JP3767027B2 - Cooling system for internal combustion engine for vehicle - Google Patents

Cooling system for internal combustion engine for vehicle Download PDF

Info

Publication number
JP3767027B2
JP3767027B2 JP23093996A JP23093996A JP3767027B2 JP 3767027 B2 JP3767027 B2 JP 3767027B2 JP 23093996 A JP23093996 A JP 23093996A JP 23093996 A JP23093996 A JP 23093996A JP 3767027 B2 JP3767027 B2 JP 3767027B2
Authority
JP
Japan
Prior art keywords
water
internal combustion
combustion engine
temperature
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23093996A
Other languages
Japanese (ja)
Other versions
JPH1071838A (en
Inventor
青木  新治
敏夫 森川
美光 井上
光 杉
和貴 鈴木
博之 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP23093996A priority Critical patent/JP3767027B2/en
Priority to US08/924,043 priority patent/US5896833A/en
Priority to DE19737818A priority patent/DE19737818B4/en
Publication of JPH1071838A publication Critical patent/JPH1071838A/en
Application granted granted Critical
Publication of JP3767027B2 publication Critical patent/JP3767027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの暖機促進を図る車両用内燃機関の冷却系装置に関するものである。
【0002】
【従来の技術】
エンジンの暖機促進を図る冷却系装置として、例えばSAE TECHNICAL PAPER SERIES 950994では、エンジンから流出する冷却水を保温貯蔵する蓄熱タンクを冷却水回路に配設し、蓄熱タンク内に貯蔵された高温の冷却水をエンジンに導入してエンジンの暖機促進を図るものが提案されている。
【0003】
【発明が解決しようとする課題】
ところで、発明者等は上記従来装置を検討したところ、十分に暖機促進効果を得ることができなかった。そこで、発明者等は引き続き検討を行ったところ、以下の述べる原因が判明した。
すなわち、上記考案の蓄熱タンクは、冷却水が流出入する開口部が蓄熱タンクの重力方向上方に形成されているため、蓄熱タンク内の冷却水のうち温度の高い冷却水が分布している蓄熱タンク上方部位と開口部との距離が小さくなってしまう。したがって、蓄熱タンクの熱が開口部から放熱し易くなってしまう。
【0004】
さらに、発明者等の試験検討によると、開口部からの放熱は、蓄熱タンクから放熱する熱量の多くを占めており、開口部が蓄熱タンクの重力方向上方に形成されていることと相まって、上記従来装置の蓄熱タンクの保温能力が低くなってしまう。
したがって、温度の高い冷却水をエンジンに供給することができず、十分な暖機促進効果を得ることができなかった。
【0005】
本発明は、上記点に鑑み、蓄熱タンクを有する冷却系装置において、蓄熱タンクの保温能力を向上させて暖機運転の促進を十分に図ることを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するために、以下の技術的手段を用いる。請求項1〜10に記載の発明では、第1に蓄熱タンク(9)の重力方向下方側に冷却水が流出入する開口部(94)が形成され、第2に水冷式内燃機関(3)の暖機運転時に蓄熱タンク(9)から流出する冷却水温度が所定温度を越えているときは、水冷式内燃機関(3)から流出した冷却水を蓄熱タンク(9)を経て水冷式内燃機関(3)に還流させるタンク水路(10a)を開き、水冷式内燃機関(3)の暖機運転時に蓄熱タンク(9)から流出する冷却水温度が所定温度以下のときは、タンク水路(10a)を閉じることを特徴とする。
【0007】
第1の特徴より、開口部(94)が重力方向上方側に形成されている蓄熱タンクに比べて、高温の冷却水が溜まっている重力方向上方側の蓄熱タンク(9)内の部位と開口部(94)との距離が大きくなる。つまり、蓄熱タンク(9)に蓄えられた熱が放熱し易い開口部(94)と高温の冷却水が溜まっている部位との距離が大きくなり、蓄熱タンク(9)の保温能力を向上を図ることができる。
【0008】
第2の特徴より、後述するように、水冷式内燃機関(3)から流出する冷却水のうち水冷式内燃機関(3)始動直後の低温の冷却水を、蓄熱タンク(9)内に一旦、貯蔵することができる。したがって、水冷式内燃機関(3)始動直後の低温の冷却水が水冷式内燃機関(3)内を循環することを防止することができるので、より暖機運転の促進を図ることができる。
【0009】
以上述べたように、本発明によれば、蓄熱タンク(9)の保温能力を向上させて暖機運転の促進を十分に図ることができる。
請求項2に記載の発明では、請求項1に記載の車両用内燃機関の冷却系装置において、蓄熱タンク(9)の冷却水下流側に配設され、前記蓄熱タンク(9)から流出する冷却水温度を検出する温度検出手段(17)と、
前記タンク水路(10a)の連通状態を制御する制御バルブ(11)とを有しており、 水冷式内燃機関(3)の暖機運転時に温度検出手段(17)によって検出される冷却水温度が所定温度を越えているときは、制御バルブ(11)を開き、水冷式内燃機関(3)の暖機運転時に温度検出手段(17)によって検出される冷却水温度が所定温度以下のときは、制御バルブ(11)を閉じることを特徴とする。
【0010】
請求項3に記載の発明では、請求項2に記載の車両用内燃機関の冷却系装置において、蓄熱タンク(9)を迂回するバイパス水路(10b)がタンク水路(10a)接続しており、温度検出手段(17)は、バイパス水路(10b)とタンク水路(10a)との合流部位(117)に配設されていることを特徴とする。
請求項4に記載の発明では、請求項2に記載の車両用内燃機関の冷却系装置において、前記蓄熱タンク(9)を迂回するバイパス水路(10b)が前記タンク水路(10a)に接続しており、前記制御バルブ(11)は、前記タンク水路(10a)と前記バイパス水路(10b)との分岐部位に設けられ、
前記制御バルブ(11)は、前記タンク水路(10a)を開き前記バイパス水路(10b)を閉じた状態と、前記タンク水路(10a)を閉じ前記バイパス水路(10b)を開いた状態とを提供することを特徴とする。
請求項5に記載の発明では、請求項2ないし4のいずれか1つに記載の車両用内燃機関の冷却系装置において、さらに、前記水冷式内燃機関(3)の暖機運転時に前記温度検出手段(17)によって検出される冷却水温度が前記所定温度を越えているときは、前記制御バルブ(11)により前記タンク水路(10a)を開き、前記水冷式内燃機関(3)の暖機運転時に前記温度検出手段(17)によって検出される冷却水温度が前記所定温度以下のときは、前記制御バルブ(11)により前記タンク水路(10a)を閉じる制御装置(18)を備えることを特徴とする。
請求項6に記載の発明では、請求項2ないし5のいずれか1つに記載の車両用内燃機関の冷却系装置において、前記制御バルブ(11)は、前記水冷式内燃機関(3)の暖機終了後は、前記タンク水路(10a)を開いた状態とすることを特徴とする。
請求項7に記載の発明では、請求項6に記載の車両用内燃機関の冷却系装置において、 前記制御バルブ(11)は、
前記水冷式内燃機関(3)が始動してから所定時間は前記タンク水路(10a)を開いた状態とし、
前記所定時間経過後、前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が所定温度を越えているときは、前記タンク水路(10a)を開いた状態とし、前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が前記所定温度以下のときは、前記タンク水路(10a)を閉じた状態とし、
さらに、前記蓄熱タンク(9)から流出する冷却水温度が、前記水冷式内燃機関(3)の暖機運転が終了したものとみなせる温度を越えると、前記タンク水路(10a)を開いた状態とすることを特徴とする。
請求項8に記載の発明では、請求項1ないし7のいずれか1つに記載の車両用内燃機関の冷却系装置において、前記タンク水路(10a)のうち前記蓄熱タンク(9)の冷却水下流側に配設され、空気を加熱するヒータコア(12)と、
前記ヒータコア(12)の空気上流側に配設され、車室内に吹き出す空気を送風する送風機(13)とを有し、
前記水冷式内燃機関(3)の暖機運転時には前記送風機(13)を停止することを特徴とする。
請求項9に記載の発明では、水冷式内燃機関(3)から流出した冷却水を保温貯蔵し、重力方向下方側に冷却水が流出入する開口部(94)を有する蓄熱タンク(9)を経由して、前記水冷式内燃機関(3)から流出した冷却水を前記水冷式内燃機関(3)に還流させるタンク水路(10a)に設けられた制御バルブ(11)であって、
前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が所定温度を越えているときは、前記タンク水路(10a)を開いた状態とし、
前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が前記所定温度以下のときは、前記タンク水路(10a)を閉じた状態とし、
前記水冷式内燃機関(3)の暖機終了後は、前記タンク水路(10a)を開いた状態と することを特徴とする。
請求項10に記載の発明では、請求項9に記載の制御バルブにおいて、前記水冷式内燃機関(3)が始動してから所定時間は前記タンク水路(10a)を開いた状態とし、
前記所定時間経過後、前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が所定温度を越えているときは、前記タンク水路(10a)を開いた状態とし、前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が前記所定温度以下のときは、前記タンク水路(10a)を閉じた状態とし、
さらに、前記蓄熱タンク(9)から流出する冷却水温度が、前記水冷式内燃機関(3)の暖機運転が終了したものとみなせる温度を越えると、前記タンク水路(10a)を開いた状態とすることを特徴とする。
【0011】
なお、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
【0012】
【発明の実施の形態】
以下、本発明を図に示す実施の形態について説明する。
(第1実施形態)
図1は、水冷式内燃機関(以下、エンジンと呼ぶ。)の冷却水回路1(2点鎖線で囲まれた回路)と、車両用蓄熱式暖房装置の冷却水回路2(一点鎖線で囲まれた回路)とを示している。
【0013】
3は車両走行用のエンジンであり、4はエンジン3から駆動力を得てエンジン3に冷却水を循環させるウォータポンプである。エンジン3の熱を奪った冷却水の一部は、上述のエンジンの冷却水回路1に流れ込み、その他の冷却水は、車両用蓄熱式暖房装置の冷却水回路2に流れ込む。
5は、エンジンの冷却水回路1において、エンジン3の冷却水の冷却手段をなすラジエータである。また、この冷却水回路1には、ラジエータ5を流れる冷却水回路6をバイパスするバイパス回路7が設けられており、これら両冷却水回路1、7の切り換えは、サーモスタット8によって制御される。因みに、両冷却水回路1、7の切り換えは、通常、冷却水温度が80℃以上の場合にはラジエータ5に流れるように制御され、また、80℃以下の場合には、バイパス回路7に流れるように制御される。
【0014】
また一方、車両用保温式暖房装置の冷却水回路2において、エンジン3の冷却水下流側には、冷却水を保温貯蔵する蓄熱タンク9と、この蓄熱タンク9および後述するヒータコア12を経てエンジン3に還流するタンクヒータ水路(タンク水路)10aと、蓄熱タンク9を迂回するバイパス水路10bとが設けられている。そして、蓄熱タンク9の冷却水上流側であって、タンクヒータ水路10aとバイパス水路10bとの分岐部位には、両水路10a、10bに流れ込む冷却水量(連通状態)を制御する制御バルブ11が配設されている。なお、蓄熱タンク9および制御バルブ11の構造については後述する。
【0015】
そして、蓄熱タンク9の冷却水下流側には、空気加熱手段をなすヒータコア12が設けられており、ヒータコア12の空気上流側には、車室内に向けて空気を送風する送風機13が配設されている。そして、送風機13によって送風された空気は、ヒータコア12で加熱されてダクト(図示せず)を介して車室内に吹き出される。また、ヒータコア12の冷却水流入側には、ヒータコア12に流れ込む冷却水の冷却水回路14の開閉を行う電磁弁15が設けられている。この電磁弁15は、夏場等の暖房未使用時に、ヒータコア12にからの輻射熱を抑制するために、冷却水回路14を閉じるように、後述する制御装置18に制御される。
【0016】
また、この電磁弁15の冷却水上流側には、ヒータコア12を流れる冷却水回路14をバイパスするバイパス回路16が設けられている。そして、冷却水回路14およびバイパス回路16の下流はウォータポンプ4に接続され、車両用保温式暖房装置の冷却水回路2を形成している。
次に、蓄熱タンク9および制御バルブ11の構造について述べる。
【0017】
蓄熱タンク9は、図2に示すように、ステンレス製の内側タンク部91および外側タンク部92からなる二重タンク構造を有しており、両タンク部91、92間の空間93は、断熱性の向上を図るべく略真空となっている。また、94は冷却水が流出入するタンク開口であり、このタンク開口94は、重力方向下方に向けて開口した状態で重力方向下方に向けて突出して管状突出部95を形成している。
そして、管状突出部95内には、制御バルブ11のハウジング111の一部が挿入されており、このハウジング111の一部により蓄熱タンク9内に冷却水が流入する冷却水流入路112と、蓄熱タンク9内の冷却水が流出する冷却水流出路113とを形成している。
【0018】
なお、冷却水流入路112は、蓄熱タンク9内のうち重力方向下方部位で蓄熱タンク9内と連通しており、冷却水流出路113は重力方向上方部位で蓄熱タンク9内と連通している。因みに、114は蓄熱タンク9内の冷却水の対流を抑制する混合防止板である。
また、ハウジング111内にはバイパス水路10bが形成されており、バイパス水路10bと冷却水流入路112(タンクヒータ水路10a)との分岐部位には、制御バルブ11の弁体115が配設されている。この弁体115は、サーボモータ等のアクチュエータ116によって回転駆動されるロータリー式(回転式)の弁体であり、アクチュエータ116は、冷却水流出路113とバイパス水路10bとの合流部位117に配設された水温センサ(温度検出手段)17によって検出された冷却水温度に基づいて制御装置18によって制御されている(図3参照)。
【0019】
なお、制御装置18には、図3に示すように、ヒータコア12に流入する冷却水温度を検出する水温センサ19、および車室外温度センサや車室内温度センサ等の空調装置を制御するに必要な情報を検出する空調センサ20からの信号が入力されている。そして、制御装置18は、上記入力信号に基づいて予め設定されたプログラムに従ってアクチュエータ116と、送風機13および電磁弁15等の空調手段とを制御している。
【0020】
因みに、21は、エンジン3始動直後等の冷却水温度が低く、暖房運転を行うことができないときに、蓄熱タンク9内の高温の冷却水を用いて暖房を行う即効暖房スイッチであり、この即効暖房スイッチ21は、乗員の手動操作により投入されるものである。
次に、本実施形態の作動を図4のフローチャートに基づいて述べる。
【0021】
エンジン3のイグニッションスイッチ(図示せず)の状態、またはエンジン3の回転数などによりエンジン3が稼動中か否かを判定し(ステップ100)、エンジン3が稼動中であるときは、エンジン3が始動してから所定時間t(本実施形態では10秒間)は、冷却水流入路112(タンクヒータ水路10a)を開き続け、かつ、バイパス水路10bを閉じ続ける(ステップ110、120)。
【0022】
なお、このとき、電磁弁15は、即効暖房スイッチ21が乗員によって投入されないかぎり閉じている。これにより、蓄熱タンク9から流出した高温の冷却水は、バイパス回路16を経てエンジン3に還流してエンジン3の暖機を促進する。
一方、エンジン3が停止中であるときは、冷却水流入路112を閉じ、かつ、バイパス水路10bを開く(ステップ130)。
【0023】
そして、所定時間t経過後、水温センサ17によって検出された冷却水温度TW が所定温度(本実施形態では60℃)未満であるか否かを判定し(ステップ140)、冷却水温度TW が60℃以上であるときは、蓄熱タンク9内に貯蔵された高温の冷却水が蓄熱タンク9内に残存しているものとみなして、冷却水流入路112を開き続け、かつ、バイパス水路10bを閉じ続け(ステップ110)、蓄熱タンク9とエンジン3との間で冷却水を循環させる。
【0024】
そして、蓄熱タンク9から流出する冷却水の冷却水温度TW が60℃未満となったときに、蓄熱タンク9内に貯蔵された高温の冷却水が全て流出したものとみなして、冷却水流入路112を閉じ、かつ、バイパス水路10bを開く(ステップ160)。
なお、冷却水流入路112を閉じ、バイパス水路10bを開くことにより、水温センサ17は、バイパス水路10bを流通する冷却水、すなわちエンジン3を流出する冷却水の温度を検出することができる。
【0025】
そして、水温センサ17によって検出された冷却水温度TW が80℃になるまで、すなわち暖機運転が終了したものとみなせる状態になるまで冷却水流入路112を閉じ、かつ、バイパス水路10bを開き続ける(ステップ170)。
次に、冷却水温度TW が80℃を越えて暖機運転が終了すると、エンジン3が停止するまで、冷却水流入路112およびバイパス水路10bを開いて(ステップ180、190)、エンジン3から流出する高温の冷却水を蓄熱タンク9内に導入する。
【0026】
因みに、図2は冷却水流入路112を開き、かつ、バイパス水路10bを閉じた状態(図4のバルブ作動状態A)を示しており、図5は冷却水流入路112を閉じ、かつ、バイパス水路10bを開いた状態(図4のバルブ作動状態B)を示しており、図6は冷却水流入路112およびバイパス水路10bを開いた状態(図4のバルブ作動状態C)を示している。また、図7は、図4に示された制御弁11の作動状態を示す作動図表である。
【0027】
次に、本実施形態の特徴を述べる。
本実施形態によれば、エンジン3の暖機運転時に、蓄熱タンク9内に貯蔵された高温の冷却水をエンジン3内に循環させるので、暖機運転が促進される。延いては、排気ガスとともに排出される有害物質の低減および燃費の向上をより図ることができる。
【0028】
また、エンジン3の暖機運転時に蓄熱タンク9から流出する冷却水温度が所定温度(60℃)未満まで低下したときに、蓄熱タンク9内に貯蔵された高温の冷却水が全て流出したものとみなして、冷却水流入路112を閉じ、かつ、バイパス水路10bを開くので、エンジン3から流出する冷却水のうちエンジン3始動直後の低温の冷却水を、蓄熱タンク9内に一旦、貯蔵することができる。したがって、エンジン3始動直後の低温の冷却水がエンジン3内を循環することを防止することができるので、より一層暖機運転の促進を図ることができる。
【0029】
因みに、図8はエンジン3から流出した直後の冷却水温度と、エンジン始動時(t=0)からの時間との関係を示すグラフであり、破線は蓄熱タンク9を有していない冷却系装置の場合を示しており、一点鎖線は従来の技術に係る冷却系装置(蓄熱タンク9有)の場合を示しており、実線は本実施形態に係る冷却系装置の場合を示している。そして、図8から明らかなように、本実施形態に係る冷却系装置によれば、エンジン3始動直後の低温の冷却水がエンジン3内を循環することを防止しているので、蓄熱タンク9内の高温の冷却水が全て流出した後の冷却水温度の低下(A部)が抑制されている。
【0030】
なお、上記試験の試験条件は、以下の通りである。
エンジン排気量:1600cc、蓄熱タンク容量:3000cc、
エンジン内冷却水量:約1500cc、
ラジエータおよび配管内の冷却水量:約2000cc
また、本実施形態によれば、蓄熱タンク9の開口部94が重力方向下方側に形成されているので、開口部94が重力方向上方側に形成されている蓄熱タンクに比べて、高温の冷却水が溜まっている重力方向上方側の蓄熱タンク9内の部位と開口部94との距離が大きくなる。つまり、蓄熱タンク9に蓄えられた熱が放熱し易い開口部94と高温の冷却水が溜まっている部位との距離が大きくなり、蓄熱タンク9の保温能力を向上を図ることができる。
【0031】
以上述べたように、本実施形態によれば、蓄熱タンク9の保温能力を向上させて暖機運転の促進を十分に図ることができる。
ところで、上述実施形態では、エンジン3が停止時には冷却水流入路112(タンクヒータ水路10a)を閉じていたが、エンジン3が停止時には冷却水流入路112を開き、バイパス水路10bを閉じてもよい。
【0032】
また、上述実施形態では、ステップ100、190にエンジン3が稼動中か否かを判定する判定ステップを設けていたが、エンジン3が停止時には冷却水流入路112(タンクヒータ水路10a)を閉じるというサブルーチンを所定時間毎(例えば、3秒毎)に割り込ませる割り込み制御を行ってもよい。
また、本発明は 前述の如く、エンジン3の暖機運転時に蓄熱タンク9から流出する冷却水温度が60℃を越えているときは、冷却水流入路112(タンクヒータ水路10a)を開き、エンジン3の暖機運転時に蓄熱タンク9から流出する冷却水温度が60℃以下のときは、冷却水流入路112(タンクヒータ水路10a)を閉じるものであるから、図9〜図12に示される冷却水回路に対しても適用することができる。
【0033】
なお、図9〜図12中、22はエンジン3に吸入される空気と冷却水との間で熱交換を行う吸気熱交換器であり、この吸気熱交換器9は、吸入空気の脈動を取り除くサージタンク10内に配設されている。23はエンジン3から流出した冷却水とオートマチックトランスミッション(車両自動変速機)のミッションオイルとの間で熱交換を行うA/T熱交換器であり、24はエンジン1から流出した冷却水とエンジンオイルとの間で熱交換を行うE/O熱交換器である。また、25はエンジン3の負荷(エンジン3の吸入負圧)に応じて冷却水回路を切り換える負荷応答弁である。
【0034】
また、図13に示すように、バイパス回路16を廃止した場合には、エンジン3の暖機運転が終了するまで、電磁弁15を開くとともに送風機13を停止するように制御してもよい。
また、上述の実施形態では、ステップ140(図4参照)の判定条件として冷却水温度TW =60℃としたが、60℃に限定されるものではなく、エンジンの大きさ、蓄熱タンクの容量、およびエンジン始動直後、吸入空気の混合比が濃い状態から通常状態に移行する際のシリンダ温度または冷却水温度等を考慮して適宜決定されるものである。
【図面の簡単な説明】
【図1】車両用蓄熱式暖房装置の温水回路と水冷エンジンの冷却回路を示す図である。
【図2】蓄熱タンクおよび制御弁の断面図である。
【図3】制御弁の制御系を示すブロック図である。
【図4】制御弁の作動を示すフローチャートである。
【図5】バルブ作動状態Bを示す断面図である。
【図6】バルブ作動状態Cを示す断面図である。
【図7】バルブ作動状態を示すバルブ作動図表である。
【図8】エンジン流出直後の冷却水温度と時間との関係を示すグラフである。
【図9】冷却水回路の変形例を示す回路図である。
【図10】冷却水回路の変形例を示す回路図である。
【図11】冷却水回路の変形例を示す回路図である。
【図12】冷却水回路の変形例を示す回路図である。
【図13】バイパス回路16を廃止した場合の回路図である。
【符号の説明】
3…エンジン(水冷式内燃機関)、4…ウォータポンプ、
5…ラジエータ、9…蓄熱タンク、
10a…タンクヒータ水路(タンク水路)、10b…バイパス水路、
11…制御弁、12…ヒータコア。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling system device for an internal combustion engine for a vehicle that promotes warm-up of the engine.
[0002]
[Prior art]
For example, in SAE TECHNICNIC PAPER SERIES 950994 as a cooling system device that promotes warm-up of the engine, a heat storage tank that keeps and stores the cooling water flowing out from the engine is disposed in the cooling water circuit, and the high-temperature storage stored in the heat storage tank Proposals have been made to promote the warm-up of the engine by introducing cooling water into the engine.
[0003]
[Problems to be solved by the invention]
By the way, when the inventors examined the above-described conventional device, the effect of promoting warm-up could not be sufficiently obtained. Therefore, the inventors continued to study and found the cause described below.
That is, the heat storage tank of the above device has an opening through which cooling water flows in and out in the gravitational direction of the heat storage tank, so that heat storage in which high-temperature cooling water is distributed among the cooling water in the heat storage tank. The distance between the upper part of the tank and the opening is reduced. Therefore, the heat of the heat storage tank is easily radiated from the opening.
[0004]
Furthermore, according to the examination study by the inventors, the heat radiation from the opening accounts for a large amount of heat radiated from the heat storage tank, and coupled with the fact that the opening is formed above the heat storage tank in the gravitational direction, The heat retention capacity of the heat storage tank of the conventional device is lowered.
Therefore, high-temperature cooling water cannot be supplied to the engine, and a sufficient warm-up promoting effect cannot be obtained.
[0005]
In view of the above points, an object of the present invention is to sufficiently promote warm-up operation by improving the heat retention capacity of a heat storage tank in a cooling system device having the heat storage tank.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention uses the following technical means. In the first to tenth aspects of the present invention, first, an opening (94) through which cooling water flows in and out is formed on the lower side of the heat storage tank (9) in the direction of gravity, and secondly, a water-cooled internal combustion engine (3). When the temperature of the cooling water flowing out from the heat storage tank (9) during the warm-up operation of the engine exceeds a predetermined temperature, the cooling water flowing out from the water-cooled internal combustion engine (3) is passed through the heat storage tank (9) and the water-cooled internal combustion engine When the temperature of the cooling water flowing out from the heat storage tank (9) during the warm-up operation of the water-cooled internal combustion engine (3) is below a predetermined temperature, the tank water channel (10a) is opened. It is characterized by closing.
[0007]
As compared with the heat storage tank in which the opening (94) is formed on the upper side in the gravitational direction, the portion and the opening in the heat storage tank (9) on the upper side in the gravitational direction in which high-temperature cooling water is accumulated are opened. The distance to the portion (94) increases. That is, the distance between the opening (94) where the heat stored in the heat storage tank (9) is easy to radiate and the portion where the high-temperature cooling water is accumulated is increased, and the heat retention capacity of the heat storage tank (9) is improved. be able to.
[0008]
From the second feature, as will be described later, of the cooling water flowing out from the water-cooled internal combustion engine (3), the low-temperature coolant immediately after the start of the water-cooled internal combustion engine (3) is temporarily stored in the heat storage tank (9). Can be stored. Therefore, it is possible to prevent low-temperature cooling water immediately after the water-cooled internal combustion engine (3) from starting to circulate in the water-cooled internal combustion engine (3), so that the warm-up operation can be further promoted.
[0009]
As described above, according to the present invention, it is possible to sufficiently promote the warm-up operation by improving the heat retaining capacity of the heat storage tank (9).
According to a second aspect of the present invention, in the cooling system device for an internal combustion engine for a vehicle according to the first aspect, the cooling that is arranged on the downstream side of the cooling water of the heat storage tank (9) and flows out of the heat storage tank (9). Temperature detection means (17) for detecting the water temperature;
A control valve (11) for controlling the communication state of the tank water passage (10a), and the coolant temperature detected by the temperature detection means (17) during the warm-up operation of the water-cooled internal combustion engine (3) is When the temperature exceeds the predetermined temperature, the control valve (11) is opened, and when the coolant temperature detected by the temperature detection means (17) during the warm-up operation of the water-cooled internal combustion engine (3) is equal to or lower than the predetermined temperature, The control valve (11) is closed.
[0010]
In the invention described in claim 3, in the cooling system apparatus for a vehicle internal combustion engine according to claim 2, bypass passage bypassing the thermal storage tank (9) (10b) are connected to the tank water passage (10a), The temperature detection means (17) is arranged at a junction (117) of the bypass water channel (10b) and the tank water channel (10a).
According to a fourth aspect of the present invention, in the cooling system device for an internal combustion engine for a vehicle according to the second aspect, a bypass water channel (10b) that bypasses the heat storage tank (9) is connected to the tank water channel (10a). And the control valve (11) is provided at a branch portion between the tank water channel (10a) and the bypass water channel (10b),
The control valve (11) provides a state in which the tank water passage (10a) is opened and the bypass water passage (10b) is closed, and a state in which the tank water passage (10a) is closed and the bypass water passage (10b) is opened. It is characterized by that.
According to a fifth aspect of the present invention, in the cooling system device for an internal combustion engine for a vehicle according to any one of the second to fourth aspects, the temperature detection is further performed during a warm-up operation of the water-cooled internal combustion engine (3). When the coolant temperature detected by the means (17) exceeds the predetermined temperature, the tank water passage (10a) is opened by the control valve (11), and the water-cooled internal combustion engine (3) is warmed up. And a control device (18) for closing the tank water passage (10a) by the control valve (11) when the cooling water temperature detected by the temperature detection means (17) is below the predetermined temperature. To do.
According to a sixth aspect of the present invention, in the cooling system device for an internal combustion engine for a vehicle according to any one of the second to fifth aspects, the control valve (11) is a warm-up unit for the water-cooled internal combustion engine (3). After completion of the machine, the tank water channel (10a) is opened.
According to a seventh aspect of the present invention, in the cooling system device for an internal combustion engine for a vehicle according to the sixth aspect, the control valve (11) includes:
The tank water passage (10a) is opened for a predetermined time after the water-cooled internal combustion engine (3) is started,
After the predetermined time has elapsed, when the temperature of the cooling water flowing out of the heat storage tank (9) exceeds the predetermined temperature during the warm-up operation of the water-cooled internal combustion engine (3), the tank water passage (10a) is opened. When the cooling water temperature flowing out from the heat storage tank (9) during the warm-up operation of the water-cooled internal combustion engine (3) is equal to or lower than the predetermined temperature, the tank water passage (10a) is closed,
Further, when the temperature of the cooling water flowing out of the heat storage tank (9) exceeds the temperature that can be regarded as the completion of the warm-up operation of the water-cooled internal combustion engine (3), the tank water passage (10a) is opened. It is characterized by doing.
According to an eighth aspect of the present invention, in the cooling system device for an internal combustion engine for a vehicle according to any one of the first to seventh aspects, the cooling water downstream of the heat storage tank (9) in the tank water passage (10a). A heater core (12) disposed on the side for heating air;
A blower (13) disposed on the air upstream side of the heater core (12) and for blowing air blown into the vehicle interior;
The air blower (13) is stopped when the water-cooled internal combustion engine (3) is warmed up.
According to the ninth aspect of the present invention, the heat storage tank (9) having an opening (94) for storing the cooling water flowing out from the water-cooled internal combustion engine (3) and keeping the cooling water flowing in and out in the direction of gravity is provided. A control valve (11) provided in a tank water passage (10a) for recirculating cooling water flowing out from the water-cooled internal combustion engine (3) to the water-cooled internal combustion engine (3),
When the temperature of the cooling water flowing out of the heat storage tank (9) during the warm-up operation of the water-cooled internal combustion engine (3) exceeds a predetermined temperature, the tank water passage (10a) is opened,
When the temperature of the cooling water flowing out from the heat storage tank (9) during the warm-up operation of the water-cooled internal combustion engine (3) is equal to or lower than the predetermined temperature, the tank water passage (10a) is closed,
After the warm-up of the water-cooled internal combustion engine (3), the tank water passage (10a) is opened .
In the invention according to claim 10, in the control valve according to claim 9, the tank water passage (10a) is opened for a predetermined time after the water-cooled internal combustion engine (3) is started.
After the predetermined time has elapsed, when the temperature of the cooling water flowing out of the heat storage tank (9) exceeds the predetermined temperature during the warm-up operation of the water-cooled internal combustion engine (3), the tank water passage (10a) is opened. When the cooling water temperature flowing out from the heat storage tank (9) during the warm-up operation of the water-cooled internal combustion engine (3) is equal to or lower than the predetermined temperature, the tank water passage (10a) is closed,
Further, when the temperature of the cooling water flowing out of the heat storage tank (9) exceeds the temperature that can be regarded as the completion of the warm-up operation of the water-cooled internal combustion engine (3), the tank water passage (10a) is opened. It is characterized by doing.
[0011]
In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description later mentioned.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention shown in the drawings will be described.
(First embodiment)
FIG. 1 shows a cooling water circuit 1 (a circuit surrounded by a two-dot chain line) of a water-cooled internal combustion engine (hereinafter referred to as an engine) and a cooling water circuit 2 (a one-dot chain line of a heat storage heating device for a vehicle). Circuit).
[0013]
Reference numeral 3 denotes an engine for traveling the vehicle, and reference numeral 4 denotes a water pump that obtains driving force from the engine 3 and circulates cooling water through the engine 3. A part of the cooling water that has deprived the heat of the engine 3 flows into the cooling water circuit 1 of the engine described above, and the other cooling water flows into the cooling water circuit 2 of the regenerative heating device for the vehicle.
Reference numeral 5 denotes a radiator that constitutes cooling means for cooling water of the engine 3 in the engine cooling water circuit 1. Further, the cooling water circuit 1 is provided with a bypass circuit 7 that bypasses the cooling water circuit 6 that flows through the radiator 5, and switching between the two cooling water circuits 1 and 7 is controlled by a thermostat 8. Incidentally, the switching between the cooling water circuits 1 and 7 is normally controlled to flow to the radiator 5 when the cooling water temperature is 80 ° C. or higher, and flows to the bypass circuit 7 when the cooling water temperature is 80 ° C. or lower. To be controlled.
[0014]
On the other hand, in the cooling water circuit 2 of the warming type heating device for a vehicle, the engine 3 passes through the cooling water downstream of the engine 3 through the heat storage tank 9 for storing the cooling water in a warm state, the heat storage tank 9 and a heater core 12 described later. A tank heater water channel (tank water channel) 10 a that recirculates to the heat source and a bypass water channel 10 b that bypasses the heat storage tank 9 are provided. A control valve 11 for controlling the amount of cooling water (communication state) flowing into both the water passages 10a and 10b is disposed at the upstream side of the cooling water of the heat storage tank 9 and at a branch portion between the tank heater water passage 10a and the bypass water passage 10b. It is installed. The structures of the heat storage tank 9 and the control valve 11 will be described later.
[0015]
And the heater core 12 which makes an air heating means is provided in the cooling water downstream of the thermal storage tank 9, and the air blower 13 which ventilates air toward the vehicle interior is arrange | positioned in the air upstream of the heater core 12. ing. The air blown by the blower 13 is heated by the heater core 12 and blown out into the vehicle compartment via a duct (not shown). Further, an electromagnetic valve 15 that opens and closes the cooling water circuit 14 of the cooling water flowing into the heater core 12 is provided on the cooling water inflow side of the heater core 12. The electromagnetic valve 15 is controlled by a control device 18 to be described later so as to close the cooling water circuit 14 in order to suppress radiant heat from the heater core 12 when heating is not used in summer or the like.
[0016]
A bypass circuit 16 that bypasses the coolant circuit 14 that flows through the heater core 12 is provided on the coolant upstream side of the electromagnetic valve 15. And the downstream of the cooling water circuit 14 and the bypass circuit 16 is connected to the water pump 4, and forms the cooling water circuit 2 of the heat retention type heating device for vehicles.
Next, the structure of the heat storage tank 9 and the control valve 11 will be described.
[0017]
As shown in FIG. 2, the heat storage tank 9 has a double tank structure including an inner tank portion 91 and an outer tank portion 92 made of stainless steel, and a space 93 between the tank portions 91 and 92 has a heat insulating property. In order to improve this, it is almost vacuum. Reference numeral 94 denotes a tank opening through which cooling water flows in and out. The tank opening 94 projects downward in the gravitational direction in a state of opening downward in the gravitational direction to form a tubular projecting portion 95 .
A part of the housing 111 of the control valve 11 is inserted into the tubular projecting portion 95 , and a cooling water inflow path 112 through which cooling water flows into the heat storage tank 9 by a part of the housing 111, and heat storage A cooling water outflow passage 113 through which the cooling water in the tank 9 flows out is formed.
[0018]
The cooling water inflow passage 112 communicates with the inside of the heat storage tank 9 at a lower portion in the gravity direction in the heat storage tank 9, and the cooling water outflow passage 113 communicates with the inside of the heat storage tank 9 at an upper portion in the gravity direction. Incidentally, reference numeral 114 denotes a mixing prevention plate that suppresses convection of the cooling water in the heat storage tank 9.
Further, a bypass water channel 10b is formed in the housing 111, and a valve body 115 of the control valve 11 is disposed at a branch portion between the bypass water channel 10b and the cooling water inflow channel 112 (tank heater water channel 10a). Yes. The valve body 115 is a rotary (rotary) valve body that is rotationally driven by an actuator 116 such as a servo motor, and the actuator 116 is disposed at a junction 117 between the cooling water outflow passage 113 and the bypass water passage 10b. The controller 18 is controlled based on the cooling water temperature detected by the water temperature sensor (temperature detecting means) 17 (see FIG. 3).
[0019]
As shown in FIG. 3, the control device 18 is necessary for controlling a water temperature sensor 19 that detects the temperature of the cooling water flowing into the heater core 12 and an air conditioner such as a vehicle exterior temperature sensor or a vehicle interior temperature sensor. A signal from the air conditioning sensor 20 that detects information is input. And the control apparatus 18 is controlling the actuator 116 and air-conditioning means, such as the air blower 13 and the electromagnetic valve 15, according to the program preset based on the said input signal.
[0020]
Incidentally, reference numeral 21 denotes an immediate heating switch that performs heating using the high-temperature cooling water in the heat storage tank 9 when the cooling water temperature is low immediately after the engine 3 is started or the like and the heating operation cannot be performed. The heating switch 21 is turned on by a passenger's manual operation.
Next, the operation of this embodiment will be described based on the flowchart of FIG.
[0021]
It is determined whether or not the engine 3 is operating based on the state of an ignition switch (not shown) of the engine 3 or the rotational speed of the engine 3 (step 100). When the engine 3 is operating, The cooling water inflow passage 112 (tank heater water passage 10a) is kept open and the bypass water passage 10b is kept closed (steps 110 and 120) for a predetermined time t (10 seconds in the present embodiment) after starting.
[0022]
At this time, the solenoid valve 15 is closed unless the immediate effect heating switch 21 is turned on by an occupant. Thereby, the high-temperature cooling water that has flowed out of the heat storage tank 9 returns to the engine 3 through the bypass circuit 16 and promotes warm-up of the engine 3.
On the other hand, when the engine 3 is stopped, the cooling water inflow passage 112 is closed and the bypass water passage 10b is opened (step 130).
[0023]
Then, after a predetermined time t has elapsed, it is determined whether or not the cooling water temperature T W detected by the water temperature sensor 17 is less than a predetermined temperature (60 ° C. in this embodiment) (step 140), and the cooling water temperature T W is determined. Is 60 ° C. or higher, it is considered that the high-temperature cooling water stored in the heat storage tank 9 remains in the heat storage tank 9, and the cooling water inflow passage 112 is kept open, and the bypass water passage 10b Is kept closed (step 110), and the cooling water is circulated between the heat storage tank 9 and the engine 3.
[0024]
The heat storage when the cooling water temperature T W of the cooling water flowing out from the tank 9 is less than 60 ° C., it is assumed that the high-temperature cooling water stored in the heat storage tank 9 has all effluent, cooling water inlet The channel 112 is closed and the bypass water channel 10b is opened (step 160).
The water temperature sensor 17 can detect the temperature of the cooling water flowing through the bypass water channel 10b, that is, the temperature of the cooling water flowing out of the engine 3, by closing the cooling water inflow channel 112 and opening the bypass water channel 10b.
[0025]
Then, until the cooling water temperature T W detected by the water temperature sensor 17 is 80 ° C., or closed cooling water inlet channel 112 until the state regarded as the warm-up operation is completed, and opens the bypass passage 10b Continue (step 170).
Next, when the cooling water temperature T W is warming up beyond the 80 ° C. completed, until the engine 3 is stopped, by opening the cooling water inlet path 112 and bypass passage 10b (step 180, 190), from the engine 3 The flowing out high temperature cooling water is introduced into the heat storage tank 9.
[0026]
Incidentally, FIG. 2 shows a state in which the cooling water inflow passage 112 is opened and the bypass water passage 10b is closed (valve operating state A in FIG. 4) , and FIG. 5 shows that the cooling water inflow passage 112 is closed and bypassed. FIG. 6 shows a state in which the water channel 10b is opened (valve operating state B in FIG. 4) , and FIG. 6 shows a state in which the cooling water inflow channel 112 and the bypass water channel 10b are opened (valve operating state C in FIG. 4) . FIG. 7 is an operation chart showing an operation state of the control valve 11 shown in FIG.
[0027]
Next, features of the present embodiment will be described.
According to the present embodiment, since the high-temperature cooling water stored in the heat storage tank 9 is circulated in the engine 3 during the warm-up operation of the engine 3, the warm-up operation is promoted. As a result, it is possible to further reduce the harmful substances discharged together with the exhaust gas and improve the fuel consumption.
[0028]
Further, when the temperature of the cooling water flowing out from the heat storage tank 9 during the warm-up operation of the engine 3 is lowered to a temperature lower than a predetermined temperature (60 ° C.), all the high-temperature cooling water stored in the heat storage tank 9 has flowed out. Accordingly, the cooling water inflow passage 112 is closed and the bypass water passage 10b is opened, so that the low temperature cooling water immediately after starting the engine 3 out of the cooling water flowing out from the engine 3 is temporarily stored in the heat storage tank 9. Can do. Therefore, it is possible to prevent low-temperature cooling water immediately after the engine 3 is started from circulating in the engine 3, thereby further promoting the warm-up operation.
[0029]
8 is a graph showing the relationship between the coolant temperature immediately after flowing out of the engine 3 and the time from the engine start (t = 0), and the broken line is a cooling system device that does not have the heat storage tank 9. In this case, the alternate long and short dash line indicates the case of the conventional cooling system apparatus (having the heat storage tank 9), and the solid line indicates the case of the cooling system apparatus according to the present embodiment. As apparent from FIG. 8, according to the cooling system apparatus according to the present embodiment, the low-temperature cooling water immediately after the engine 3 is started is prevented from circulating in the engine 3, so The cooling water temperature drop (part A) after all of the high-temperature cooling water is discharged is suppressed.
[0030]
The test conditions for the above test are as follows.
Engine displacement: 1600cc, heat storage tank capacity: 3000cc,
Cooling water amount in the engine: about 1500cc,
Cooling water amount in the radiator and piping: about 2000cc
Moreover, according to this embodiment, since the opening part 94 of the heat storage tank 9 is formed in the gravity direction lower side, compared with the heat storage tank in which the opening part 94 is formed in the gravity direction upper side, it is high temperature cooling. The distance between the portion in the heat storage tank 9 on the upper side in the gravity direction where water is accumulated and the opening 94 is increased. That is, the distance between the opening 94 where the heat stored in the heat storage tank 9 is easy to dissipate and the portion where the high-temperature cooling water is accumulated is increased, and the heat retention capacity of the heat storage tank 9 can be improved.
[0031]
As described above, according to the present embodiment, the warming-up operation can be sufficiently promoted by improving the heat retention capacity of the heat storage tank 9.
In the above-described embodiment, the cooling water inflow passage 112 (tank heater water passage 10a) is closed when the engine 3 is stopped. However, when the engine 3 is stopped, the cooling water inflow passage 112 may be opened and the bypass water passage 10b may be closed. .
[0032]
In the above-described embodiment, the determination step for determining whether or not the engine 3 is operating is provided in steps 100 and 190. However, when the engine 3 is stopped, the cooling water inflow passage 112 (tank heater water passage 10a) is closed. Interrupt control that interrupts the subroutine every predetermined time (for example, every 3 seconds) may be performed.
Further, as described above, the present invention opens the cooling water inflow passage 112 (tank heater water passage 10a) when the temperature of the cooling water flowing out of the heat storage tank 9 exceeds 60 ° C. during the warm-up operation of the engine 3. When the temperature of the cooling water flowing out from the heat storage tank 9 during the warming-up operation 3 is 60 ° C. or lower, the cooling water inflow passage 112 (tank heater water passage 10a) is closed, so that the cooling shown in FIGS. It can also be applied to water circuits.
[0033]
9 to 12, reference numeral 22 denotes an intake heat exchanger for exchanging heat between air sucked into the engine 3 and cooling water. The intake heat exchanger 9 removes pulsation of intake air. Arranged in the surge tank 10. Reference numeral 23 denotes an A / T heat exchanger that exchanges heat between the cooling water flowing out from the engine 3 and the transmission oil of the automatic transmission (automatic transmission), and 24 is the cooling water flowing out from the engine 1 and the engine oil. It is an E / O heat exchanger that exchanges heat with each other. Reference numeral 25 denotes a load response valve that switches the cooling water circuit in accordance with the load of the engine 3 (intake negative pressure of the engine 3).
[0034]
Moreover, as shown in FIG. 13, when the bypass circuit 16 is abolished, the solenoid valve 15 may be opened and the blower 13 may be stopped until the warm-up operation of the engine 3 is completed.
In the above-described embodiment, the cooling water temperature T W = 60 ° C. is set as the determination condition in step 140 (see FIG. 4), but is not limited to 60 ° C. The size of the engine and the capacity of the heat storage tank Also, immediately after the engine is started, it is appropriately determined in consideration of the cylinder temperature or the cooling water temperature when the intake air mixing ratio shifts from the rich state to the normal state.
[Brief description of the drawings]
FIG. 1 is a diagram showing a hot water circuit of a vehicle heat storage type heating device and a cooling circuit of a water-cooled engine.
FIG. 2 is a cross-sectional view of a heat storage tank and a control valve.
FIG. 3 is a block diagram showing a control system of a control valve.
FIG. 4 is a flowchart showing the operation of the control valve.
FIG. 5 is a cross-sectional view showing a valve operating state B;
6 is a cross-sectional view showing a valve operating state C. FIG.
FIG. 7 is a valve operation chart showing a valve operation state.
FIG. 8 is a graph showing the relationship between cooling water temperature and time immediately after engine outflow.
FIG. 9 is a circuit diagram showing a modified example of the cooling water circuit.
FIG. 10 is a circuit diagram showing a modified example of the cooling water circuit.
FIG. 11 is a circuit diagram showing a modified example of the cooling water circuit.
FIG. 12 is a circuit diagram showing a modification of the cooling water circuit.
FIG. 13 is a circuit diagram when the bypass circuit 16 is abolished.
[Explanation of symbols]
3 ... Engine (water-cooled internal combustion engine), 4 ... Water pump,
5 ... Radiator, 9 ... Thermal storage tank,
10a ... Tank heater channel (tank channel), 10b ... Bypass channel,
11 ... Control valve, 12 ... Heater core.

Claims (10)

水冷式内燃機関(3)の冷却水をポンプ(4)にて循環するように構成した車両用内燃機関の冷却系装置において、
前記水冷式内燃機関(3)から流出した冷却水を保温貯蔵し、重力方向下方側に冷却水が流出入する開口部(94)を有する蓄熱タンク(9)と、
前記水冷式内燃機関(3)から流出した冷却水を前記蓄熱タンク(9)を経て前記水冷式内燃機関(3)に還流させるタンク水路(10a)とを有し、
前記蓄熱タンク(9)から流出する冷却水温度が検出され、
前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が所定温度を越えているときは、前記タンク水路(10a)を開き、
前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が前記所定温度以下のときは、前記タンク水路(10a)を閉じることを特徴とする車両用内燃機関の冷却系装置。
In the cooling system device for a vehicle internal combustion engine configured to circulate the cooling water of the water-cooled internal combustion engine (3) by the pump (4),
A heat storage tank (9) having an opening (94) for storing cooling water flowing out from the water-cooled internal combustion engine (3), and having cooling water flow in and out on the lower side in the direction of gravity;
A tank water passage (10a) for returning the cooling water flowing out from the water-cooled internal combustion engine (3) to the water-cooled internal combustion engine (3) through the heat storage tank (9);
The temperature of the cooling water flowing out of the heat storage tank (9) is detected,
When the cooling water temperature flowing out of the heat storage tank (9) exceeds a predetermined temperature during the warm-up operation of the water-cooled internal combustion engine (3), the tank water passage (10a) is opened,
The vehicle internal combustion engine characterized by closing the tank water passage (10a) when the temperature of the cooling water flowing out of the heat storage tank (9) during the warm-up operation of the water-cooled internal combustion engine (3) is equal to or lower than the predetermined temperature. Engine cooling system device.
前記蓄熱タンク(9)の冷却水下流側に配設され、前記蓄熱タンク(9)から流出する冷却水温度を検出する温度検出手段(17)と、
前記タンク水路(10a)の連通状態を制御する制御バルブ(11)とを有しており、
前記水冷式内燃機関(3)の暖機運転時に前記温度検出手段(17)によって検出される冷却水温度が前記所定温度を越えているときは、前記制御バルブ(11)を開き、
前記水冷式内燃機関(3)の暖機運転時に前記温度検出手段(17)によって検出される冷却水温度が前記所定温度以下のときは、前記制御バルブ(11)を閉じることを特徴とする請求項1に記載の車両用内燃機関の冷却系装置。
A temperature detection means (17) disposed on the cooling water downstream side of the heat storage tank (9) and detecting the temperature of the cooling water flowing out of the heat storage tank (9) ;
A control valve (11) for controlling the communication state of the tank water channel (10a),
When the coolant temperature detected by the temperature detection means (17) during the warm-up operation of the water-cooled internal combustion engine (3) exceeds the predetermined temperature, the control valve (11) is opened,
The control valve (11) is closed when the coolant temperature detected by the temperature detection means (17) during the warm-up operation of the water-cooled internal combustion engine (3) is equal to or lower than the predetermined temperature. Item 2. A cooling system device for an internal combustion engine for a vehicle according to Item 1.
前記蓄熱タンク(9)を迂回するバイパス水路(10b)が前記タンク水路(10a)接続しており、
前記温度検出手段(17)は、前記タンク水路(10a)と前記バイパス水路(10b)との合流部位(117)に配設されていることを特徴とする請求項2に記載の車両用内燃機関の冷却系装置。
Bypass passage (10b) bypassing the thermal storage tank (9) is connected to the tank water passage (10a),
The internal combustion engine for a vehicle according to claim 2, wherein the temperature detection means (17) is disposed at a junction (117) of the tank water channel (10a) and the bypass water channel (10b). Cooling system equipment.
前記蓄熱タンク(9)を迂回するバイパス水路(10b)が前記タンク水路(10a)に接続しており、前記制御バルブ(11)は、前記タンク水路(10a)と前記バイパス水路(10b)との分岐部位に設けられ、A bypass water channel (10b) bypassing the heat storage tank (9) is connected to the tank water channel (10a), and the control valve (11) is connected between the tank water channel (10a) and the bypass water channel (10b). Provided at the branch site,
前記制御バルブ(11)は、前記タンク水路(10a)を開き前記バイパス水路(10b)を閉じた状態と、前記タンク水路(10a)を閉じ前記バイパス水路(10b)を開いた状態とを提供することを特徴とする請求項2に記載の車両用内燃機関の冷却系装置。  The control valve (11) provides a state in which the tank water passage (10a) is opened and the bypass water passage (10b) is closed, and a state in which the tank water passage (10a) is closed and the bypass water passage (10b) is opened. The cooling system apparatus for an internal combustion engine for a vehicle according to claim 2.
さらに、前記水冷式内燃機関(3)の暖機運転時に前記温度検出手段(17)によって検出される冷却水温度が前記所定温度を越えているときは、前記制御バルブ(11)により前記タンク水路(10a)を開き、前記水冷式内燃機関(3)の暖機運転時に前記温度検出手段(17)によって検出される冷却水温度が前記所定温度以下のときは、前記制御バルブ(11)により前記タンク水路(10a)を閉じる制御装置(18)を備えることを特徴とする請求項2ないし4のいずれか1つに記載の車両用内燃機関の冷却系装置。Further, when the coolant temperature detected by the temperature detection means (17) during the warm-up operation of the water-cooled internal combustion engine (3) exceeds the predetermined temperature, the tank water channel is controlled by the control valve (11). (10a) is opened, and when the cooling water temperature detected by the temperature detection means (17) during the warm-up operation of the water-cooled internal combustion engine (3) is equal to or lower than the predetermined temperature, the control valve (11) The cooling system device for a vehicle internal combustion engine according to any one of claims 2 to 4, further comprising a control device (18) for closing the tank water channel (10a). 前記制御バルブ(11)は、前記水冷式内燃機関(3)の暖機終了後は、前記タンク水路(10a)を開いた状態とすることを特徴とする請求項2ないし5のいずれか1つに記載の車両用内燃機関の冷却系装置。6. The control valve (11) according to any one of claims 2 to 5, wherein the tank water passage (10a) is opened after the warm-up of the water-cooled internal combustion engine (3) is completed. The cooling system apparatus for an internal combustion engine for a vehicle according to the above. 前記制御バルブ(11)は、The control valve (11)
前記水冷式内燃機関(3)が始動してから所定時間は前記タンク水路(10a)を開いた状態とし、  The tank water passage (10a) is opened for a predetermined time after the water-cooled internal combustion engine (3) is started,
前記所定時間経過後、前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が所定温度を越えているときは、前記タンク水路(10a)を開いた状態とし、前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が前記所定温度以下のときは、前記タンク水路(10a)を閉じた状態とし、  After the predetermined time has elapsed, when the temperature of the cooling water flowing out of the heat storage tank (9) exceeds the predetermined temperature during the warm-up operation of the water-cooled internal combustion engine (3), the tank water passage (10a) is opened. When the cooling water temperature flowing out from the heat storage tank (9) during the warm-up operation of the water-cooled internal combustion engine (3) is equal to or lower than the predetermined temperature, the tank water passage (10a) is closed,
さらに、前記蓄熱タンク(9)から流出する冷却水温度が、前記水冷式内燃機関(3)の暖機運転が終了したものとみなせる温度を越えると、前記タンク水路(10a)を開いた状態とすることを特徴とする請求項6に記載の車両用内燃機関の冷却系装置。  Further, when the temperature of the cooling water flowing out of the heat storage tank (9) exceeds the temperature that can be regarded as the completion of the warm-up operation of the water-cooled internal combustion engine (3), the tank water passage (10a) is opened. The cooling system apparatus for an internal combustion engine for a vehicle according to claim 6.
前記タンク水路(10a)のうち前記蓄熱タンク(9)の冷却水下流側に配設され、空気を加熱するヒータコア(12)と、A heater core (12) disposed on the cooling water downstream side of the heat storage tank (9) in the tank water channel (10a) and heating air;
前記ヒータコア(12)の空気上流側に配設され、車室内に吹き出す空気を送風する送風機(13)とを有し、  A blower (13) disposed on the air upstream side of the heater core (12) and for blowing air blown into the vehicle interior;
前記水冷式内燃機関(3)の暖機運転時には前記送風機(13)を停止することを特徴とする請求項1ないし7のいずれか1つに記載の車両用内燃機関の冷却系装置。  The cooling system device for an internal combustion engine for a vehicle according to any one of claims 1 to 7, wherein the blower (13) is stopped during a warm-up operation of the water-cooled internal combustion engine (3).
水冷式内燃機関(3)から流出した冷却水を保温貯蔵し、重力方向下方側に冷却水が流出入する開口部(94)を有する蓄熱タンク(9)を経由して、前記水冷式内燃機関(3)から流出した冷却水を前記水冷式内燃機関(3)に還流させるタンク水路(10a)に設けられた制御バルブ(11)であって、The cooling water flowing out from the water-cooled internal combustion engine (3) is kept warm, and the water-cooled internal combustion engine passes through a heat storage tank (9) having an opening (94) through which cooling water flows in and out on the lower side in the direction of gravity. A control valve (11) provided in a tank water passage (10a) for returning the cooling water flowing out from (3) to the water-cooled internal combustion engine (3),
前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が所定温度を越えているときは、前記タンク水路(10a)を開いた状態とし、  When the temperature of the cooling water flowing out of the heat storage tank (9) during the warm-up operation of the water-cooled internal combustion engine (3) exceeds a predetermined temperature, the tank water passage (10a) is opened,
前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が前記所定温度以下のときは、前記タンク水路(10a)を閉じた状態とし、When the temperature of the cooling water flowing out from the heat storage tank (9) during the warm-up operation of the water-cooled internal combustion engine (3) is equal to or lower than the predetermined temperature, the tank water passage (10a) is closed,
前記水冷式内燃機関(3)の暖機終了後は、前記タンク水路(10a)を開いた状態とすることを特徴とする制御バルブ。  The control valve characterized by opening the tank water passage (10a) after the water-cooled internal combustion engine (3) has been warmed up.
記水冷式内燃機関(3)が始動してから所定時間は前記タンク水路(10a)を開いた状態とし、
前記所定時間経過後、前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が所定温度を越えているときは、前記タンク水路(10a)を開いた状態とし、前記水冷式内燃機関(3)の暖機運転時に前記蓄熱タンク(9)から流出する冷却水温度が前記所定温度以下のときは、前記タンク水路(10a)を閉じた状態とし、
さらに、前記蓄熱タンク(9)から流出する冷却水温度が、前記水冷式内燃機関(3)の暖機運転が終了したものとみなせる温度を越えると、前記タンク水路(10a)を開いた状態とすることを特徴とする請求項9に記載の制御バルブ。
Before SL water-cooled internal combustion engine (3) a predetermined time after startup is a state of opening the tank water passage (10a),
After the predetermined time has elapsed, when the temperature of the cooling water flowing out of the heat storage tank (9) exceeds the predetermined temperature during the warm-up operation of the water-cooled internal combustion engine (3), the tank water passage (10a) is opened. When the cooling water temperature flowing out from the heat storage tank (9) during the warm-up operation of the water-cooled internal combustion engine (3) is equal to or lower than the predetermined temperature, the tank water passage (10a) is closed,
Further, when the temperature of the cooling water flowing out of the heat storage tank (9) exceeds the temperature that can be regarded as the completion of the warm-up operation of the water-cooled internal combustion engine (3), the tank water passage (10a) is opened. The control valve according to claim 9.
JP23093996A 1996-08-30 1996-08-30 Cooling system for internal combustion engine for vehicle Expired - Fee Related JP3767027B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23093996A JP3767027B2 (en) 1996-08-30 1996-08-30 Cooling system for internal combustion engine for vehicle
US08/924,043 US5896833A (en) 1996-08-30 1997-08-28 Cooling water circuit system and cooling water control valve
DE19737818A DE19737818B4 (en) 1996-08-30 1997-08-29 Cooling water circuit system and cooling water control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23093996A JP3767027B2 (en) 1996-08-30 1996-08-30 Cooling system for internal combustion engine for vehicle

Publications (2)

Publication Number Publication Date
JPH1071838A JPH1071838A (en) 1998-03-17
JP3767027B2 true JP3767027B2 (en) 2006-04-19

Family

ID=16915680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23093996A Expired - Fee Related JP3767027B2 (en) 1996-08-30 1996-08-30 Cooling system for internal combustion engine for vehicle

Country Status (1)

Country Link
JP (1) JP3767027B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322019A (en) 2002-04-30 2003-11-14 Denso Corp Cooling system for internal combustion engine for vehicle
US6564757B2 (en) 2000-06-22 2003-05-20 Toyota Jidosha Kabushiki Kaisha Internal combustion engine including heat accumulation system, and heat carrier supply control system
JP5189461B2 (en) * 2008-11-05 2013-04-24 トヨタ自動車株式会社 Cooling device for internal combustion engine
JP2010133661A (en) * 2008-12-05 2010-06-17 Sanyo Electric Co Ltd Air conditioning-power generating device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2762595B2 (en) * 1989-08-03 1998-06-04 株式会社デンソー Hot water heating system for vehicles
JPH06255345A (en) * 1993-03-04 1994-09-13 Toyo Radiator Co Ltd Heating device for automobile
JP3154590B2 (en) * 1993-05-24 2001-04-09 三菱重工業株式会社 Vehicle heating system
JPH07164864A (en) * 1993-10-22 1995-06-27 Nippondenso Co Ltd Flow control valve and hot water circuit of heating device for vehicle
JPH07257154A (en) * 1994-03-23 1995-10-09 Nippondenso Co Ltd Vehicle air-conditioning device

Also Published As

Publication number Publication date
JPH1071838A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
US6032869A (en) Heating apparatus for vehicle
JP4119222B2 (en) Ventilation device for vehicle heat exchanger and control method thereof
JP3199025B2 (en) Engine cooling and heating systems for vehicles
EP1903193A1 (en) Engine cooler
JP2001260640A (en) Heating device for vehicle
JP2013170508A (en) Cooling device for vehicle
JP3478015B2 (en) Cooling system for internal combustion engine for vehicles
JP2012241557A (en) Cooling device of internal combustion engine
JP3767027B2 (en) Cooling system for internal combustion engine for vehicle
JP3767028B2 (en) Cooling system for internal combustion engine for vehicle
JP3477987B2 (en) Vehicle heating system
JP2006299850A (en) Waste heat recovery system for internal combustion engine for vehicle
JP3358360B2 (en) Engine warm-up device for vehicles
JP4151406B2 (en) Cooling water circulation device for internal combustion engine
JP3552398B2 (en) Vehicle heating system
JP2007126046A (en) Heating device
JP3843499B2 (en) Cooling water circuit for internal combustion engine
JPH0988599A (en) Cooling water temperature control device for vehicle
JP2010169010A (en) Cooling device for internal combustion engine
JP3380584B2 (en) Automotive heating system
JP3213058B2 (en) Engine cooling system structure
JP4034010B2 (en) Vehicle heat storage system
JPH09195768A (en) Cooling system of engine
JPS598512A (en) Room heating device of car mounted with water-cooled engine
JP2002234335A (en) Vehicular air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees