スイッチ45を閉じれば、抵抗体46によって蓄熱材15aが刺激され、蓄熱材15aから放熱が行われる。この際、ポンプ16が駆動されるとともに電磁弁19が開かれ、蓄熱装置15と熱交換器14との間で冷却水が循環して、熱交換器14からの放熱により車内が暖房される。
【0035】
なお、エンジン11の始動後の制御については図1乃至図3を用いて説明した実施形態と同様であるので説明を省略する。
【0036】
【発明の効果】
以上説明したように、本発明では、エンジン始動直後において、エンジンが暖まっていない場合においても、車内の暖房を行うことができ、しかも冷却水の熱量が暖房と蓄熱を同時に行うには不十分な時に、蓄熱装置をバイパスすることができるので、冷却水の熱量が不十分な時でも十分に暖房感を得られる。
【図面の簡単な説明】
【図1】図1は本発明の一実施形態による蓄熱装置を備えた自動車用暖房装置の構成略図である。
【図2】図2は図1に示す蓄熱装置を備えた自動車用暖房装置の熱交換器の配置状態を示す構成略図である。
【図3】図3は図1に示す自動車用暖房装置に用いられる電源回路の一実施形態を示す回路図である。
【図4】図4はエンジン冷却水温度と蓄熱材発熱温度との関係を示すグラフである。
【図5】図5は図1に示す自動車用暖房装置に用いられる電源回路の他の実施形態を示す回路図である。
【符号の説明】
11 水冷式エンジン
12 第1のポンプ
13 ラジエター
14 車内熱交換器
15 蓄熱装置
16 第2のポンプ
17 第1の電磁弁
18 第2の電磁弁
19 第3の電磁弁
24 解除手段
30 第4の電磁弁
31 第5の電磁弁
32 エンジン出口水温センサ
33 蓄熱装置出口水温センサ
50 ダクト
51 エアーミックスダンパ
52 開度検出器
A ラジエター用冷却水路
B 第1の冷却水路
C 第2の冷却水路
D バイパス冷却水路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heating device for a vehicle having a heat storage device.
[0002]
[Prior art]
Conventional heating devices for automobiles include a heat exchanger for heating the interior of the vehicle using cooling water of a water-cooled engine, and a heat storage material having supercooling characteristics and connected to the heat exchanger. A device for connecting the water-cooled engine, the heat storage device, and the heat exchanger in series, and circulating the cooling water between the water-cooled engine, the heat storage device, and the heat exchanger. A first cooling water passage, a first pump provided in the first cooling water passage, and circulating the cooling water; one end connected to the first cooling water passage near an outlet of the heat exchanger; A second cooling water passage connected to the first cooling water passage near the inlet of the heat storage device and returning the cooling water flowing out of the heat exchanger to the heat storage device; and a second cooling water passage provided in the second cooling water passage. Heat pump from the vicinity of the inlet of the heat storage device. A circulating cooling water passage formed by the first cooling water passage portion and the second cooling water passage near the outlet of the vessel is provided in the first cooling water passage so as to be separated from the water-cooled engine. First and second solenoid valves, a third solenoid valve provided in the second cooling water passage so as to be located on the outlet side of the second pump, and opening and closing the second cooling water passage; Some include a release means for releasing the supercooled state of the heat storage material (see, for example, JP-A-2-31913, JP-A-2-41919, and JP-A-2-45214).
[0003]
In this type of vehicle heating device, the cooling water heated when cooling the water-cooled engine is passed through a heat storage device, so that the heat of the cooling water is stored in the form of latent heat by a heat storage material of the heat storage device. ing. Shortly after the start of the water-cooled engine, that is, when the cooling water has not yet been sufficiently heated, the releasing means releases the supercooled state of the heat storage material and releases the latent heat from the heat storage material. By heating the cooling water in the heat storage device by the latent heat and passing the cooling water through a heat exchanger, the heating can be performed quickly.
[0004]
[Problems to be solved by the invention]
However, even if the water-cooled engine warms up a while after being started and the cooling water circulating through the water-cooled engine is sufficiently heated, the conventional car heating system still has a water-cooled engine, a heat storage device, Since the heat exchangers are connected in series, the cooling water that has been sufficiently heated by the water-cooled engine is deprived of heat when passing through the heat storage device, and thus the cooling water whose temperature has decreased in this way is cooled by the heat exchanger. Since it flows into the interior, it was not possible to obtain a sufficient feeling of heating until the latent heat was stored in the heat storage material.
[0005]
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a heating device for a vehicle including a heat storage device configured to store heat after cooling water has a sufficient amount of heat for heating and storing heat. .
[0006]
[Means for Solving the Problems]
According to the invention described in claim 1, the heat exchanger for heating the inside of the vehicle using the cooling water of the water-cooled engine and the heat storage material having supercooling characteristics are connected to the heat exchanger. A heat storage device, the water-cooled engine, the heat storage device, and the heat exchanger are connected in series to circulate the cooling water between the water-cooled engine, the heat storage device, and the heat exchanger. A first cooling water passage, a first pump provided in the first cooling water passage and circulating the cooling water, and one end connected to the first cooling water passage near an outlet of the heat exchanger; A second cooling water passage whose end is connected to the first cooling water passage near the inlet of the heat storage device and returns the cooling water flowing out of the heat exchanger to the heat storage device; and a second cooling water passage provided in the second cooling water passage. The second heat pump and the heat exchange from near the inlet of the heat storage device. A circulating cooling water passage formed by the first cooling water passage portion and the second cooling water passage near the outlet of the vessel is provided in the first cooling water passage so as to be separated from the water-cooled engine. First and second solenoid valves, a third solenoid valve provided in the second cooling water passage so as to be located on the outlet side of the second pump, and opening and closing the second cooling water passage; A heating device for a vehicle including a heat storage device including a release unit for releasing a supercooled state of the heat storage material, wherein one end of the heating device is connected to the first cooling water passage between an outlet of the heat storage device and an inlet of the heat exchanger. A bypass cooling water passage having the other end connected to the second cooling water passage from an outlet of the third solenoid valve to the other end of the second cooling water passage, and bypassing the heat storage device; A fourth solenoid valve for opening and closing the water channel, and the second cooling; A fifth solenoid valve that is provided in the first cooling water passage so as to be located between the other end of the passage and the inlet of the heat storage device, and that opens and closes the first cooling water passage; When the amount of heat of the cooling water from is sufficient for heating, but insufficient for heat storage, the third and fifth solenoid valves are closed and the first, second, and fourth solenoid valves are closed. An electromagnetic valve is opened to allow the cooling water from the water-cooled engine to flow directly into the heat exchanger by bypassing the heat storage device. Can be
[0007]
According to a second aspect of the present invention, in the vehicle heating device provided with the heat storage device according to the first aspect, an air mix damper for adjusting a heat release amount of the heat exchanger and an opening degree of the air mix damper are detected. And a heat storage device, wherein when the opening of the air mix damper is equal to or less than a predetermined value, the cooling water is guided to the heat storage device to store heat. A heating device is obtained.
[0008]
[Action]
In the present invention, the first, second, and fourth solenoid valves are closed, the third and fifth solenoid valves are opened, and the second pump is turned on immediately after the start of the water-cooled engine until the water-cooled engine warms up. Operate. As a result, a circulating cooling water passage is constituted by the first cooling water passage extending from the vicinity of the inlet of the heat storage device to the vicinity of the outlet of the heat exchanger, and the cooling water passage is formed in the circulating cooling water passage. Circulates. On the other hand, when the water-cooled engine is started, the supercooled state of the heat storage material is released by the release means in the heat storage device, and the heat storage material releases latent heat. Therefore, the cooling water circulating in the circulating cooling water passage is heated in the heat storage device, and the heated cooling water flows in the heat exchanger, so that heating can be performed immediately after the start of the water-cooled engine.
[0009]
Some time after the start of the water-cooled engine, the water-cooled engine warms up, and the amount of heat of the cooling water is sufficient for heating, but the amount of heat is insufficient for simultaneous heat storage. In such a state, the second pump is stopped, the third and fifth solenoid valves are closed, and the first, second, and fourth solenoid valves are opened. Thus, the heat storage device is bypassed by a part of the second cooling water passage and the bypass cooling water passage. As a result, the cooling water heated by the water-cooled engine flows directly in the heat exchanger, so that sufficient heating can be obtained.
[0010]
When the water-cooled engine has warmed up sufficiently and the amount of heat of the cooling water is sufficient to simultaneously perform heating and heat storage, the fourth solenoid valve is closed and the fifth solenoid valve is opened. Thereby, the cooling water sufficiently heated by the water-cooled engine flows through the heat storage device, heat is stored in the heat storage device, and the cooling water flowing out of the heat storage device can be sufficiently heated.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a configuration of a vehicle heating device provided with a heat storage device according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram showing an arrangement state of a heat exchanger of the vehicle heating device provided with the heat storage device shown in FIG. It is.
[0012]
Referring to FIGS. 1 and 2, a radiator 13 is connected to a water-cooled engine 11 through a cooling water passage (radiator cooling water passage) A via a first pump 12 for circulating cooling water. The cooling water passage A is provided with solenoid valves 20 and 21 on the inlet side and the outlet side of the radiator 13, respectively. On the other hand, an in-vehicle heat exchanger 14 is connected to the first pump 12 by a cooling water passage (first cooling water passage) B. The heat exchanger 14 has a heat storage material 15a having a supercooling action. It is connected to a heat storage device 15 covered with a heat insulating material 15b. The heat exchanger 14 is arranged in a duct 50 as shown in FIG. An air mix dam 51 for opening and closing the heat exchanger 14 is rotatably provided on the heat exchanger 14, and an opening detector 52 for detecting the opening is provided on the air mix damper 51. ing. The heat storage device 15 is connected to the engine 11 by a cooling water passage B. That is, as shown, the heat exchanger 14 and the heat storage device 15 are connected in series by the cooling water passage B. Further, the cooling water passage B is provided with first and second solenoid valves 17 and 18 at positions where a cooling water passage C described later can be cut off from the water-cooled engine 11.
[0013]
A cooling water passage (second cooling water passage) C is disposed in parallel with the heat exchanger 14 and the heat storage device 15, and the cooling water passage C is connected to the cooling water passage B. Specifically, the cooling water passage C has one end connected to the cooling water passage B near the outlet of the heat exchanger 14, and the other end connected to the cooling water passage B near the inlet of the heat storage device 15. The outflowing cooling water is returned to the heat storage device 15. The cooling water passage C is provided with a second pump 16 and a third solenoid valve 19.
[0014]
Further, between the cooling water passage B and the cooling water passage C, a cooling water passage (by-pass cooling water passage) D is provided. Specifically, the cooling water passage D has one end connected to the cooling water passage B between the outlet of the heat storage device 15 and the inlet of the heat exchanger 14, and the other end connected to the cooling water passage from the outlet of the third solenoid valve 19. The other end of C is connected to the cooling water passage C, and bypasses the heat storage device 15. The cooling water passage D is provided with a fourth solenoid valve 30 for opening and closing the cooling water passage D. A fifth electromagnetic valve is provided in the cooling water passage B so as to be located between the other end of the cooling water passage C and the inlet of the heat storage device 15. A valve 31 is provided, at which the cooling water passage B is opened and closed by a fifth solenoid valve 31. Further, an engine outlet water temperature sensor 32 is provided near the cooling water outlet of the water-cooled engine 11, and a heat storage device outlet water temperature sensor 33 is provided near the heat storage device 15 outlet.
[0015]
As the above-described heat storage material, for example, a material obtained by adding a polysaccharide to NaCH 3 COO.3H 2 O is used.
[0016]
When this heat storage material is heated to 60 ° C. or higher, it becomes a gel and stores latent heat. The latent heat once stored is not released even when the heat storage material is cooled (for example, a gel state is maintained at room temperature, that is, a supercooled state is maintained). The heat storage material storing the latent heat can be stored for a long time without heat insulation. On the other hand, when an appropriate stimulus is applied, it is activated and returns to a solid. At this time, a heat of 58 ° C. is released.
[0017]
FIG. 3 is a circuit diagram showing an embodiment of a power supply circuit used in the vehicle heating device shown in FIG. 1, and FIG. 4 is a graph showing a relationship between an engine cooling water temperature and a heat storage material heat generation temperature. Next, referring to FIG. 3, an electrode device 44 for stimulating the cell motor 43 and the heat storage material 15 a is connected to the battery 41 of the automobile via a main switch 42 in parallel. The pump 16 and the solenoid valve 19 are connected to the battery 41 via a switch 45 in parallel.
[0018]
Here, the basic operation of the above-described heating device will be described with reference to FIGS. Here, it is assumed that latent heat is already stored in heat storage material 15a.
[0019]
When the main switch 42 is closed, the starter motor 43 is driven, whereby the engine 11 is started. At this time, discharge is performed from the electrode 44a of the electrode device 44, whereby the supercooled state of the heat storage material 15a is released, and latent heat is released from the heat storage material 15a. After starting the engine, the main switch 42 is opened.
[0020]
When heating is performed immediately after the start of the engine 11, the heating switch 45 is closed. This drives the pump 16 and opens the solenoid valve 19. As a result, the cooling water circulates through the cooling water passage C, the heat storage device 15, and the heat exchanger 14. At this time, the blower 14a is driven.
[0021]
The cooling water is warmed by the heat radiation from the heat storage material 15a, radiates heat in the heat exchanger 14, and the interior of the vehicle is heated. It is desirable that the blower be driven when the cooling water has risen to a predetermined temperature or after a predetermined time has elapsed by stimulating the heat storage material.
[0022]
When the temperature of the engine 11 reaches a predetermined temperature, the solenoid valves 20 and 21 are opened and the pump 12 is driven to circulate the cooling water. At this time, the electromagnetic valves 17 and 18 are opened, the switch 45 is opened, the pump 16 is stopped, and the electromagnetic valve 19 is closed.
[0023]
Therefore, the cooling water heated by the engine 11 is radiated by the radiator 13 by the pump 12, while the cooling water from the engine 11 returns to the engine 11 through the heat storage device 15 and the heat exchanger 14. At this time, the heat storage device 15 absorbs heat (latent heat) from the heated cooling water into the heat storage material 15a, and changes from a solid state to a gel state. That is, the heat storage material 15a absorbs heat from the cooling water.
[0024]
Here, the heat radiation temperature from the heat storage material 15a was set to 58 ° C, the cooling water temperature when using the heat storage material 15a was set to 50 to 55 ° C, and the cooling water temperature from the engine 11 was set to 95 to 105 ° C.
[0025]
By the way, if the engine 11 is stopped before the heat storage of the heat storage material 15a is completed, that is, if the heat storage is insufficient, heat is radiated before the heat storage material 15a enters a supercooled state.
[0026]
For example, if the engine 11 is driven until time T as shown in FIG. 4, the engine 11 is stopped at time t when the heat storage in the heat storage material 15a is completed.
[0027]
In this case, the amount of heat required for the heat storage of the heat storage material 15a is the area EBC in FIG. 4, and the amount of heat stored by the time t is the area EAD. Therefore, when the engine 11 is stopped at the time t, heat is radiated from the heat storage material 15a before the supercooled state due to insufficient heat storage.
[0028]
The pump 16 is driven by the battery 41 even after the engine is stopped, in order to prevent the heat radiation, that is, to normally store the heat in the heat storage material 15a. Thereby, the cooling water that has passed through the engine 11 circulates through the heat storage device 15 and the evaporator 14. It is assumed that the heat storage material 15a absorbs heat from the cooling water (warm water) by this circulation, and as a result, the temperature of the cooling water drops as shown by a broken line in FIG.
[0029]
As described above, after the engine 11 is stopped, the solenoid valves 20 and 21 are closed, that is, the cooling water is not circulated to the heat radiation radiator 13, and the pump 16 is driven by the battery 41. It can effectively absorb heat. The heat absorption is the area EAF, and if the area EBC <the area EAF, there is no problem even if the engine is stopped at the time t.
[0030]
Next, the characteristic operation of the present embodiment will be described with reference to FIGS. First, the first, second, and fourth solenoid valves 17, 18, and 30 are closed, and the third and fifth solenoid valves 19, 31 immediately after the start of the water-cooled engine 11 until the water-cooled engine 11 warms up. Opens, and the second pump 16 operates. Thus, a portion of the first cooling water passage B extending from near the inlet of the heat storage device 15 to near the outlet of the heat exchanger 14 and the second cooling water passage C constitute a circulation cooling water passage. Cooling water circulates inside. On the other hand, when the water-cooled engine 11 is started, the supercooled state of the heat storage material 15a is released by the release means 24 in the heat storage device 15 and the heat storage material 15a releases latent heat. Therefore, the cooling water circulating in the circulation cooling water passage is heated in the heat storage device 15, and the heated cooling water flows in the heat exchanger 14, so that heating can be performed immediately after the start of the water-cooled engine 11.
[0031]
Some time after the start of the water-cooled engine 11, the water-cooled engine 11 warms up, and when the water temperature detected by the engine outlet water temperature sensor 32 exceeds the water temperature detected by the heat storage device outlet water temperature sensor 33, the second pump 16 Is stopped, the third and fifth solenoid valves 19 and 31 are closed, and the first and second solenoid valves 17 and 18 are opened. The amount of heat of the cooling water at this time is sufficient for heating, but the amount of heat is insufficient to simultaneously store heat. Thus, the heat storage device 15 is bypassed by a part of the second cooling water passage C and the bypass cooling water passage D. As a result, the cooling water heated by the water-cooled engine 11 flows directly in the heat exchanger 14, so that sufficient heating can be obtained.
[0032]
When the water-cooled engine 11 has warmed up sufficiently and the amount of heat of the cooling water is sufficient to perform heating and heat storage at the same time, the fourth solenoid valve is closed and the fifth solenoid valve is opened. As a result, the cooling water sufficiently heated by the water-cooled engine flows through the heat storage device 15, heat is stored in the heat storage device 15, and heating is performed by the cooling water flowing out of the heat storage device 15. In a state where the amount of heat of the cooling water is sufficient to simultaneously perform heating and heat storage, the air mix damper 51 is slightly closed from a fully opened state. When the opening degree of the air mix damper 51 becomes equal to or less than a predetermined value, the fourth solenoid valve 30 is closed and the fifth solenoid valve 31 is opened as described above, thereby bypassing the heat storage device 15. It is designed to be discontinued.
[0033]
Note that the power supply circuit shown in FIG. 5 may be used instead of the power supply circuit shown in FIG. In the power supply circuit shown in FIG. 5, a cell motor 43 is connected in parallel to a battery 41 of an automobile via a main switch 42. A resistor 46 for stimulating the pump 16, the electromagnetic valve 19, and the heat storage material 15a is connected in parallel to the battery 41 via a switch 45.
[0034]
With this power supply circuit, regardless of whether the engine 11 is driven or not, when the switch 45 is closed, the heat storage material 15a is stimulated by the resistor 46 and heat is radiated from the heat storage material 15a. At this time, the pump 16 is driven and the electromagnetic valve 19 is opened, the cooling water circulates between the heat storage device 15 and the heat exchanger 14, and the inside of the vehicle is heated by the heat radiation from the heat exchanger 14.
[0035]
The control after the start of the engine 11 is the same as that of the embodiment described with reference to FIGS.
[0036]
【The invention's effect】
As described above, in the present invention, immediately after the start of the engine, even when the engine is not warm, the interior of the vehicle can be heated, and the amount of heat of the cooling water is insufficient to simultaneously perform the heating and the heat storage. In some cases, the heat storage device can be bypassed, so that a sufficient feeling of heating can be obtained even when the amount of heat of the cooling water is insufficient.
[Brief description of the drawings]
FIG. 1 is a schematic view of a configuration of a vehicle heating device including a heat storage device according to an embodiment of the present invention.
FIG. 2 is a schematic structural view showing an arrangement state of a heat exchanger of a vehicle heating device provided with the heat storage device shown in FIG.
FIG. 3 is a circuit diagram showing an embodiment of a power supply circuit used in the vehicle heating device shown in FIG.
FIG. 4 is a graph showing a relationship between an engine cooling water temperature and a heat storage material heat generation temperature.
FIG. 5 is a circuit diagram showing another embodiment of a power supply circuit used in the vehicle heating device shown in FIG.
[Explanation of symbols]
Reference Signs List 11 water-cooled engine 12 first pump 13 radiator 14 in-vehicle heat exchanger 15 heat storage device 16 second pump 17 first electromagnetic valve 18 second electromagnetic valve 19 third electromagnetic valve 24 release means 30 fourth electromagnetic Valve 31 Fifth electromagnetic valve 32 Engine outlet water temperature sensor 33 Heat storage device outlet water temperature sensor 50 Duct 51 Air mix damper 52 Opening detector A Radiator cooling water channel B First cooling water channel C Second cooling water channel D Bypass cooling water channel

Claims (3)

水冷式エンジンの冷却水を用いて車内を暖房するための熱交換器と、過冷却特性を備えた蓄熱材を有し且つ前記熱交換器に接続された蓄熱装置と、前記水冷式エンジン、前記蓄熱装置、及び前記熱交換器を直列に接続して、前記水冷式エンジン、前記蓄熱装置、及び前記熱交換器の間で前記冷却水を循環させるための第1の冷却水路と、該第1の冷却水路に設けられ、前記冷却水を循環させる第1のポンプと、一端が前記熱交換器の出口付近で前記第1の冷却水路に接続され、他端が前記蓄熱装置の入口付近で前記第1の冷却水路に接続され、前記熱交換器から流出した前記冷却水を前記蓄熱装置に戻す第2の冷却水路と、該第2の冷却水路に設けられた第2のポンプと、前記蓄熱装置の入口付近から前記熱交換器の出口付近に掛けての前記第1の冷却水路の部分と前記第2の冷却水路とで構成される循環冷却水路を前記水冷式エンジンから切り離すために前記第1の冷却水路に設けられた第1及び第2の電磁弁と、前記第2のポンプの出口側に位置するように前記第2の冷却水路に設けられ、該第2の冷却水路を開閉する第3の電磁弁と、前記蓄熱材の過冷却状態を解除する解除手段とを含む蓄熱装置を備えた自動車用暖房装置において、一端が前記蓄熱装置の出口から前記熱交換器の入口の間で前記第1の冷却水路に接続され、他端が前記第3の電磁弁の出口から前記第2の冷却水路の他端の間で前記第2の冷却水路に接続され、前記蓄熱装置をバイパスするバイパス冷却水路と、該バイパス冷却水路を開閉する第4の電磁弁と、前記第2の冷却水路の他端から前記蓄熱装置の入口の間に位置するように前記第1の冷却水路に設けられ、該第1の冷却水路を開閉する第5の電磁弁とを具備し、前記水冷式エンジンからの前記冷却水の熱量が暖房を行う上では十分であるが、蓄熱には不十分である場合に、前記第3及び第5の電磁弁を閉じるとともに前記第1,第2及び第4の電磁弁を開いて、前記水冷式エンジンからの前記冷却水を前記蓄熱装置をバイパスさせて直接前記熱交換器に流入させるようにしたことを特徴とする蓄熱装置を備えた自動車用暖房装置。A heat exchanger for heating the interior of the vehicle using cooling water of a water-cooled engine, a heat storage device having a heat storage material having supercooling characteristics and connected to the heat exchanger, the water-cooled engine, A first cooling water passage for circulating the cooling water between the water-cooled engine, the heat storage device, and the heat exchanger by connecting the heat storage device and the heat exchanger in series; A first pump that is provided in the cooling water passage and circulates the cooling water, one end of which is connected to the first cooling water passage near the outlet of the heat exchanger, and the other end of which is near the inlet of the heat storage device. A second cooling water passage connected to a first cooling water passage and returning the cooling water flowing out of the heat exchanger to the heat storage device; a second pump provided in the second cooling water passage; From the vicinity of the inlet of the device to the vicinity of the outlet of the heat exchanger First and second solenoid valves provided in the first cooling water passage for separating a circulation cooling water passage composed of a part of the first cooling water passage and the second cooling water passage from the water-cooled engine; A third solenoid valve that is provided in the second cooling water passage so as to be located on the outlet side of the second pump, and that opens and closes the second cooling water passage; and a release that releases the supercooled state of the heat storage material. Means for heating the vehicle, comprising one end connected to the first cooling water passage between the outlet of the heat storage device and the inlet of the heat exchanger, and the other end connected to the third electromagnetic device. A bypass cooling water passage connected between the outlet of the valve and the other end of the second cooling water passage to the second cooling water passage to bypass the heat storage device, and a fourth solenoid valve for opening and closing the bypass cooling water passage; From the other end of the second cooling water passage, A fifth solenoid valve provided in the first cooling water passage so as to be located between the ports, and a fifth solenoid valve for opening and closing the first cooling water passage, wherein a heat amount of the cooling water from the water-cooled engine is heated. Is performed, but the heat storage is insufficient, the third and fifth solenoid valves are closed and the first, second, and fourth solenoid valves are opened, and the water-cooled A heating device for a vehicle having a heat storage device, wherein the cooling water from the engine is caused to flow directly into the heat exchanger by bypassing the heat storage device. 請求項1記載の蓄熱装置を備えた自動車用暖房装置において、前記熱交換器の放熱量を調整するエアーミックスダンパと、該エアーミックスダンパの開度を検出する開度検出器とを備え、前記エアーミックスダンパの開度が所定値以下の時に前記冷却水を前記蓄熱装置に導いて蓄熱をするようにしたことを特徴とする蓄熱装置を備えた自動車用暖房装置。A heating apparatus for a vehicle including the heat storage device according to claim 1, further comprising: an air mix damper that adjusts a heat release amount of the heat exchanger; and an opening detector that detects an opening of the air mix damper, A heating device for a vehicle equipped with a heat storage device, wherein the cooling water is guided to the heat storage device to store heat when the opening degree of the air mix damper is equal to or less than a predetermined value. 請求項1又は2に記載の蓄熱装置を備えた自動車用暖房装置において、前記水冷式エンジンからの前記冷却水の熱量が暖房を行う上で不十分である場合に、前記第1,第2及び第4の電磁弁を閉じるとともに前記第3及び5の電磁弁を開いて前記循環冷却水路から前記水冷式エンジンを切離すようにしたことを特徴とする蓄熱装置を備えた自動車用暖房装置。The heating device for a vehicle including the heat storage device according to claim 1, wherein the amount of heat of the cooling water from the water-cooled engine is insufficient to perform heating, and the first, second, and A vehicle heating device equipped with a heat storage device, wherein the fourth electromagnetic valve is closed and the third and fifth electromagnetic valves are opened to separate the water-cooled engine from the circulation cooling water passage.
JP24795396A 1996-09-19 1996-09-19 Automotive heating system with heat storage device Expired - Fee Related JP3563213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24795396A JP3563213B2 (en) 1996-09-19 1996-09-19 Automotive heating system with heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24795396A JP3563213B2 (en) 1996-09-19 1996-09-19 Automotive heating system with heat storage device

Publications (2)

Publication Number Publication Date
JPH1086645A JPH1086645A (en) 1998-04-07
JP3563213B2 true JP3563213B2 (en) 2004-09-08

Family

ID=17171014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24795396A Expired - Fee Related JP3563213B2 (en) 1996-09-19 1996-09-19 Automotive heating system with heat storage device

Country Status (1)

Country Link
JP (1) JP3563213B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147117A (en) * 2012-01-18 2013-08-01 Isuzu Motors Ltd Automobile heating apparatus
KR101551097B1 (en) 2014-06-11 2015-09-08 현대자동차주식회사 Heating system of hybrid vehicle
CN108461777B (en) * 2018-03-16 2024-03-22 北京亿华通科技股份有限公司 Heat treatment system for fuel cell stack
JP7245131B2 (en) * 2019-07-16 2023-03-23 株式会社日本クライメイトシステムズ Vehicle heat storage system

Also Published As

Publication number Publication date
JPH1086645A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
US5528900A (en) Instant automobile cooling system
KR20080008875A (en) Device assistance a cooling and heating for vehicle using ther electric element
JP3563213B2 (en) Automotive heating system with heat storage device
JP3478015B2 (en) Cooling system for internal combustion engine for vehicles
CA1323011C (en) Reserve automobile heating system
JP4073653B2 (en) Air conditioner for vehicles
JP3977629B2 (en) Air conditioner for vehicles
JP3993760B2 (en) Air conditioner for vehicles
JP3733550B2 (en) Engine cooling system
JP3843499B2 (en) Cooling water circuit for internal combustion engine
JPS6343808A (en) Instant warming device
JP3312460B2 (en) Vehicle heating system
JP3231922B2 (en) Vehicle heating system
JP3767027B2 (en) Cooling system for internal combustion engine for vehicle
JPH0245213A (en) Car heater
JPH0231913A (en) Heating system for automobile
JP2008126730A (en) Air conditioner for vehicle
JPH0241919A (en) Heating system for car
JPH0241920A (en) Heating system for car
JPS60244613A (en) Immediate effecting regenerative heater for vehicle
JPH0245214A (en) Car heater
JPH0341930Y2 (en)
JPH02102816A (en) Heating apparatus for vehicle
JP2001030741A (en) Heat accumulation system for vehicle
JPH11208255A (en) Air conditioning machine for automobile

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees