JP4073653B2 - Air conditioner for vehicles - Google Patents

Air conditioner for vehicles Download PDF

Info

Publication number
JP4073653B2
JP4073653B2 JP2001337713A JP2001337713A JP4073653B2 JP 4073653 B2 JP4073653 B2 JP 4073653B2 JP 2001337713 A JP2001337713 A JP 2001337713A JP 2001337713 A JP2001337713 A JP 2001337713A JP 4073653 B2 JP4073653 B2 JP 4073653B2
Authority
JP
Japan
Prior art keywords
heat exchanger
vehicle
refrigerant
compressor
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001337713A
Other languages
Japanese (ja)
Other versions
JP2003139431A (en
JP2003139431A5 (en
Inventor
浩 濱本
肇 山本
洋一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Climate Systems Corp
Original Assignee
Japan Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Climate Systems Corp filed Critical Japan Climate Systems Corp
Priority to JP2001337713A priority Critical patent/JP4073653B2/en
Publication of JP2003139431A publication Critical patent/JP2003139431A/en
Publication of JP2003139431A5 publication Critical patent/JP2003139431A5/ja
Application granted granted Critical
Publication of JP4073653B2 publication Critical patent/JP4073653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両用空調装置に関するものである。
【0002】
【従来の技術】
従来、車両用空調装置として、冷凍サイクル途中に設けた車内側熱交換器を、通過する空気の冷却のみならず、冷媒の循環方向を逆転させることにより加熱にも利用可能としたものがある。これによれば、エンジン冷却水が流動するヒータコアのみならず、車内側熱交換器によっても車内に送風する空気を加熱することができる。
【0003】
【発明が解決しようとする課題】
しかしながら、前記従来の車両用空調装置では、外気温度が非常に低い場合等、車内側熱交換器による暖房を可能としただけでは、迅速に車内暖房を開始できないことがある。
【0004】
そこで、本発明は、暖房運転開始直後であっても迅速に送風温度を上昇させることのできる車両用空調装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明は、前記課題を解決するための手段として、
コンプレッサ、車外側熱交換器、圧力制御弁、車内側熱交換器、及びアキュムレータを備えた車両用空調装置において、
前記コンプレッサから吐出させた冷媒を、車外側熱交換器、圧力制御弁、車内側熱交換器、及びアキュムレータの順に循環させる冷房モード、又は、車内側熱交換器、圧力制御弁、車外側熱交換器、及びアキュムレータの順で循環させる暖房モードのいずれか一方に流路を切り替える四方弁と、
該四方弁により流路を暖房モードに切り替えた際、冷媒を、車外側熱交換器をバイパスさせるバイパス流路と、
該バイパス流路の途中に配設され、冷媒とエンジン冷却水との間で熱交換させる温水熱交換器と、
前記四方弁を切り替えて冷媒を暖房モードで循環させた際、前記バイパス流路に流路を切り替え、前記温水熱交換器にエンジン冷却水を流動させることにより、前記車内側熱交換器による加熱を開始させる制御手段と、
を設け
前記コンプレッサからの冷媒を、前記車外側熱交換器及び前記車内側熱交換器をバイパスして温水熱交換器に導く、減圧弁を備えた補助バイパス流路を形成し、
前記流路切替手段は、前記冷凍サイクル又は前記バイパス流路のほか、前記補助バイパス流路にも流路を切り替え可能に構成し、
前記制御手段は、前記四方弁を切り替えてコンプレッサを駆動することにより暖房運転を開始してから、車内側熱交換器による所望の暖房が可能となる暖房条件を満足するまで、前記流路切替手段により、流路を補助バイパス流路に切り替えるようにしたものである。
【0006】
この構成により、四方弁を切り替えるだけで、車内側熱交換器による加熱が可能となるばかりか、バイパス流路に切り替えて車外側熱交換器による放熱を防止することができる上、エンジン冷却水によって冷媒を暖めることが可能となる。したがって、エンジン冷却水が十分に上昇する前であっても、車内側熱交換器による加熱を迅速かつ効果的に開始させることができ、車内への送風温度を即座に上昇させ、加熱能力を安定させた状態で車内側熱交換器による加熱を開始することが可能となる
【0008】
前記暖房条件は、暖房運転開始からの経過時間、コンプレッサから吐出される冷媒圧力、前記温水熱交換器の入口側水温、又は、外気温度のいずれかに基づいて決定すればよい。
【0009】
前記制御手段は、設定温度と内気温度との差から決定された車内側熱交換器の目標暖房能力に基づいて、前記温水熱交換器でのエンジン冷却水の流動量を制御すると、冷媒が必要以上に圧力上昇することを防止することができ、消費動力を低減することが可能となる点で好ましい。
【0010】
前記目標暖房能力は、コンプレッサから吐出される冷媒圧力、又は、車内への送風温度に基づいて変更すればよい。冷媒圧力に基づけば、応答性を良くすることができ、送風温度に基づけば、確実に所望の送風温度を得ることが可能となる。
【0011】
暖房運転開始初期に前記コンプレッサの駆動回転数を増大させると、より一層車内への送風温度の上昇を早めることが可能となる点で好ましい。
【0012】
前記コンプレッサを電動式とすることにより、前記エンジンの停止時であっても駆動可能とすると、車内暖房を継続することができる点で好ましい。
【0013】
前記エンジンと前記温水熱交換器との間でエンジン冷却水を循環させる電動ポンプを設け、前記エンジンの停止時であっても前記電動ポンプを駆動させることにより、エンジン冷却水の循環を可能すると、温水熱交換器を介してエンジンの余熱を冷媒に供給することができ、さらに車内暖房を継続することができる点で好ましい。
【0014】
前記制御手段は、コンプレッサから吐出される冷媒圧力に基づいて前記電動ポンプを駆動制御すると、必要時にのみ電動ポンプを駆動することができ、消費電力を抑制可能となる点で好ましい。
【0015】
前記エンジンと前記温水熱交換器とを結ぶ温水流路の途中には、車内側熱交換器を通過後の空気を加熱するヒータコアを接続すればよい。
【0016】
前記温水熱交換器を流動するエンジン冷却水と冷媒とが対向流となっているのが好ましい。
【0017】
なお、前記冷媒にはCOを使用することができる。
【0018】
【発明の実施の形態】
以下、本発明に係る実施形態を添付図面に従って説明する。
【0019】
図1は、本実施形態に係る車両用空調装置を示す。この車両用空調装置は、車内前方部の空調ユニット1内に、上流側からブロア(図示せず)、車内側熱交換器2、ミックスダンパ(図示せず)、ヒータコア3、及び、補助ヒータ4を順次配設したものである。
【0020】
ブロアは、ブロアモータ(図示せず)の駆動により回転し、内外気切替ダンパ(図示せず)によって選択された内気又は外気を空調ユニット1内へと導く。
【0021】
車内側熱交換器2は、四方弁5によって切り替えられる冷凍サイクルCの途中に設けられている。冷凍サイクルCでは、四方弁5を図1中実線で示す方向に切り替えることにより、コンプレッサ6から吐出された冷媒が、車外側熱交換器7、圧力制御弁8、前記車内側熱交換器2、及び、アキュムレータ9を介してコンプレッサ6に戻って循環する。また、四方弁5を図1中点線で示す方向に切り替えることにより、コンプレッサ6から吐出された冷媒が、前記車内側熱交換器2、圧力制御弁8、車外側熱交換器7、及び、アキュムレータ9を介してコンプレッサ6に戻って循環する。つまり、四方弁5の切り替えにより、車内側熱交換器2による冷却又は加熱が可能となっている。圧力制御弁8と車外側熱交換器7の間には第1三方弁10が設けられ、冷媒が車外側熱交換器7を迂回し、温水熱交換器11を介してアキュムレータ9へと流動可能とするバイパス路B1が接続されている。また、四方弁5と車内側熱交換器2の間には第2三方弁12が設けられ、冷媒が車内側熱交換器2を迂回して温水熱交換器11側へと流動可能とする補助バイパス路B2が接続されている。なお、前記冷媒にはCOが使用されている。
【0022】
コンプレッサ6には、エンジン13の動力が図示しないクラッチを介して伝達される。コンプレッサ6の駆動回転数は、クラッチを切り替えることにより複数段階(無段階でもよい。)に切替可能である。コンプレッサ6の駆動回転数は、通常、冷媒が車外側熱交換器7を超臨界圧力で流動可能な値に設定されている。車外側熱交換器7は車両前方部に配設され、冷媒を外気に放熱させる。圧力制御弁8は、冷媒を減圧し、気化しやすい状態として車内側熱交換器2に供給すると共に、後述するように、その圧力を調整する役割を果たす。車内側熱交換器2は、内部を流動する冷媒により、外部を通過する内気又は外気から吸熱する。車内側熱交換器2から流出する冷媒の温度は温度センサ14により検出され、コンプレッサ6から吐出される冷媒の圧力は圧力センサ15によって検出されている。アキュムレータ9は、冷媒を確実に気化させた状態でコンプレッサ6に戻すために設けられている。
【0023】
ヒータコア3は、ミックスダンパによって分流された一方の流路に配設されており、暖房サイクルHの1つの機器を構成している。暖房サイクルHでは、エンジン冷却水を、第3三方弁16の切り替えにより、車両前方部に配設したラジエータ17とは別回路で循環させ、その回路途中のヒータコア3で放熱させている。また、暖房サイクルHの途中には前記温水熱交換器11が設けられ、第4三方弁18の切り替えにより、前記冷凍サイクルCを流動する冷媒と、暖房サイクルHを流動するエンジン冷却水との間の熱交換を行うことが可能となっている。温水熱交換器11内では、冷媒とエンジン冷却水が対向流となるように構成され、熱交換性能の向上が図られている。また、暖房サイクルHの途中には電動ポンプ19と水温検出センサ20とが設けられている。電動ポンプ19は、エンジン13停止時にバッテリーからの供給電力によって駆動可能である。水温検出センサ20は、エンジン冷却水の温度を検出する。検出温度は、第4三方弁18を切り替えて温水熱交換器11にエンジン冷却水を供給するか否かの判断に利用される。
【0024】
補助ヒータ4は、エンジン13の停止時に図示しないバッテリーからの供給電力によってヒータコア3の加熱を補助する。
【0025】
前記圧力制御弁8の開度は、前記ブロアモータ及び前記コンプレッサ6の駆動回転数、前記内外気切替ダンパの回動位置等に基づいて制御装置21によって制御されている。制御装置21は、内気センサ22、外気センサ23、日射センサ24等から得られる車内外諸条件に基づいて、前記ブロアモータ及び前記コンプレッサ6の駆動回転数、ミックスダンパの開度、各三方弁の切り替え、減圧弁の開度等を制御する。
【0026】
次に、前記構成の車両用空調装置の動作について、図2のフローチャートに従って説明する。以下の説明では、本発明の特徴部分である暖房運転を行う場合についてのみ記載する。
【0027】
まず、内気センサ22で検出される内気温度、外気センサ23で検出される外気温度、日射センサ24で検出される日射量、車内での設定温度等の車内外諸条件を読み込み(ステップS1)、この車内外諸条件に基づいてコンプレッサ6の駆動回転数及びミックスダンパの開度を決定する(ステップS2)。
【0028】
ここで、水温検出センサ20での検出信号に基づいてエンジン冷却水の温度Tを読み込む(ステップS3)。そして、読み込んだエンジン冷却水の温度Tが設定温度Tよりも低いか否かを判断する(ステップS4)。設定温度Tには、その温度のエンジン冷却水をヒータコア3に通水したとしても、所望の暖房能力を得られない値を使用する。
【0029】
エンジン冷却水の温度Tが設定温度T以上である場合、ヒータコア3の加熱により十分な暖房能力を発揮させることができるので、ヒータコア3のみによる通常暖房を行う。冷凍サイクルCでは、四方弁5を切り替えることにより、冷媒を、コンプレッサ6から車外側熱交換器7、圧力制御弁8、車内側熱交換器2、温水熱交換器11、及びアキュムレータ9を介してコンプレッサ6に戻る冷房モードで循環させ、車内側熱交換器2で通過する空気の冷却及び除湿を行う。但し、エンジン冷却水の温度Tが設定温度Tからそれ程上昇していない段階であれば、車内側熱交換器2による除湿運転により通過する空気の温度が下がることにより、ヒータコア3の暖房能力不足となる恐れがあるので、そのような場合にはコンプレッサ6の駆動を停止する。
【0030】
一方、エンジン冷却水の温度Tが設定温度T未満である場合、第3三方弁16を切り替えてエンジン冷却水がラジエータ17で放熱されないようにする(ステップS5)。また、ヒータコア3による加熱では不十分であるので、コンプレッサ6から吐出された冷媒が、車内側熱交換器2に直接流入するように四方弁5を切り替える(ステップS6)。このとき、圧力センサ15により検出される冷媒の圧力Pが設定圧力Pよりも低いか否かを判断する(ステップS7)。設定圧力Pには、この圧力以下で冷媒を車内側熱交換器2に流入させ、空調ユニット1内を通過する空気に放熱させると、液相の割合が多くなり過ぎ、車外側熱交換器7による吸熱だけでは、車内側熱交換器2で十分に昇温できないような値を使用する。
【0031】
圧力センサ15により検出される冷媒の圧力Pが設定圧力P以上である場合、第1三方弁10を切り替え、車内側熱交換器23で冷媒から空調ユニット11内を流動する空気に放熱させる(ステップS8)。
【0032】
一方、圧力センサ15により検出される冷媒の圧力Pが設定圧力P未満である場合、車内側熱交換器2の暖房性能を十分に発揮させることができない状態であると判断し、第2三方弁12を切り替え、車外側熱交換器7のみならず、車内側熱交換器2をもバイパスさせる(ステップS9)。これにより、冷媒から放熱させることなく、温水熱交換器11にて吸熱させることができるので、早期に冷媒を高温・高圧状態とすることができ、車内側熱交換器2に必要とされる暖房性能を短時間で得ることが可能となる。
【0033】
その後、車内側熱交換器2(冷媒・空気間)の熱交換効率が分かっているので、前記ステップS1で読み込んだ設定温度と内気温度の温度差に基づいて目標送風温度と目標送風量を算出する(ステップS10)。そして、算出された目標送風温度と目標送風量に基づいて車内側熱交換器2による目標凝縮能力(目標凝縮圧力又は目標凝縮温度)が決まるので、この目標凝縮能力が得られるように温水熱交換器11に流入させるエンジン冷却水の水量を、電動ポンプ19の駆動回転数を制御することにより調整する(ステップS11)。これにより、温水熱交換器11でエンジン冷却水から冷媒に吸熱させ、その後の車内側熱交換器2での加熱を適切に行わせることが可能となる。
【0034】
このように、コンプレッサ6で高温・高圧状態となった冷媒を、車内側熱交換器23に流入させることができるので、ヒータコア3の暖房能力の不足を、車内側熱交換器2によって補うことができる。したがって、エンジン冷却水の温度が上昇する前であっても、所望の送風温度での車内暖房が早期に実現される。
【0035】
なお、車内側熱交換器2をバイパスして冷媒を流動させる場合、車内側熱交換器2による補助暖房はできなくなるので、バッテリーから補助ヒータ4に通電し、この補助ヒータ46によってヒータコア3の暖房能力不足を補う(ステップS12)。
【0036】
以上のように、前記実施形態に係る車両用空調装置によれば、エンジン13の始動直後で、エンジン冷却水の温度が十分に上昇していなくても、車内側熱交換器2を補助暖房として使用することができる。しかも、温水熱交換器11によって冷媒を昇温させるだけでなく、冷媒が十分に温まっていない段階では、車内側熱交換器2をもバイパスさせるようにしている。その上、車内側熱交換器2を使用できない間は、補助ヒータ4を使用可能である。
【0037】
なお、前記実施形態では、第1三方弁10の切り替え方向を変更するための暖房条件として、コンプレッサ6から吐出される冷媒の圧力Pを使用したが、コンプレッサ6から吐出される冷媒の温度、温水熱交換器11の入口側に於けるエンジン冷却水の温度、あるいは、外気温度等を使用しても構わない。要するに、車内側熱交換器2によって十分な暖房能力が得られるか否かを判断できるパラメータであれば、何でも暖房条件として使用することができる。なお、暖房条件に外気温度を使用するのは、外気導入モードを選択している場合に限られる。
【0038】
また、前記実施形態では、冷媒が十分に温まっていない段階で、全冷媒が車内側熱交換器2をバイパスするようにしたが、一部の冷媒のみが車内側熱交換器2をバイパスするように構成してもよい。
【0039】
また、前記実施形態では、コンプレッサ6をエンジン13の動力に基づいて駆動するようにしたが、バッテリーからの供給電力により駆動可能な電動式としても構わない。これによれば、エンジン13の停止時であっても冷媒を循環させて車内側熱交換器2による冷暖房が可能となる。
【0040】
【発明の効果】
以上の説明から明らかなように、本発明によれば、四方弁を切り替えると共に、流路切替手段によりバイパス流路に切り替え、温水熱交換器にエンジン冷却水を流動させることにより、車内側熱交換器による加熱を開始させるようにしたので、暖房運転開始直後であっても、車内への送風温度を即座に上昇させ、早期に車内を暖房することが可能となる。
【図面の簡単な説明】
【図1】 本実施形態に係る車両用空調装置の概略図である。
【図2】 図1の制御装置による空調制御の内容を示すフローチャートである。
【符号の説明】
1 空調ユニット
2 車内側熱交換器
3 ヒータコア
4 補助ヒータ
5 四方弁
6 コンプレッサ
7 車外側熱交換器
8 圧力制御弁
10 第1三方弁
11 温水熱交換器
12 第2三方弁
16 第3三方弁
18 第4三方弁
19 電動ポンプ
20 水温検出センサ
21 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle air conditioner.
[0002]
[Prior art]
Conventionally, as a vehicle air conditioner, there is one in which an in-vehicle heat exchanger provided in the middle of a refrigeration cycle can be used not only for cooling air passing but also for heating by reversing the circulation direction of the refrigerant. According to this, the air blown into the vehicle can be heated not only by the heater core through which the engine coolant flows, but also by the vehicle interior heat exchanger.
[0003]
[Problems to be solved by the invention]
However, in the conventional vehicle air conditioner, when heating by the vehicle interior heat exchanger is enabled only when the outside air temperature is very low, heating in the vehicle may not be started quickly.
[0004]
Then, this invention makes it a subject to provide the vehicle air conditioner which can raise ventilation temperature rapidly even just after the heating operation start.
[0005]
[Means for Solving the Problems]
As a means for solving the above problems, the present invention provides:
In a vehicle air conditioner comprising a compressor, a vehicle exterior heat exchanger, a pressure control valve, a vehicle interior heat exchanger, and an accumulator,
Cooling mode in which the refrigerant discharged from the compressor is circulated in the order of the vehicle exterior heat exchanger, pressure control valve, vehicle interior heat exchanger, and accumulator, or vehicle interior heat exchanger, pressure control valve, vehicle exterior heat exchange A four-way valve that switches the flow path to either one of the heating mode to circulate in the order of the vessel and the accumulator,
When the flow path is switched to the heating mode by the four-way valve, the refrigerant bypasses the outside heat exchanger;
A hot water heat exchanger that is disposed in the middle of the bypass flow path and exchanges heat between the refrigerant and the engine coolant;
When the four-way valve is switched and the refrigerant is circulated in the heating mode, the flow is switched to the bypass channel, and the engine cooling water is caused to flow to the hot water heat exchanger, thereby heating the vehicle interior heat exchanger. Control means to start,
Provided ,
Forming an auxiliary bypass flow path with a pressure reducing valve that guides the refrigerant from the compressor to the hot water heat exchanger by bypassing the vehicle exterior heat exchanger and the vehicle interior heat exchanger,
In addition to the refrigeration cycle or the bypass flow path, the flow path switching means is configured to be able to switch the flow path to the auxiliary bypass flow path,
The control means switches the four-way valve and drives the compressor to start the heating operation until the flow path switching means is satisfied until a heating condition that enables desired heating by the vehicle interior heat exchanger is satisfied. Thus, the flow path is switched to the auxiliary bypass flow path .
[0006]
With this configuration, it is possible not only to heat the vehicle interior heat exchanger by switching the four-way valve, but also to switch to the bypass flow path to prevent heat dissipation by the vehicle exterior heat exchanger, It becomes possible to warm the refrigerant. Therefore, even before the engine coolant rises sufficiently, heating by the vehicle interior heat exchanger can be started quickly and effectively, and the temperature of the air blown into the vehicle can be immediately raised to stabilize the heating capacity. It allows you to start the heating by the interior heat exchanger while being [0008]
The heating condition may be determined based on one of the elapsed time from the start of the heating operation, the refrigerant pressure discharged from the compressor, the inlet water temperature of the hot water heat exchanger, or the outside air temperature.
[0009]
When the control means controls the flow rate of engine cooling water in the hot water heat exchanger based on the target heating capacity of the vehicle interior heat exchanger determined from the difference between the set temperature and the inside air temperature, a refrigerant is required. The pressure rise can be prevented as described above, which is preferable in that the power consumption can be reduced.
[0010]
What is necessary is just to change the said target heating capability based on the refrigerant | coolant pressure discharged from a compressor, or the ventilation temperature to the vehicle interior. If it is based on the refrigerant pressure, the responsiveness can be improved, and if it is based on the blowing temperature, it is possible to reliably obtain a desired blowing temperature.
[0011]
Increasing the drive rotational speed of the compressor at the beginning of the heating operation is preferable in that it is possible to further increase the temperature of the blown air into the vehicle.
[0012]
By making the compressor electric, it is preferable that the interior heating can be continued if the compressor can be driven even when the engine is stopped.
[0013]
An electric pump for circulating the engine cooling water between the engine and the hot water heat exchanger is provided, by driving the electric pump even during stop of the engine, whereupon the possible circulation of the engine cooling water It is preferable in that the remaining heat of the engine can be supplied to the refrigerant through the hot water heat exchanger, and further, heating in the vehicle can be continued.
[0014]
The control means is preferable in that the electric pump can be driven and controlled based on the refrigerant pressure discharged from the compressor, the electric pump can be driven only when necessary, and the power consumption can be suppressed.
[0015]
What is necessary is just to connect the heater core which heats the air after passing a vehicle interior heat exchanger in the middle of the warm water flow path which connects the said engine and the said warm water heat exchanger.
[0016]
It is preferable that the engine coolant flowing through the hot water heat exchanger and the refrigerant are in a counterflow.
[0017]
Note that CO 2 can be used as the refrigerant.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below with reference to the accompanying drawings.
[0019]
FIG. 1 shows a vehicle air conditioner according to this embodiment. This vehicle air conditioner includes a blower (not shown), a vehicle interior heat exchanger 2, a mix damper (not shown), a heater core 3, and an auxiliary heater 4 in an air conditioning unit 1 at the front of the vehicle. Are sequentially arranged.
[0020]
The blower rotates by driving a blower motor (not shown), and guides the inside air or outside air selected by the inside / outside air switching damper (not shown) into the air conditioning unit 1.
[0021]
The vehicle interior heat exchanger 2 is provided in the middle of the refrigeration cycle C that is switched by the four-way valve 5. In the refrigeration cycle C, by switching the four-way valve 5 in the direction indicated by the solid line in FIG. 1, the refrigerant discharged from the compressor 6 is converted into the vehicle exterior heat exchanger 7, the pressure control valve 8, the vehicle interior heat exchanger 2, And it returns to the compressor 6 through the accumulator 9 and circulates. Further, by switching the four-way valve 5 in the direction indicated by the dotted line in FIG. 1, the refrigerant discharged from the compressor 6 causes the vehicle interior heat exchanger 2, the pressure control valve 8, the vehicle exterior heat exchanger 7, and the accumulator. 9 circulates back to the compressor 6 via 9. That is, cooling or heating by the vehicle interior heat exchanger 2 is possible by switching the four-way valve 5. A first three-way valve 10 is provided between the pressure control valve 8 and the vehicle exterior heat exchanger 7 so that the refrigerant can bypass the vehicle exterior heat exchanger 7 and flow to the accumulator 9 via the hot water heat exchanger 11. A bypass path B1 is connected. In addition, a second three-way valve 12 is provided between the four-way valve 5 and the vehicle interior heat exchanger 2, so that the refrigerant bypasses the vehicle interior heat exchanger 2 and can flow toward the hot water heat exchanger 11. Bypass path B2 is connected. Note that CO 2 is used as the refrigerant.
[0022]
The power of the engine 13 is transmitted to the compressor 6 via a clutch (not shown). The drive rotation speed of the compressor 6 can be switched in a plurality of stages (may be stepless) by switching the clutch. The drive rotational speed of the compressor 6 is normally set to a value at which the refrigerant can flow through the vehicle exterior heat exchanger 7 with supercritical pressure. The vehicle exterior heat exchanger 7 is disposed in the front portion of the vehicle and radiates the refrigerant to the outside air. The pressure control valve 8 depressurizes the refrigerant and supplies it to the in-vehicle heat exchanger 2 in a state where it is easily vaporized, and plays a role of adjusting the pressure as will be described later. The vehicle interior heat exchanger 2 absorbs heat from the inside air or outside air passing through the outside by the refrigerant flowing inside. The temperature of the refrigerant flowing out of the vehicle interior heat exchanger 2 is detected by the temperature sensor 14, and the pressure of the refrigerant discharged from the compressor 6 is detected by the pressure sensor 15. The accumulator 9 is provided to return the refrigerant to the compressor 6 in a state where the refrigerant is surely vaporized.
[0023]
The heater core 3 is disposed in one flow path divided by the mix damper, and constitutes one device of the heating cycle H. In the heating cycle H, the engine coolant is circulated in a separate circuit from the radiator 17 disposed in the front part of the vehicle by switching the third three-way valve 16, and is radiated by the heater core 3 in the middle of the circuit. Further, the hot water heat exchanger 11 is provided in the middle of the heating cycle H, and the fourth three-way valve 18 is switched between the refrigerant flowing in the refrigeration cycle C and the engine cooling water flowing in the heating cycle H. It is possible to perform heat exchange. In the hot water heat exchanger 11, the refrigerant and the engine cooling water are configured to face each other to improve the heat exchange performance. In the middle of the heating cycle H, an electric pump 19 and a water temperature detection sensor 20 are provided. The electric pump 19 can be driven by power supplied from the battery when the engine 13 is stopped. The water temperature detection sensor 20 detects the temperature of engine cooling water. The detected temperature is used to determine whether to supply engine cooling water to the hot water heat exchanger 11 by switching the fourth three-way valve 18.
[0024]
The auxiliary heater 4 assists the heating of the heater core 3 with power supplied from a battery (not shown) when the engine 13 is stopped.
[0025]
The opening degree of the pressure control valve 8 is controlled by the control device 21 based on the drive rotational speed of the blower motor and the compressor 6, the rotational position of the inside / outside air switching damper, and the like. The control device 21 switches the rotational speed of the blower motor and the compressor 6, the opening degree of the mix damper, and each three-way valve based on various conditions inside and outside the vehicle obtained from the inside air sensor 22, the outside air sensor 23, the solar radiation sensor 24, and the like. Control the opening of the pressure reducing valve.
[0026]
Next, the operation of the vehicle air conditioner having the above configuration will be described with reference to the flowchart of FIG. In the following description, only the case of performing the heating operation which is a characteristic part of the present invention will be described.
[0027]
First, various conditions inside and outside the vehicle such as the inside air temperature detected by the inside air sensor 22, the outside air temperature detected by the outside air sensor 23, the amount of solar radiation detected by the solar radiation sensor 24, and the set temperature in the vehicle are read (step S1). Based on various conditions inside and outside the vehicle, the rotational speed of the compressor 6 and the opening of the mix damper are determined (step S2).
[0028]
Here, the engine cooling water temperature TE is read based on the detection signal from the water temperature detection sensor 20 (step S3). Then, the read temperature T E of the engine cooling water to determine low or not than the set temperature T S (step S4). Even if the engine cooling water at that temperature is passed through the heater core 3, a value at which a desired heating capacity cannot be obtained is used as the set temperature T S.
[0029]
If the temperature T E of the engine cooling water is set temperature T S or more, since it is possible to exhibit sufficient heating capacity by heating of the heater core 3 performs normal heating only by the heater core 3. In the refrigeration cycle C, by switching the four-way valve 5, the refrigerant is passed from the compressor 6 through the vehicle exterior heat exchanger 7, the pressure control valve 8, the vehicle interior heat exchanger 2, the hot water heat exchanger 11, and the accumulator 9. It circulates in the cooling mode returning to the compressor 6 and cools and dehumidifies the air passing through the vehicle interior heat exchanger 2. However, if the step of temperature T E of the engine cooling water is not much increased from the set temperature T S, as the temperature of the air passing through the dehumidifying operation by the vehicle-side heat exchanger 2 is lowered, the heating capacity of the heater core 3 In such a case, the driving of the compressor 6 is stopped.
[0030]
On the other hand, if the temperature T E of the engine coolant is lower than the set temperature T S, the engine cooling water by switching the third three-way valve 16 from being radiated by the radiator 17 (step S5). Further, since heating by the heater core 3 is insufficient, the four-way valve 5 is switched so that the refrigerant discharged from the compressor 6 flows directly into the vehicle interior heat exchanger 2 (step S6). At this time, the pressure P V of the refrigerant to be detected to determine whether lower than the set pressure P S by the pressure sensor 15 (step S7). The set pressure P S, the refrigerant is allowed to flow into the vehicle-side heat exchanger 2 at this pressure below the dissipating the air passing through the air conditioning unit 1, too many ratio of the liquid phase, the vehicle exterior side heat exchanger A value that cannot be sufficiently increased in temperature by the heat exchanger 2 on the vehicle interior is used only by the heat absorption by 7.
[0031]
If the pressure P V of the refrigerant detected by the pressure sensor 15 is the set pressure P S above, switches the first three-way valve 10, to the heat radiation from the refrigerant in the interior side heat exchanger 23 to the air flowing through the air conditioning unit 11 (Step S8).
[0032]
On the other hand, it is determined that when the pressure P V of the refrigerant detected by the pressure sensor 15 is less than the set pressure P S, is a state that can not be fully exhibited the heating performance of the interior heat exchanger 2, the second The three-way valve 12 is switched to bypass not only the vehicle exterior heat exchanger 7 but also the vehicle interior heat exchanger 2 (step S9). As a result, heat can be absorbed by the hot water heat exchanger 11 without radiating heat from the refrigerant, so that the refrigerant can be brought to a high temperature / high pressure state at an early stage, and heating required for the vehicle interior heat exchanger 2. Performance can be obtained in a short time.
[0033]
Thereafter, since the heat exchange efficiency of the vehicle interior heat exchanger 2 (between refrigerant and air) is known, the target air blowing temperature and the target air blowing amount are calculated based on the temperature difference between the set temperature read in step S1 and the inside air temperature. (Step S10). And since the target condensation capacity | capacitance (target condensation pressure or target condensation temperature) by the vehicle interior side heat exchanger 2 is determined based on the calculated target ventilation temperature and target ventilation volume, hot water heat exchange is performed so that this target condensation capacity can be obtained. The amount of engine cooling water that flows into the vessel 11 is adjusted by controlling the drive speed of the electric pump 19 (step S11). As a result, it is possible to cause the refrigerant to absorb heat from the engine coolant in the hot water heat exchanger 11 and appropriately perform heating in the vehicle interior heat exchanger 2 thereafter.
[0034]
As described above, since the refrigerant that has been brought into a high temperature and high pressure state by the compressor 6 can flow into the vehicle interior heat exchanger 23, the lack of heating capacity of the heater core 3 can be compensated by the vehicle interior heat exchanger 2. it can. Therefore, even before the temperature of the engine coolant rises, vehicle interior heating at a desired air blowing temperature is realized at an early stage.
[0035]
When the refrigerant flows by bypassing the vehicle interior heat exchanger 2, the auxiliary heating by the vehicle interior heat exchanger 2 can no longer be performed, so the auxiliary heater 4 is energized from the battery, and the heater core 3 is heated by the auxiliary heater 46. The lack of capability is compensated (step S12).
[0036]
As described above, according to the vehicle air conditioner according to the above-described embodiment, the vehicle interior heat exchanger 2 is used as auxiliary heating even if the temperature of the engine coolant is not sufficiently increased immediately after the engine 13 is started. Can be used. Moreover, not only the temperature of the refrigerant is raised by the hot water heat exchanger 11, but also the vehicle interior heat exchanger 2 is bypassed when the refrigerant is not sufficiently heated. In addition, while the vehicle interior heat exchanger 2 cannot be used, the auxiliary heater 4 can be used.
[0037]
In the above embodiment, as the heating conditions for changing the switching direction of the first three-way valve 10, but using the pressure P V of the refrigerant discharged from the compressor 6, the refrigerant discharged from the compressor 6 the temperature, The temperature of the engine cooling water at the inlet side of the hot water heat exchanger 11 or the outside air temperature may be used. In short, any parameter that can determine whether or not sufficient heating capacity can be obtained by the vehicle interior heat exchanger 2 can be used as the heating condition. The use of the outside air temperature for the heating condition is limited to the case where the outside air introduction mode is selected.
[0038]
In the above embodiment, all the refrigerants bypass the vehicle interior heat exchanger 2 when the refrigerant is not sufficiently warmed, but only a part of the refrigerant bypasses the vehicle interior heat exchanger 2. You may comprise.
[0039]
In the above embodiment, the compressor 6 is driven based on the power of the engine 13, but it may be an electric type that can be driven by the power supplied from the battery. According to this, even when the engine 13 is stopped, the refrigerant is circulated and air conditioning by the vehicle interior heat exchanger 2 becomes possible.
[0040]
【The invention's effect】
As is apparent from the above description, according to the present invention, the four-way valve is switched, the channel switching means is switched to the bypass channel, and the engine cooling water is caused to flow through the hot water heat exchanger, whereby the vehicle interior heat exchange is performed. Since the heating by the heater is started, even immediately after the start of the heating operation, the temperature of the air blown into the vehicle can be immediately increased, and the interior of the vehicle can be heated quickly.
[Brief description of the drawings]
FIG. 1 is a schematic view of a vehicle air conditioner according to an embodiment.
FIG. 2 is a flowchart showing the contents of air conditioning control by the control device of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Air conditioning unit 2 Car interior heat exchanger 3 Heater core 4 Auxiliary heater 5 Four-way valve 6 Compressor 7 Car exterior heat exchanger 8 Pressure control valve 10 First three-way valve 11 Hot water heat exchanger 12 Second three-way valve 16 Third three-way valve 18 Fourth three-way valve 19 Electric pump 20 Water temperature detection sensor 21 Control device

Claims (11)

コンプレッサ、車外側熱交換器、圧力制御弁、車内側熱交換器、及びアキュムレータを備えた車両用空調装置において、
前記コンプレッサから吐出させた冷媒を、車外側熱交換器、圧力制御弁、車内側熱交換器、及びアキュムレータの順に循環させる冷房モード、又は、車内側熱交換器、圧力制御弁、車外側熱交換器、及びアキュムレータの順で循環させる暖房モードのいずれか一方に流路を切り替える四方弁と、
該四方弁により流路を暖房モードに切り替えた際、冷媒を、車外側熱交換器をバイパスさせるバイパス流路と、
該バイパス流路の途中に配設され、冷媒とエンジン冷却水との間で熱交換させる温水熱交換器と、
前記四方弁を切り替えて冷媒を暖房モードで循環させた際、前記バイパス流路に流路を切り替え、前記温水熱交換器にエンジン冷却水を流動させることにより、前記車内側熱交換器による加熱を開始させる制御手段と、
を設け
前記コンプレッサからの冷媒を、前記車外側熱交換器及び前記車内側熱交換器をバイパスして温水熱交換器に導く、減圧弁を備えた補助バイパス流路を形成し、
前記流路切替手段は、前記冷凍サイクル又は前記バイパス流路のほか、前記補助バイパス流路にも流路を切り替え可能に構成し、
前記制御手段は、前記四方弁を切り替えてコンプレッサを駆動することにより暖房運転を開始してから、車内側熱交換器による所望の暖房が可能となる暖房条件を満足するまで、前記流路切替手段により、流路を補助バイパス流路に切り替えるようにしたことを特徴とする車両用空調装置。
In a vehicle air conditioner comprising a compressor, a vehicle exterior heat exchanger, a pressure control valve, a vehicle interior heat exchanger, and an accumulator,
Cooling mode in which the refrigerant discharged from the compressor is circulated in the order of the vehicle exterior heat exchanger, pressure control valve, vehicle interior heat exchanger, and accumulator, or vehicle interior heat exchanger, pressure control valve, vehicle exterior heat exchange A four-way valve that switches the flow path to either one of the heating mode to circulate in the order of the vessel and the accumulator,
When the flow path is switched to the heating mode by the four-way valve, the refrigerant bypasses the outside heat exchanger;
A hot water heat exchanger that is disposed in the middle of the bypass flow path and exchanges heat between the refrigerant and the engine coolant;
When the four-way valve is switched and the refrigerant is circulated in the heating mode, the channel is switched to the bypass channel, and the engine cooling water is flowed to the hot water heat exchanger, thereby heating the vehicle interior heat exchanger. Control means to start,
Provided ,
Forming an auxiliary bypass flow path with a pressure reducing valve that guides the refrigerant from the compressor to the hot water heat exchanger by bypassing the outside heat exchanger and the inside heat exchanger;
In addition to the refrigeration cycle or the bypass flow path, the flow path switching means is configured to be able to switch the flow path to the auxiliary bypass flow path,
The control means switches the four-way valve and drives the compressor to start the heating operation until the flow path switching means is satisfied until a heating condition that enables desired heating by the vehicle interior heat exchanger is satisfied. Thus, the vehicle air conditioner is characterized in that the flow path is switched to the auxiliary bypass flow path .
前記暖房条件は、暖房運転開始からの経過時間、コンプレッサから吐出される冷媒圧力、前記温水熱交換器の入口側水温、又は、外気温度のいずれかに基づいて決定することを特徴とする請求項に記載の車両用空調装置。The heating condition is determined based on any one of an elapsed time from the start of heating operation, a refrigerant pressure discharged from a compressor, an inlet side water temperature of the hot water heat exchanger, or an outside air temperature. The vehicle air conditioner according to 1 . 前記制御手段は、設定温度と内気温度との差から決定された車内側熱交換器の目標暖房能力に基づいて、前記温水熱交換器でのエンジン冷却水の流動量を制御することを特徴とする請求項1又は2に記載の車両用空調装置。The control means controls the flow rate of engine cooling water in the hot water heat exchanger based on the target heating capacity of the vehicle interior heat exchanger determined from the difference between the set temperature and the inside air temperature. The vehicle air conditioner according to claim 1 or 2 . 前記目標暖房能力は、コンプレッサから吐出される冷媒圧力、又は、車内への送風温度に基づいて変更することを特徴とする請求項に記載の車両用空調装置。The vehicle air conditioner according to claim 3 , wherein the target heating capacity is changed based on a refrigerant pressure discharged from a compressor or an air blowing temperature into the vehicle. 暖房運転開始初期に前記コンプレッサの駆動回転数を増大させることを特徴とする請求項1から4のいずれか1項に記載の車両用空調装置。The vehicle air conditioner according to any one of claims 1 to 4 , wherein the drive rotational speed of the compressor is increased at the beginning of heating operation. 前記コンプレッサを電動式とすることにより、前記エンジンの停止時であっても駆動可能としたことを特徴とする請求項1から5のいずれか1項に記載の車両用空調装置。The vehicle air conditioner according to any one of claims 1 to 5 , wherein the compressor is electrically driven so that the compressor can be driven even when the engine is stopped. 前記エンジンと前記温水熱交換器との間でエンジン冷却水を循環させる電動ポンプを設け、前記エンジンの停止時であっても前記電動ポンプを駆動させることにより、エンジン冷却水の循環を可能としたことを特徴とする請求項又はに記載の車両用空調装置。An electric pump that circulates engine cooling water between the engine and the hot water heat exchanger is provided, and the engine cooling water can be circulated by driving the electric pump even when the engine is stopped. The vehicle air conditioner according to claim 5 or 6 . 前記制御手段は、コンプレッサから吐出される冷媒圧力に基づいて前記電動ポンプを駆動制御することを特徴とする請求項に記載の車両用空調装置。The vehicle air conditioner according to claim 7 , wherein the control unit drives and controls the electric pump based on a refrigerant pressure discharged from a compressor. 前記エンジンと前記温水熱交換器とを結ぶ温水流路の途中には、車内側熱交換器を通過後の空気を加熱するヒータコアを接続したことを特徴とする請求項1から8のいずれか1項に記載の車両用空調装置。In the middle of the hot water flow path connecting said hot water heat exchanger and the engine, any one of claims 1 to 8, characterized in that connecting a heater core for heating air having passed through the interior heat exchanger The vehicle air conditioner according to Item. 前記温水熱交換器を流動するエンジン冷却水と冷媒とが対向流となっていることを特徴とする請求項1から9のいずれか1項に記載の車両用空調装置。The vehicular air conditioner according to any one of claims 1 to 9 , wherein the engine coolant and the refrigerant flowing through the hot water heat exchanger are opposed to each other. 前記冷媒はCOであることを特徴とする請求項1から10のいずれか1項に記載の車両用空調装置。The refrigerant air-conditioning system according to claim 1, any one of 10, which is a CO 2.
JP2001337713A 2001-11-02 2001-11-02 Air conditioner for vehicles Expired - Fee Related JP4073653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001337713A JP4073653B2 (en) 2001-11-02 2001-11-02 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001337713A JP4073653B2 (en) 2001-11-02 2001-11-02 Air conditioner for vehicles

Publications (3)

Publication Number Publication Date
JP2003139431A JP2003139431A (en) 2003-05-14
JP2003139431A5 JP2003139431A5 (en) 2005-06-23
JP4073653B2 true JP4073653B2 (en) 2008-04-09

Family

ID=19152312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001337713A Expired - Fee Related JP4073653B2 (en) 2001-11-02 2001-11-02 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP4073653B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100963433B1 (en) * 2003-08-30 2010-06-17 한라공조주식회사 A heat pump system
KR100644827B1 (en) 2004-12-10 2006-11-10 엘지전자 주식회사 Steam supply and power generation system
JP2006321389A (en) * 2005-05-19 2006-11-30 Denso Corp Waste heat using device for vehicle
JP5755490B2 (en) 2011-04-18 2015-07-29 トヨタ自動車株式会社 Cooling system
JP5603404B2 (en) * 2012-12-28 2014-10-08 本田技研工業株式会社 Vehicle temperature riser
CN105605821A (en) * 2016-01-25 2016-05-25 铁道第三勘察设计院集团有限公司 Carbon dioxide direct extension air conditioning device

Also Published As

Publication number Publication date
JP2003139431A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP2002352867A (en) Battery temperature controller for electric vehicle
US5590540A (en) Air conditioner for vehicles
JP2002354608A (en) Battery cooling device for electric automobile
JP2005263200A (en) Air conditioner for vehicle
JP2002174474A (en) Air conditioner for vehicle
JP5563904B2 (en) Air conditioner for vehicles
JP3794121B2 (en) Air conditioner for vehicles
JP6680601B2 (en) Vehicle air conditioner
JP2003237357A (en) Air conditioner for vehicle
JP2003322019A (en) Cooling system for internal combustion engine for vehicle
JP2001260640A (en) Heating device for vehicle
JP6939575B2 (en) Vehicle cooling system
JPH05270252A (en) Heating device for electric automobile
JP4073653B2 (en) Air conditioner for vehicles
JPH11198637A (en) Air conditioner for electric vehicle
JP3993760B2 (en) Air conditioner for vehicles
JP3977629B2 (en) Air conditioner for vehicles
JPH11115466A (en) Air conditioner for electric vehicle
JP3329091B2 (en) Heat pump type air conditioner for vehicles
JP2002225545A (en) Air conditioner for vehicle
JP4213535B2 (en) Air conditioner for vehicles
JP3312460B2 (en) Vehicle heating system
JP3686211B2 (en) Air conditioner for automobile
JP3563213B2 (en) Automotive heating system with heat storage device
JPH05330331A (en) Air conditioner for electric vehicle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees