JP3562633B2 - Capacitor uninterruptible power supply - Google Patents

Capacitor uninterruptible power supply Download PDF

Info

Publication number
JP3562633B2
JP3562633B2 JP2000003075A JP2000003075A JP3562633B2 JP 3562633 B2 JP3562633 B2 JP 3562633B2 JP 2000003075 A JP2000003075 A JP 2000003075A JP 2000003075 A JP2000003075 A JP 2000003075A JP 3562633 B2 JP3562633 B2 JP 3562633B2
Authority
JP
Japan
Prior art keywords
capacitor
voltage
power supply
remaining capacity
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000003075A
Other languages
Japanese (ja)
Other versions
JP2001197686A (en
Inventor
廸夫 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2000003075A priority Critical patent/JP3562633B2/en
Publication of JP2001197686A publication Critical patent/JP2001197686A/en
Application granted granted Critical
Publication of JP3562633B2 publication Critical patent/JP3562633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数のキャパシタと該キャパシタのそれぞれに並列に接続して充電電圧・電流を検出し制御する並列モニタとを有するキャパシタ蓄電装置を、入力電源と負荷に充放電制御手段を介して切り換え接続し充放電を行うキャパシタ無停電電源装置に関する。
【0002】
【従来の技術】
従来の無停電電源には二次電池が用いられている。かかる無停電電源では、電池の寿命がなくなっていると、いざ停電のとき無停電電源として機能しなくなるので、電池の機能状態を時々測定するなどのチェックが必要である。信頼性を高めるため、例えば正常に作動するかを試す自己点検機能や、電池の残量、稼働可能時間を予測する機能などに多くの工夫改良がなされている。因みに、寿命判定手段としては、特開平6−217473号公報、特開平7−85891号公報、特開平7−298503号公報、特開平6−88155号公報、特開平8−308125号公報など多くの提案がなされている。
【0003】
【発明が解決しようとする課題】
しかし、無停電電源として信頼性を高めるための各種手法は、それらの根本が従来の二次電池の特性に依存するため、残量の測定にしてもそれを正確に行うことが困難で、動作の信頼性に関しても、ある時点で正常な電池に対してデンドライトの発生などによる突発的な故障は予想しにくく、システムの信頼性の向上が困難であるという問題を抱えている。また、バックアップ可能時間の予測については、二次電池の場合、残量予測を端子電圧から行おうとすると、端子電圧の残量による変化の大きさが温度や運転状態の影響を大きく受けて残量の情報がその他の成分に埋もれてしまうため、一般には困難なことが知られている。
【0004】
【課題を解決するための手段】
本発明は、上記課題を解決するものであって、簡単でしかも正確に予測と診断情報を提供できるようにするものである。
【0005】
そのために本発明は、複数のキャパシタと該キャパシタのそれぞれに並列に接続して充電電圧・電流を検出し制御する並列モニタとを有するキャパシタ蓄電装置を、入力電源と負荷に充放電制御手段を介して切換接続し充放電を行うキャパシタ無停電電源装置において、前記キャパシタ蓄電装置の電圧と出力電流を検出し、前記キャパシタ蓄電装置の静電容量と検出した電圧に基づき残容量を求め、前記検出した電圧と出力電流に基づき消費電力を求めて、前記求めた残容量と消費電力に基づき動作可能時間の予測を行い、前記求めた消費電力の一定時間における量とその間に検出した電圧の変化に基づき静電容量の低下を求めてキャパシタの劣化の判定を行う診断手段を備え、動作可能時間の予測やキャパシタの劣化の判定を出力することを特徴とするものである。
【0006】
また、前記診断手段は、前記残容量と所定時間の平均消費電力に基づきバックアップ可能時間を予測して表示し、前記診断手段は、前記残容量と電圧の変化に基づき静電容量の低下を求めキャパシタの劣化を診断し、前記診断手段は、残容量を求める回路として、前記複数のキャパシタの少なくとも1つのキャパシタの端子電圧を取り出して1乃至複数の非線形抵抗素子からなる回路に負荷抵抗素子を直列に接続して構成し、前記負荷抵抗素子に流れる電流を検出して折れ線近似により残容量を求めることを特徴とするものである。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係るキャパシタ無停電電源装置の実施の形態を示す図であり、1はキャパシタ蓄電装置、2は充電器、3は出力制御回路、4は無停電制御回路、5は切り換え回路、6は電流検出回路、7は予測・診断処理回路、8は予測・診断出力回路、9は並列モニタ、Cはキャパシタを示す。
【0008】
図1において、キャパシタ蓄電装置1は、多数の直並列接続されるキャパシタCとそれら各キャパシタCに並列接続される並列モニタ9からなり、瞬時的な充放電が可能な蓄電装置である。キャパシタCは、例えば電気二重層キャパシタである。並列モニタは、キャパシタCのそれぞれに並列に接続して充電電圧・電流を検出し制御するものであり、例えば満充電電圧になったキャパシタCの充電電流を個々にバイパスしたり、中間の電圧で初期化を実行する場合には、初期化信号により初期化レベルより高い電圧まで充電されているキャパシタCをバイパスして各キャパシタCの間のバラツキを修正したりする。充電器2は、入力電源にキャパシタ蓄電装置1を接続して充電を行う、例えばAC/DCコンバータであり、キャパシタ蓄電装置1に効率よく充電するため、キャパシタ蓄電装置1から見て電流源と見なせるように電流を制御して充電を行うものである。出力制御回路3は、複数のキャパシタC及び並列モニタを含むキャパシタ蓄電装置1から放電する出力電流の制御を行う、例えば電流ポンプ(スイッチングコンバータ)やDC/ACインバータなどからなるものである。
【0009】
切り換え回路5は、入力電源を負荷に接続し、入力電源の停電時には出力制御回路3を負荷に接続する切り換えを行うものである。また、入力電源と負荷との接続ラインに出力制御回路3を接続して負荷の変動に応じて出力制御回路3の出力を制御することにより負荷平準化装置として使用し、停電時には入力電源を切り離して出力制御回路3から負荷へ給電を行い無停電電源として使用するように切り換えるようにしてもよい。このように常時出力制御回路3を入力電源と負荷との間に接続し、負荷平準化装置として使用し、停電時には出力制御回路3から負荷に給電する場合には、切り換え回路5による切り換えを省いてもよい。
【0010】
無停電制御回路4は、負荷に給電する入力電源を監視し、負荷の変動や停電に応じて充電器2、出力制御回路3、及び切り換え回路5を制御するものである。まず、定常状態に充電器2を制御してキャパシタ蓄電装置1の充電を行い、入力電源の停電を検出するとキャパシタ蓄電装置1から給電を行うように出力制御回路3と切り換え回路5を制御する。また、負荷平準化装置として使用する場合には、負荷の過渡的な変動を検出して充電器2、出力制御回路3、及び切り換え回路5を制御してキャパシタ蓄電装置1の充放電を制御することにより負荷の平準化を行う。
【0011】
予測・診断処理回路7は、診断として残容量を求め、バックアップ可能時間を予測し、或いはキャパシタの劣化を判定するものであり、キャパシタ蓄電装置1の端子電圧と電流検出回路6により検出されるキャパシタ蓄電装置1からの出力電流に基づき残容量と消費電力を求め、それらからキャパシタ蓄電装置1によるバックアップ可能時間の予測と自己診断を行う。予測・診断出力回路8は、予測したバックアップ可能時間やキャパシタの劣化状況などの予測・診断結果を出力する、例えば表示器である。
【0012】
二次電池の劣化の起こり方にはいろいろあるが、電気二重層キャパシタの劣化は、最高充電電圧を並列モニタで制限している限り、通常の二次電池のデンドライトショートやパンクなどに類する現象は原理的に起こりにくい。電気二重層キャパシタバンクの場合の劣化は比較的単純で、静電容量の低下や内部抵抗の増加で判定することができる。いま、キャパシタバンクの静電容量をC、バンクの端子電圧をVとすると、蓄電エネルギーUは、
U=CV/2
で表すことができる。この式からCを求めると、
C=2U/V
となるから、一定時間における消費電力の量と、その間の端子電圧の変化を上記式のUとVに適用することにより、等価なCを求めることができる。したがって、求めたCを前回の値と比較して、その差が所定の限界値以内に入っているか否かで劣化を判定することができ、その偏差量に応じた警告や警報を出力することができる。
【0013】
図2は無停電電源として動作しているときに行うバックアップ可能時間の予測と自己診断の例を説明するための図であり、無停電電源として動作しキャパシタ蓄電装置から放電を開始すると、定期的に端子電圧と出力電流を検出し読み込む(ステップS11)。そして、端子電圧から残容量を求め、端子電圧と出力電流から消費電力を求めてから(ステップS12)、前回に求めた値と合わせて所定期間の平均消費電力を求め(ステップS13)、残容量を平均消費電力で割ってバックアップ可能時間を予測する(ステップS14)。さらに、端子電圧と消費電力から静電容量を求めて限界値以内にあるか否かを判定することにより自己診断を行う(ステップS15)。以上により予測されるバックアップ可能時間及び自己診断結果を表示画面等に出力する(ステップS16)。
【0014】
例えば停電によってデータの退避信号などが発せられる場合、コンピュータなど負荷となる回路の消費電流は定常状態ではなく、時々刻々変化する。このような場合には、上記のような処理により時々刻々に変化する消費電流に応じたバックアップ可能時間を定期的に更新して出力することができ、的確な情報を提供することができる。また、非常に負荷が軽いか、変動するような用途では、十分な有効数字を持った測定データが得られない場合があるが、そのような用途では、試験用の負荷抵抗などを用いて一定時間放電し、その消費電力による端子電圧の変化からキャパシタバンクの静電容量が清浄範囲内にあるか否かを判定してもよい。なお、キャパシタの劣化モードとして、先に述べたように内部抵抗の増加があるが、キャパシタの製法にも依存し、通常は内部抵抗の増加が現れる以前に静電容量の低下が検出される。したがって、静電容量による判定が自己診断の情報としてはかなり確度の高いものといえる。また、キャパシタの内部抵抗の増加を厳格に検出しようとする場合には、試験用負荷抵抗を用いてある程度大きな負荷電流を流し、測定値の扱いは上と同様にして等価的静電容量の減少に置き換えて算出することが可能である。
【0015】
キャパシタ蓄電装置1として、例えば耐電圧が2〜3V、内部抵抗2ΩF、エネルギー密度5Wh/lit以上のキャパシタセルに並列モニタを接続し、必要な電圧、電力となるようにこれらを直並列に接続して構成すると、最小30秒〜1分間の短時間充電、30秒以上最短放電時間1分程度の停電全負荷に対応可能で、高効率で低損失、長寿命で高い信頼性の高信頼蓄電装置を実現できる。したがって、電力供給の正常時に充電し、異常時又は必要時に放電する1分間の無停電電源及び負荷平準化装置が実現できる。しかも、寿命判定などを必要とせず、メンテナンスフリーで、完全密閉でガス漏れがなく、充電電圧から正確な残量予測も可能である。
【0016】
例えば1kWの契約電力で尖頭負荷が2kWある装置を使った場合、その不足電力を充電しておいた本装置から供給することができる。このような用途では、尖頭電力の発生毎に放電し、次の発生に間に合うように充電するという激しい充放電サイクルを伴うので、二次電池では劣化が激しく実用化するのは困難であったが、本発明のキャパシタ蓄電装置を使用することにより、短時間の充放電サイクルに対応でき、しかも高信頼性、長寿命で使用することができる。
【0017】
次に、バックアップ可能時間を予測するために用いる残容量を求める例につて説明する。図3はキャパシタ蓄電装置の残容量を求める具体的な構成例を示す図であり、10は残量計、Cはキャパシタ、R1〜R13は抵抗、X1、X2はシャントレギュレータ、Q1 〜Q4はトランジスタを示す。
【0018】
図3(A)において、キャパシタCは、多数のキャパシタを直並列に接続して構成するキャパシタ蓄電装置において、複数のキャパシタ(セル)を直列に接続してバンク(モジュール)とし、その複数のバンクを直列に接続して電源装置とするとき、そのバンクやバンクを構成する単体のキャパシタであり、キャパシタ蓄電装置の残容量を求めるために端子間の電圧を取り出している。残量計10は、キャパシタCの両端に折れ線近似回路と直列に接続されて多数のキャパシタが接続された電源装置の残容量を表示する、例えばフルスケールが1mAの電流計である。シャントレギュレータX1、X2は、温度補償されたアクティブ・ツェナーであり、抵抗R1〜R5と共に折れ線近似を行う近似回路を構成するものである。シャントレギュレータX1は、抵抗R1とR2からなる分圧回路を制御入力に接続してコンパレータとして動作し、制御入力の電圧が所定の電圧(折れ曲がり点)に達するとオンになる回路(例えばTI社製のTL431、NEC社製のC1944など)である。したがって、シャントレギュレータX1、抵抗R1、R2からなる回路は、いわゆる低電圧では定抵抗を有し予め設定された電圧で定電圧動作する定電圧制限可変抵抗回路であり、抵抗5は定電圧制限可変抵抗回路に接続される負荷抵抗である。
【0019】
トランジスタQ1、Q2は、抵抗R6〜R8と共に分圧回路を構成する高耐圧のトランジスタである。耐電圧がシャントレギュレータの最大定格を越える場合に、高耐圧のトランジスタQ1、Q2を用いる。これは、トランジスタのβを利用してボルテージフォロア(エミッタフォロア)を構成し、アクティブな消費電力の少ない分圧回路を構成したものであり、例えば満充電電圧10V用の残量計により、ボルテージフォロアの前の分圧抵抗を調節するだけで、しかも、折れ曲がり点の再調整をすることなしに10V以上の任意の電圧用に適用できる。すなわち、折れ線近似回路の前に単純に分圧抵抗をおいたものでは、折れ曲がりポイントが狂ってしまい再計算や大幅な再調整が必要になるが、前にボルテージフォロアを接続すると、出力インピーダンスが低いので、さらに素の前に任意の分圧抵抗を接続しても折れ線近似の特性が狂わず、設計、調整が容易になる。
【0020】
また、βの大きくないトランジスタの場合には、図3(B)に示すようにトランジスタQ3、Q4のダーリントン接続を用いてもよい。つまり、要求する精度、電圧範囲と使用するトランジスタによって、1石のトランジスタ、図3(A)に示すような直列接続のトランジスタ、図3(B)に示すようなダーリントン接続のトランジスタを適宜採用すればよいことはいうまでもない。また、折れ線近似回路は、図3(C)に示すようにシャントレギュレータX1、X2を並列に接続して構成してもよい。
【0021】
図4は高電圧シャントレギュレータの回路構成例を示す図、図5は図4に示す高電圧シャントレギュレータの特性を示す図、図6は図3に示す折れ線近似回路の特性を示す図である。
【0022】
2.5Vの基準電圧を用いて約100Vのシャントレギュレータの構成例を示したのが図4に示す高電圧シャントレギュレータである。図4に示す回路では、分圧点3が抵抗R1〜R3により4分の1に分圧されているので、ダーリントン接続したトランジスタQ1、Q2 のコレクタ側が約100Vの電圧のとき25Vの電圧になり、シャントレギュレータX1の制御入力はさらにその10分の1の2.5Vになる。シャントレギュレータX1は、この電圧が動作点となるので、図5に示すようにトランジスタQ1、Q2 のコレクタ電位(▽、△印)が約100V、トランジスタQ2のエミッタ電位(□、◇印)、つまりシャントレギュレータX1の電圧が25Vに維持される。したがって、キャパシタの残容量が多くなりキャパシタ電圧が高くなるのに比例して、抵抗R4に流れる電流(塗潰し□、◇印)が増加する特性を示す。
【0023】
上記折れ線近似の特性を備えた図4のX1、R1、R2に相当する部分をもう一組直列に加え、折れ曲がりの部分を二つにしたのが図3に示す例であり、簡単な連立方程式による定数の算出と、ツェナー電圧のバラツキに対応する微調整で図6に示すようにキャパシタの特性(□印)に対し極めて良好な折れ線近似特性(塗潰し□印)が得られる。図3(A)に示す回路では、特性を与える電流供給素子が、折れ曲がり点以後の電流を与える▲1▼R5と、それ以前の電流を定める▲2▼X1、R1、R2のブロック、▲3▼X2、R3、R4のブロックの二つが直列になり、▲1▼と合計して三つのブロックが直列になっている。
【0024】
これらのブロックは、図3(C)に示すように並列接続しても類似の特性が得られる。回路の設計は、並列型の方が相互の干渉が少なくて容易だが、設計値によって負荷となる抵抗R11〜R13のように部品点数がいくらか多くなり消費電流が増える。
【0025】
上記残容量検出回路は、バンク切り換えを行うキャパシタ蓄電装置においても同様に適用できる。以下にバンク切り換えを行うキャパシタ蓄電装置に適用した例について説明する。バンク切換えを行うと、キャパシタの端子電圧は、それぞれのバンクが異なった振る舞いをする。従って、一般的には、すべてのキャパシタバンクに残量計を設け、それらを合算すれば蓄電装置の全キャパシタの残容量を知ることができる。
【0026】
しかし、バンク切換えのキャパシタ蓄電装置では、その内の特定のキャパシタ、或いはキャパシタバンクに注目すると、その端子間電圧と蓄電量の間には一定の関係が存在する。その関係を折れ線近似回路でフィットすれば、簡単な残量計が得られる。この方法では、キャパシタ全部の残容量を測定せず、対象となったバンクだけから全蓄電量を推算することになるので厳密とはいえないが、電圧から蓄電量を求めるタイプの残量計は、いずれもキャパシタの静電容量が一定であると仮定して計算しているから、各バンクの静電容量を一定だと仮定する本方式も、同様に実用性において全く問題はない。
【0027】
図7は直並列型バンク切り換え式のキャパシタ電源装置の構成例を示す図、図8は図7に示す電源装置の放電特性を示す図、図9は図7に示すキャパシタ電源装置の電圧と蓄電量(残容量)との関係を示す図、図10はシフト型バンク切り換え式のキャパシタ電源装置の構成例を示す図、図11は図10に示すキャパシタ電源装置の電圧と蓄電量(残容量)との関係を示す図、図12はタップ型バンク切り換え式のキャパシタ電源装置の構成例を示す図、図13は図12に示すキャパシタ電源装置の電圧と蓄電量(残容量)との関係を示す図である。
【0028】
図7に示す直並列型バンク切り換え式のキャパシタ電源装置は、例えば満充電時に並列接続スイッチSp1、Sp2、Sp11、Sp12でキャパシタC1、C2及びC11、C12をそれぞれ並列に接続し、キャパシタC1、C11の端子間電圧を監視して、放電に伴って電圧が低下すると順次並列接続に切り換えることにより出力電圧outの変動幅を小さくするものであり、充電の場合にはその逆の制御を行えばよい。直並列の切り換え制御では、例えば図8に示すように満充電時の各キャパシタC1、C2、C11、C12の電圧が30Vの場合、出力端の電圧が60Vから放電を開始し、40Vまで下がると、まず直列接続スイッチSs1でキャパシタC1、C2の並列接続を直列接続に切り換える。これにより出力電圧を満充電時と同じ60Vの電圧まで上げ、さらに放電により40V近傍まで下がると、残りの直列接続スイッチSs11でキャパシタC11、C12の並列接続を直列接続に切り換える。このような制御による出力端(図7の点11)の電圧の変化を図8の□で、キャパシタC1(図7の点3)の電圧の変化を図8の◇で、キャパシタC11(図7の点13と1との間)の電圧の変化を図8の▽で、放電量を□(塗潰し)でそれぞれ示している。そこで、図8に示す特性に基づきキャパシタC1(図7の点3)の電圧と蓄電量との関係を示すと、図9の□に示すような特性になる。これを折れ線で近似すると、例えば図9の一点鎖線で示す2つの折れ曲がり点○(塗潰し)を有する折れ線により、かなり精度よく設定することができる。
【0029】
図10に示すシフト型バンク切り換え式のキャパシタ電源装置は、スタガー型とも呼び、満充電時には、(b)に示すようにキャパシタC1、C2の直列回路とキャパシタC3、C4の直列回路を並列に接続し、電圧の低下に伴って、(c)に示すようにまずキャパシタC2、C3の並列回路にキャパシタC1、C4を直列接続するように切り換え、次に(d)に示すようにすべてのキャパシタC1、C2、C3、C4を直列接続するように切り換える。この切り換えに伴う出力の電圧の変化を示したのが図11の□(塗潰し)印の線であり、キャパシタC1の電圧に対応する蓄電量を示したのが図11の□印の線である。この場合も折れ線で近似すると、例えば図11の一点鎖線で示す2つの折れ曲がり点○(塗潰し)を有する折れ線により、かなり精度よく設定することができる。
【0030】
図12に示すタップ型バンク切り換え式のキャパシタ電源装置は、キャパシタC1〜C3をベースとし、キャパシタC4、C5を補助(調整用)として、電圧の低下に伴って、ベースのキャパシタC1〜C3に補助のキャパシタC4、C5を段階的に1つずつ直列に追加接続するものである。この系では、切り換えの行われないベースとなるキャパシタC1〜C3の端子電圧を基準にする正確な残容量計測が可能である。キャパシタC1が相対的に小さい場合に非直線性が顕著となるので、キャパシタC2、C3を省き、キャパシタC1、C4、C5の3個のキャパシタを用い、キャパシタC1の端子電圧V(1)をX軸にとって、全キャパシタの蓄電量の和の満充電量に対する比を求めた結果を示したのが図13の□である。この場合も折れ線で近似すると、例えば図13の一点鎖線で示す折れ曲がり点○(塗潰し)を有する折れ線により、かなり精度よく設定することができる。
【0031】
なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、入力電源の停電を検出してキャパシタ蓄電装置1から放電を行う無停電電源として用いたが、携帯用電子機器において、商用交流電源から切り離して使用する、従来のバッテリ電源に代わる電源として用いてもよいし、勿論大電力用の無停電電源として用いてもよいことはいうまでもない。また、キャパシタ蓄電装置に対し充電器を通して入力電源を接続し、出力制御回路を通して負荷を接続したが、交直変換器を通して入力電源と負荷との給電ラインを接続し、交直変換器を可逆的に用いるようにしてもよい。要するにこれらのいずれかの手段を用いてキャパシタ蓄電装置を、入力電源と負荷に充放電制御手段を介して切り換え接続できる構成であればよい。さらに、残容量の測定では、典型的な3種類のバンク切換え方式に適用した例を挙げたが、これら各種の例を通じて、バンク切換えの行われる系の中の、特定のキャパシタバンクに注目し、その電圧と系全体のエネルギー貯蔵量との関係を調べ、本発明の回路を用いて折れ線近似すると、簡便で精度の充分ある残量計が得られることは明らかである。折れ線近似回路としてシャントレギュレータを用いたが、ツェナーダイオードその他の定電圧制御回路などを含む非線形抵抗素子と置き換えてもよいことはいうまでもない。
【0032】
【発明の効果】
以上の説明から明らかなように、本発明によれば、複数のキャパシタと該キャパシタのそれぞれに並列に接続して充電電圧・電流を検出し制御する並列モニタとを有するキャパシタ蓄電装置を、入力電源と負荷に充放電制御手段を介して切り換え接続し充放電を行うキャパシタ無停電電源装置において、キャパシタ蓄電装置の電圧と出力電流を検出して残容量と消費電力を求め動作可能時間の予測やキャパシタの劣化の判定を行う診断手段を備え、動作可能時間の予測やキャパシタの劣化の判定を出力するので、簡単にしかも正確に診断情報を提供できる。しかも、診断手段は、残容量と所定時間の平均消費電力に基づきバックアップ可能時間を予測してバックアップ可能時間を表示し、診断手段は、残容量と電圧の変化に基づき静電容量の低下を求めキャパシタの劣化を診断し、診断手段は、残容量を求める回路として、複数のキャパシタの少なくとも1つのキャパシタの端子電圧を取り出して1乃至複数の非線形抵抗素子からなる回路に負荷抵抗素子を直列に接続して構成し、負荷抵抗素子に流れる電流を検出して折れ線近似により残容量を求めるので、残容量と負荷電流の経時変化を測定し、負荷の状態に応じた正確なバックアップ可能時間を予測し、キャパシタの劣化を診断することができ、信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係るキャパシタ無停電電源装置の実施の形態を示す図である。
【図2】無停電電源として動作しているときに行うバックアップ可能時間の予測と自己診断の例を説明するための図である。
【図3】キャパシタ蓄電装置の残容量を求める具体的な構成例を示す図である。
【図4】高電圧シャントレギュレータの回路構成例を示す図である。
【図5】図4に示す高電圧シャントレギュレータの特性を示す図である。
【図6】図3に示す折れ線近似回路の特性を示す図である。
【図7】直並列型バンク切り換え式のキャパシタ電源装置の構成例を示す図である。
【図8】図7に示す電源装置の放電特性を示す図である。
【図9】図7に示すキャパシタ電源装置の電圧と蓄電量(残容量)との関係を示す図である。
【図10】シフト型バンク切り換え式のキャパシタ電源装置の構成例を示す図である。
【図11】図10に示すキャパシタ電源装置の電圧と蓄電量(残容量)との関係を示す図である。
【図12】タップ型バンク切り換え式のキャパシタ電源装置の構成例を示す図である。
【図13】図12に示すキャパシタ電源装置の電圧と蓄電量(残容量)との関係を示す図である。
【符号の説明】
1…キャパシタ蓄電装置、2…充電器、3…出力制御回路、4…無停電制御回路、5…切り換え回路、6…電流検出回路、7…予測・診断処理回路、8…予測・診断出力回路、9…並列モニタ、C…キャパシタ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention switches a capacitor power storage device having a plurality of capacitors and a parallel monitor connected in parallel to each of the capacitors to detect and control a charging voltage and a current to an input power supply and a load via charge / discharge control means. The present invention relates to a capacitor uninterruptible power supply which performs connection and charge / discharge.
[0002]
[Prior art]
A conventional uninterruptible power supply uses a secondary battery. Such an uninterruptible power supply does not function as an uninterruptible power supply in the event of a power outage if the life of the battery has expired. Therefore, it is necessary to check the functional state of the battery from time to time. In order to enhance reliability, many improvements have been made to, for example, a self-inspection function that tests whether the battery operates normally and a function that predicts the remaining battery level and the operable time. Incidentally, as the life determining means, there are many such as JP-A-6-217473, JP-A-7-85891, JP-A-7-298503, JP-A-6-88155 and JP-A-8-308125. A proposal has been made.
[0003]
[Problems to be solved by the invention]
However, since various methods for improving the reliability of an uninterruptible power supply depend on the characteristics of conventional secondary batteries, it is difficult to accurately measure the remaining amount even when measuring the remaining amount. As for the reliability of the battery, it is difficult to predict a sudden failure due to the occurrence of dendrite in a normal battery at a certain point in time, and it is difficult to improve the reliability of the system. Regarding the prediction of the backup available time, in the case of a secondary battery, if the remaining amount is to be estimated from the terminal voltage, the magnitude of the change due to the remaining amount of the terminal voltage is greatly affected by the temperature and the operating state. It is generally known that this information is buried in other components, so that it is generally difficult.
[0004]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and is to provide a simple and accurate prediction and diagnosis information.
[0005]
For this purpose, the present invention provides a capacitor power storage device having a plurality of capacitors and a parallel monitor connected in parallel to each of the capacitors to detect and control the charging voltage and current. In a capacitor uninterruptible power supply that switches and connects and charges and discharges, a voltage and an output current of the capacitor power storage device are detected.Calculating a remaining capacity based on the capacitance of the capacitor power storage device and the detected voltage, obtaining power consumption based on the detected voltage and the output current, and estimating an operable time based on the obtained remaining capacity and the power consumption. Is performed, and the deterioration of the capacitor is determined by obtaining the decrease in the capacitance based on the amount of the power consumption obtained in the predetermined time and the change in the voltage detected during the predetermined time.A diagnostic means is provided, which outputs prediction of operable time and determination of deterioration of the capacitor.
[0006]
Further, the diagnosis means predicts and displays a backup available time based on the remaining capacity and the average power consumption of a predetermined time, and the diagnosis means obtains a decrease in capacitance based on the change in the remaining capacity and the voltage. Diagnosing the deterioration of the capacitor, the diagnostic means extracts a terminal voltage of at least one of the plurality of capacitors as a circuit for obtaining a remaining capacity, and connects a load resistance element in series with a circuit including one or more nonlinear resistance elements. And the current flowing through the load resistance element is detected, and the remaining capacity is obtained by broken line approximation.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a capacitor uninterruptible power supply according to the present invention, wherein 1 is a capacitor power storage device, 2 is a charger, 3 is an output control circuit, 4 is an uninterruptible control circuit, and 5 is a switching circuit. , 6 denotes a current detection circuit, 7 denotes a prediction / diagnosis processing circuit, 8 denotes a prediction / diagnosis output circuit, 9 denotes a parallel monitor, and C denotes a capacitor.
[0008]
In FIG. 1, a capacitor power storage device 1 is composed of a number of capacitors C connected in series and parallel and a parallel monitor 9 connected in parallel to each of the capacitors C, and is a power storage device capable of instantaneous charging and discharging. The capacitor C is, for example, an electric double layer capacitor. The parallel monitor is connected in parallel with each of the capacitors C to detect and control the charging voltage / current. For example, the charging current of the capacitor C that has reached the full charging voltage is individually bypassed, or the voltage is monitored at an intermediate voltage. When the initialization is performed, the variation between the capacitors C is corrected by bypassing the capacitors C charged to a voltage higher than the initialization level by the initialization signal. The charger 2 is, for example, an AC / DC converter that performs charging by connecting the capacitor power storage device 1 to an input power supply, and can be regarded as a current source when viewed from the capacitor power storage device 1 in order to charge the capacitor power storage device 1 efficiently. The charging is performed by controlling the current as described above. The output control circuit 3 includes, for example, a current pump (switching converter) and a DC / AC inverter for controlling the output current discharged from the capacitor power storage device 1 including the plurality of capacitors C and the parallel monitor.
[0009]
The switching circuit 5 connects the input power supply to the load, and switches the output control circuit 3 to the load when the input power supply fails. Also, the output control circuit 3 is connected to a connection line between the input power supply and the load, and the output of the output control circuit 3 is controlled in accordance with a change in the load to be used as a load leveling device. The power may be switched from the output control circuit 3 to the load to be used as an uninterruptible power supply. In this way, the constant output control circuit 3 is connected between the input power supply and the load, and is used as a load leveling device. When the power is supplied from the output control circuit 3 to the load during a power failure, the switching by the switching circuit 5 is omitted. It may be.
[0010]
The uninterruptible power control circuit 4 monitors the input power supplied to the load, and controls the charger 2, the output control circuit 3, and the switching circuit 5 in response to a change in the load or a power failure. First, the charger 2 is controlled in a steady state to charge the capacitor power storage device 1. When a power outage of the input power supply is detected, the output control circuit 3 and the switching circuit 5 are controlled so that power is supplied from the capacitor power storage device 1. When used as a load leveling device, a transient change in load is detected to control the charger 2, the output control circuit 3, and the switching circuit 5 to control charging and discharging of the capacitor power storage device 1. In this way, the load is leveled.
[0011]
The prediction / diagnosis processing circuit 7 obtains the remaining capacity as a diagnosis, predicts the available backup time, or determines the deterioration of the capacitor, and detects the terminal voltage of the capacitor power storage device 1 and the capacitor detected by the current detection circuit 6. The remaining capacity and the power consumption are obtained based on the output current from the power storage device 1, and the backup available time of the capacitor power storage device 1 is predicted and the self-diagnosis is performed based on the remaining capacity and the power consumption. The prediction / diagnosis output circuit 8 is, for example, a display that outputs a prediction / diagnosis result such as a predicted backup available time and a deterioration state of a capacitor.
[0012]
Deterioration of secondary batteries can occur in various ways, but degradation of electric double-layer capacitors is similar to that of ordinary secondary batteries, such as dendrite shorts and punctures, as long as the maximum charge voltage is limited by a parallel monitor. Less likely in principle. Deterioration in the case of an electric double layer capacitor bank is relatively simple, and can be determined by a decrease in capacitance or an increase in internal resistance. Assuming that the capacitance of the capacitor bank is C and the terminal voltage of the bank is V, the stored energy U is
U = CV2/ 2
Can be represented by When C is obtained from this equation,
C = 2U / V2
By applying the amount of power consumption during a certain period of time and the change in terminal voltage during that period to U and V in the above equation, an equivalent C can be obtained. Therefore, it is possible to compare the obtained C with the previous value, determine whether the difference is within a predetermined limit value or not, and output a warning or an alarm according to the deviation amount. Can be.
[0013]
FIG. 2 is a diagram for explaining an example of a backup available time prediction and a self-diagnosis performed when operating as an uninterruptible power supply. The terminal voltage and the output current are detected and read (step S11). Then, the remaining capacity is obtained from the terminal voltage, the power consumption is obtained from the terminal voltage and the output current (step S12), and the average power consumption for a predetermined period is obtained by combining with the previously obtained value (step S13). Is divided by the average power consumption to predict the backup available time (step S14). Further, self-diagnosis is performed by determining the capacitance from the terminal voltage and the power consumption and determining whether or not the capacitance is within the limit value (step S15). The estimated backup available time and the self-diagnosis result are output on a display screen or the like (step S16).
[0014]
For example, when a data save signal or the like is issued due to a power failure, the current consumption of a load circuit such as a computer is not in a steady state but changes every moment. In such a case, it is possible to periodically update and output the backup available time according to the current consumption that changes every moment by the above-described processing, and it is possible to provide accurate information. In applications where the load is very light or fluctuates, it may not be possible to obtain measurement data with sufficient significant figures. It is also possible to determine whether or not the capacitance of the capacitor bank is within a clean range based on a change in the terminal voltage due to the power consumption during the time discharge. As described above, the deterioration mode of the capacitor includes an increase in the internal resistance. However, depending on the manufacturing method of the capacitor, a decrease in the capacitance is usually detected before the increase in the internal resistance appears. Therefore, it can be said that the determination based on the capacitance is highly accurate as the self-diagnosis information. If the increase in the internal resistance of the capacitor is to be strictly detected, a somewhat large load current is passed using the test load resistance, and the measured value is treated in the same manner as above to reduce the equivalent capacitance. It is possible to substitute for the calculation.
[0015]
As the capacitor power storage device 1, for example, a parallel monitor is connected to a capacitor cell having a withstand voltage of 2 to 3 V, an internal resistance of 2 ΩF, and an energy density of 5 Wh / lit or more, and these are connected in series and parallel so that the required voltage and power are obtained. With this configuration, it is possible to support a short-time charging of a minimum of 30 seconds to 1 minute and a full load of a power failure with a minimum discharge time of 30 seconds or more and a minimum of about 1 minute. Can be realized. Therefore, it is possible to realize a one-minute uninterruptible power supply and a load leveling device that charge when the power supply is normal and discharge when abnormal or necessary. Moreover, there is no need to judge the service life, etc., it is maintenance-free, it is completely sealed, there is no gas leakage, and it is possible to accurately predict the remaining amount from the charging voltage.
[0016]
For example, when a device having a contracted power of 1 kW and a peak load of 2 kW is used, the insufficient power can be supplied from the charged device. Such an application involves a severe charge / discharge cycle in which the battery is discharged every time the peak power is generated and charged in time for the next generation, so that the secondary battery is severely deteriorated and difficult to be put to practical use. However, by using the capacitor power storage device of the present invention, it is possible to cope with a short charge / discharge cycle, and to use the device with high reliability and long life.
[0017]
Next, an example will be described in which the remaining capacity used for estimating the backup available time is obtained. FIG. 3 is a diagram showing a specific configuration example for obtaining the remaining capacity of the capacitor power storage device, where 10 is a fuel gauge, C is a capacitor, R1 to R13 are resistors, X1 and X2 are shunt regulators, and Q1 to Q4 are transistors. Is shown.
[0018]
In FIG. 3A, a capacitor C is a bank (module) in which a plurality of capacitors (cells) are connected in series to form a bank (module) in a capacitor power storage device configured by connecting many capacitors in series and parallel. Are connected in series to form a power supply device, the bank or a single capacitor constituting the bank, and a voltage between terminals is taken out to obtain the remaining capacity of the capacitor power storage device. The fuel gauge 10 is an ammeter having a full scale of 1 mA, for example, which indicates the remaining capacity of a power supply device in which both ends of the capacitor C are connected in series with a polygonal line approximation circuit and a number of capacitors are connected. The shunt regulators X1 and X2 are temperature-compensated active Zeners, and constitute an approximation circuit for performing a polygonal line approximation together with the resistors R1 to R5. The shunt regulator X1 operates as a comparator by connecting a voltage dividing circuit composed of resistors R1 and R2 to a control input, and turns on when the voltage of the control input reaches a predetermined voltage (bending point) (for example, manufactured by TI Corporation). TL431, NEC's C1944, etc.). Therefore, the circuit composed of the shunt regulator X1 and the resistors R1 and R2 is a constant voltage limiting variable resistor circuit having a constant resistance at a so-called low voltage and operating at a constant voltage at a preset voltage, and the resistor 5 has a constant voltage limiting variable. This is the load resistance connected to the resistance circuit.
[0019]
The transistors Q1 and Q2 are high breakdown voltage transistors that form a voltage dividing circuit together with the resistors R6 to R8. If the withstand voltage exceeds the maximum rating of the shunt regulator, transistors Q1 and Q2 with high withstand voltage are used. In this method, a voltage follower (emitter follower) is formed by using the β of a transistor, and an active voltage dividing circuit with low power consumption is formed. For example, a voltage follower using a fuel gauge for a full charge voltage of 10 V is used. It can be applied to any voltage of 10 V or more only by adjusting the voltage dividing resistance before the above and without re-adjusting the bending point. In other words, if the voltage dividing resistor is simply placed before the broken line approximation circuit, the bending point will be out of order and recalculation and significant re-adjustment will be required, but if a voltage follower is connected before, the output impedance will be low Therefore, even if an arbitrary voltage dividing resistor is connected before the element, the characteristic of the approximation of the broken line is not deviated, and the design and adjustment become easy.
[0020]
In the case of a transistor having a small β, a Darlington connection of transistors Q3 and Q4 may be used as shown in FIG. That is, depending on the required accuracy, voltage range, and transistor to be used, one transistor, a series-connected transistor as shown in FIG. 3A, and a Darlington-connected transistor as shown in FIG. Needless to say, Further, the broken line approximation circuit may be configured by connecting shunt regulators X1 and X2 in parallel as shown in FIG.
[0021]
4 is a diagram showing an example of a circuit configuration of the high-voltage shunt regulator, FIG. 5 is a diagram showing characteristics of the high-voltage shunt regulator shown in FIG. 4, and FIG. 6 is a diagram showing characteristics of the broken line approximation circuit shown in FIG.
[0022]
A high-voltage shunt regulator shown in FIG. 4 shows a configuration example of a shunt regulator of about 100 V using a reference voltage of 2.5 V. In the circuit shown in FIG. 4, since the voltage dividing point 3 is divided by a factor of four by the resistors R1 to R3, the voltage of the Darlington-connected transistors Q1 and Q2 becomes 25V when the collector side is about 100V. , The control input of the shunt regulator X1 is further reduced to one tenth of 2.5V. Since the shunt regulator X1 operates at this voltage, the collector potentials of the transistors Q1 and Q2 (▽, Δ) and the emitter potentials of the transistor Q2 (□, ◇) as shown in FIG. The voltage of the shunt regulator X1 is maintained at 25V. Accordingly, the current (solid □, Δ) flowing through the resistor R4 increases in proportion to the increase in the remaining capacity of the capacitor and the capacitor voltage.
[0023]
FIG. 3 shows an example in which another part corresponding to X1, R1, and R2 in FIG. 4 having the above-mentioned polygonal line approximation characteristic is added in series, and two bent parts are provided. By calculating the constant according to the above and fine adjustment corresponding to the variation of the Zener voltage, as shown in FIG. 6, an extremely good polygonal line approximation characteristic (filled square) with respect to the characteristic (filled square) of the capacitor can be obtained. In the circuit shown in FIG. 3A, a current supply element for giving a characteristic includes: (1) R5 for giving a current after a bending point; and (2) a block for X1, R1, R2 for determining a current before that. Two of the blocks X2, R3, and R4 are in series, and three blocks are in series in total with (1).
[0024]
Similar characteristics can be obtained by connecting these blocks in parallel as shown in FIG. The circuit design is easier in the parallel type, because the mutual interference is smaller, but the number of components such as the resistors R11 to R13 serving as loads is somewhat increased depending on the design value, and the current consumption increases.
[0025]
The remaining capacity detection circuit can be similarly applied to a capacitor power storage device that performs bank switching. Hereinafter, an example in which the present invention is applied to a capacitor power storage device that performs bank switching will be described. When bank switching is performed, the terminal voltage of the capacitor causes each bank to behave differently. Therefore, in general, fuel gauges are provided in all capacitor banks, and the sum of the fuel gauges allows the remaining capacity of all capacitors of the power storage device to be known.
[0026]
However, in the capacitor storage device of the bank switching, when attention is paid to a specific capacitor or a capacitor bank, there is a certain relationship between the voltage between terminals and the storage amount. A simple fuel gauge can be obtained by fitting the relationship with a line approximation circuit. This method does not measure the remaining capacity of all the capacitors, but estimates the total storage capacity only from the target bank. In each case, the calculation is performed assuming that the capacitance of the capacitor is constant. Therefore, the present method in which the capacitance of each bank is assumed to be constant has no problem in practicality.
[0027]
7 is a diagram showing a configuration example of a series-parallel bank switching type capacitor power supply device, FIG. 8 is a diagram showing discharge characteristics of the power supply device shown in FIG. 7, and FIG. 9 is a diagram showing the voltage and storage of the capacitor power supply device shown in FIG. FIG. 10 is a diagram showing the relationship between the amount (remaining capacity) and the amount (remaining capacity). FIG. 10 is a diagram showing a configuration example of a capacitor power supply device of a shift type bank switching type. FIG. 12 is a diagram showing a configuration example of a tapped bank switching type capacitor power supply device, and FIG. 13 is a diagram showing a relationship between the voltage and the amount of stored power (remaining capacity) of the capacitor power supply device shown in FIG. FIG.
[0028]
In the series-parallel bank switching type capacitor power supply device shown in FIG. 7, for example, the capacitors C1, C2 and C11, C12 are connected in parallel by the parallel connection switches Sp1, Sp2, Sp11, Sp12 when the battery is fully charged, and the capacitors C1, C11 are connected. The voltage between the terminals is monitored, and when the voltage decreases with the discharge, the connection is sequentially switched to the parallel connection to reduce the fluctuation range of the output voltage out. In the case of charging, the reverse control may be performed. . In the series-parallel switching control, for example, when the voltage of each of the capacitors C1, C2, C11, and C12 at the time of full charge is 30V as shown in FIG. 8, the voltage at the output terminal starts discharging from 60V and drops to 40V. First, the parallel connection of the capacitors C1 and C2 is switched to the series connection by the series connection switch Ss1. As a result, when the output voltage is increased to the same voltage of 60 V as at the time of full charge, and further reduced to around 40 V by discharging, the parallel connection of the capacitors C11 and C12 is switched to the serial connection by the remaining series connection switch Ss11. The change in the voltage at the output terminal (point 11 in FIG. 7) by such control is indicated by □ in FIG. 8, the change in the voltage of the capacitor C1 (point 3 in FIG. 7) is indicated by Δ in FIG. The voltage change between points 13 and 1) is indicated by Δ in FIG. 8 and the discharge amount is indicated by □ (solid). Therefore, when the relationship between the voltage of the capacitor C1 (point 3 in FIG. 7) and the amount of stored power is shown based on the characteristics shown in FIG. 8, the characteristics are shown as □ in FIG. If this is approximated by a polygonal line, it can be set with a high degree of accuracy, for example, by a polygonal line having two bending points ((filled) shown by a dashed line in FIG.
[0029]
The shift type bank switching type capacitor power supply device shown in FIG. 10 is also called a stagger type, and when fully charged, a series circuit of capacitors C1 and C2 and a series circuit of capacitors C3 and C4 are connected in parallel as shown in FIG. Then, as the voltage decreases, first, as shown in (c), switching is performed so that the capacitors C1 and C4 are connected in series to the parallel circuit of the capacitors C2 and C3. Then, as shown in (d), all the capacitors C1 and C4 are switched. , C2, C3, and C4 are switched to be connected in series. The change in the output voltage associated with this switching is indicated by the □ (solid) line in FIG. 11, and the charge storage amount corresponding to the voltage of the capacitor C1 is indicated by the □ line in FIG. is there. In this case as well, when approximation is made by a polygonal line, for example, a polygonal line having two bending points ○ (filled) shown by a chain line in FIG.
[0030]
The tap-type bank switching type capacitor power supply device shown in FIG. 12 is based on the capacitors C1 to C3, and assists (adjusts) the capacitors C4 and C5, and assists the capacitors C1 to C3 as the voltage decreases. Of the capacitors C4 and C5 are connected one by one in a stepwise manner. In this system, it is possible to accurately measure the remaining capacity based on the terminal voltages of the base capacitors C1 to C3 that are not switched. When the capacitor C1 is relatively small, the nonlinearity becomes remarkable. Therefore, the capacitors C2 and C3 are omitted, the three capacitors C1, C4 and C5 are used, and the terminal voltage V (1) of the capacitor C1 is X. FIG. 13 shows the result of calculating the ratio of the sum of the charged amounts of all the capacitors to the fully charged amount with respect to the axis. In this case as well, when approximation is made with a polygonal line, for example, a polygonal line having a bending point ○ (filled) shown by a dashed line in FIG.
[0031]
Note that the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above-described embodiment, the uninterruptible power supply that detects a power failure of the input power supply and discharges from the capacitor power storage device 1 is used. However, in a portable electronic device, a conventional battery power supply that is used separately from a commercial AC power supply is used. Needless to say, it may be used as a power supply instead of the power supply, or may be used as an uninterruptible power supply for large power. In addition, the input power supply is connected to the capacitor power storage device through the charger, and the load is connected through the output control circuit, but the power supply line between the input power supply and the load is connected through the AC / DC converter, and the AC / DC converter is used reversibly. You may do so. In short, any configuration may be used as long as any one of these means can be used to switch and connect the capacitor power storage device to the input power supply and the load via the charge / discharge control means. Further, in the measurement of the remaining capacity, examples in which the present invention is applied to three typical types of bank switching methods are given. Through these various examples, attention is paid to a specific capacitor bank in a system in which bank switching is performed. It is clear that a simple and sufficiently accurate fuel gauge can be obtained by examining the relationship between the voltage and the energy storage amount of the entire system and approximating the broken line using the circuit of the present invention. Although the shunt regulator is used as the polygonal line approximation circuit, it goes without saying that it may be replaced with a non-linear resistance element including a zener diode and other constant voltage control circuits.
[0032]
【The invention's effect】
As is apparent from the above description, according to the present invention, a capacitor power storage device having a plurality of capacitors and a parallel monitor connected in parallel to each of the capacitors to detect and control the charging voltage and current is provided by an input power supply. Of the capacitor uninterruptible power supply unit that switches and connects to the load and the charge and discharge control means for charging and discharging, detects the voltage and output current of the capacitor power storage device, obtains the remaining capacity and power consumption, predicts the operable time, and Since the diagnostic means for determining the deterioration of the capacitor is provided and the prediction of the operable time and the determination of the deterioration of the capacitor are output, the diagnosis information can be provided simply and accurately. Moreover, the diagnostic means predicts the backup available time based on the remaining capacity and the average power consumption during the predetermined time and displays the backup available time, and the diagnostic means obtains the decrease in the capacitance based on the change in the remaining capacity and the voltage. Diagnosis of deterioration of the capacitor is performed, and the diagnostic means extracts a terminal voltage of at least one of the plurality of capacitors and connects a load resistance element in series to a circuit including one or more non-linear resistance elements as a circuit for obtaining a remaining capacity. Since the remaining capacity is obtained by detecting the current flowing through the load resistance element and approximating the broken line, the change over time in the remaining capacity and the load current is measured, and the accurate backup available time according to the load state is predicted. Thus, deterioration of the capacitor can be diagnosed, and the reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a capacitor uninterruptible power supply according to the present invention.
FIG. 2 is a diagram for explaining an example of prediction of a backup available time and self-diagnosis performed during operation as an uninterruptible power supply.
FIG. 3 is a diagram illustrating a specific configuration example for obtaining a remaining capacity of a capacitor power storage device.
FIG. 4 is a diagram illustrating a circuit configuration example of a high-voltage shunt regulator.
FIG. 5 is a diagram showing characteristics of the high-voltage shunt regulator shown in FIG. 4;
FIG. 6 is a diagram showing characteristics of the polygonal line approximation circuit shown in FIG. 3;
FIG. 7 is a diagram showing a configuration example of a series / parallel bank switching type capacitor power supply device.
8 is a diagram showing discharge characteristics of the power supply device shown in FIG.
9 is a diagram showing a relationship between a voltage of the capacitor power supply device shown in FIG. 7 and a charged amount (remaining capacity).
FIG. 10 is a diagram showing a configuration example of a shift type bank switching type capacitor power supply device.
11 is a diagram showing a relationship between a voltage of the capacitor power supply device shown in FIG. 10 and a charged amount (remaining capacity).
FIG. 12 is a diagram showing a configuration example of a tap type bank switching type capacitor power supply device.
13 is a diagram showing a relationship between a voltage of the capacitor power supply device shown in FIG. 12 and a charged amount (remaining capacity).
[Explanation of symbols]
REFERENCE SIGNS LIST 1 capacitor storage device 2 charger 3 output control circuit 4 uninterruptible control circuit 5 switching circuit 6 current detection circuit 7 prediction / diagnosis processing circuit 8 prediction / diagnosis output circuit , 9 ... Parallel monitor, C ... Capacitor

Claims (3)

複数のキャパシタと該キャパシタのそれぞれに並列に接続して充電電圧・電流を検出し制御する並列モニタとを有するキャパシタ蓄電装置を、入力電源と負荷に充放電制御手段を介して切換接続し充放電を行うキャパシタ無停電電源装置において、前記キャパシタ蓄電装置の電圧と出力電流を検出し、前記キャパシタ蓄電装置の静電容量と検出した電圧に基づき残容量を求め、前記検出した電圧と出力電流に基づき消費電力を求めて、前記求めた残容量と消費電力に基づき動作可能時間の予測を行い、前記求めた消費電力の一定時間における量とその間に検出した電圧の変化に基づき静電容量の低下を求めてキャパシタの劣化の判定を行う診断手段を備え、動作可能時間の予測やキャパシタの劣化の判定を出力することを特徴とするキャパシタ無停電電源装置。A capacitor storage device having a plurality of capacitors and a parallel monitor connected in parallel to each of the capacitors to detect and control a charging voltage / current is connected to an input power source and a load via charge / discharge control means, and is charged and discharged. In the capacitor uninterruptible power supply to perform, the voltage and output current of the capacitor power storage device is detected, the remaining capacity is obtained based on the capacitance of the capacitor power storage device and the detected voltage, and based on the detected voltage and output current. The power consumption is calculated, the operable time is predicted based on the obtained remaining capacity and the power consumption, and the decrease in the capacitance is calculated based on the amount of the calculated power consumption in a certain time and the change in the voltage detected during the time. Capacity, characterized in that it comprises a diagnostic means for determining deterioration of the capacitor, and outputs the determination uptime projections and capacitor degradation seeking Uninterruptible power supply. 前記診断手段は、前記残容量と所定時間の平均消費電力に基づきバックアップ可能時間を予測して表示することを特徴とする請求項1記載のキャパシタ無停電電源装置。2. The capacitor uninterruptible power supply according to claim 1, wherein the diagnosis unit predicts and displays a backup available time based on the remaining capacity and an average power consumption during a predetermined time. 前記診断手段は、前記残容量と電圧の変化に基づき静電容量の低下を求めキャパシタの劣化を診断することを特徴とする請求項1記載のキャパシタ無停電電源装置。2. The capacitor uninterruptible power supply according to claim 1, wherein the diagnosis unit determines a decrease in capacitance based on the change in the remaining capacity and the voltage and diagnoses deterioration of the capacitor.
JP2000003075A 2000-01-12 2000-01-12 Capacitor uninterruptible power supply Expired - Fee Related JP3562633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000003075A JP3562633B2 (en) 2000-01-12 2000-01-12 Capacitor uninterruptible power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000003075A JP3562633B2 (en) 2000-01-12 2000-01-12 Capacitor uninterruptible power supply

Publications (2)

Publication Number Publication Date
JP2001197686A JP2001197686A (en) 2001-07-19
JP3562633B2 true JP3562633B2 (en) 2004-09-08

Family

ID=18532075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000003075A Expired - Fee Related JP3562633B2 (en) 2000-01-12 2000-01-12 Capacitor uninterruptible power supply

Country Status (1)

Country Link
JP (1) JP3562633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148160A1 (en) 2008-06-06 2009-12-10 株式会社 明電舎 Capacitor's remaining lifetime diagnosing device, and electric power compensating device having the remaining lifetime diagnosing device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191138A (en) * 2000-12-19 2002-07-05 Toshiba Battery Co Ltd Uninterruptive power supply device
US20070194722A1 (en) * 2003-12-17 2007-08-23 Koninklijke Philips Electronics, N.V. Maintenance free emergency lighting
JP4838762B2 (en) * 2007-06-11 2011-12-14 パイオニア株式会社 Information processing apparatus and backup supply time calculation method
JP2008017691A (en) * 2007-07-24 2008-01-24 Toshiba Corp Monitoring device of electric double-layer capacitor system
JP5286818B2 (en) * 2008-02-21 2013-09-11 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
JP5098742B2 (en) * 2008-03-26 2012-12-12 ミツミ電機株式会社 Constant voltage power circuit
JP5193897B2 (en) * 2009-02-09 2013-05-08 山洋電気株式会社 Uninterruptible power supply using electric double layer capacitor
JP6183395B2 (en) * 2015-03-26 2017-08-23 日本電気株式会社 Power supply control system and power supply control method
WO2017131716A1 (en) * 2016-01-28 2017-08-03 Hewlett Packard Enterprise Development Lp Adjusting an output power of an uninterruptible power supply
TWI596863B (en) * 2016-08-03 2017-08-21 宗盈國際科技股份有限公司 Electronic apparatus with backup power supply and charging and discharging method of backup power supply
CN110086247A (en) * 2019-05-08 2019-08-02 冯刘海 The power supply system of data center
KR102191194B1 (en) * 2019-12-30 2020-12-15 두현인프라 주식회사 Uninterruptible Power Supply Control Circuit with Capacitor
KR102159459B1 (en) * 2019-12-30 2020-09-23 두현인프라 주식회사 Uninterruptible Power Supply Control System with Capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148160A1 (en) 2008-06-06 2009-12-10 株式会社 明電舎 Capacitor's remaining lifetime diagnosing device, and electric power compensating device having the remaining lifetime diagnosing device

Also Published As

Publication number Publication date
JP2001197686A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
JP3562633B2 (en) Capacitor uninterruptible power supply
JP3285720B2 (en) Method and apparatus for detecting deterioration of assembled battery
US6268710B1 (en) Battery monitor apparatus
CN103138026B (en) Battery pack control device
US6445162B1 (en) Detecting a remaining battery capacity and a battery remaining capacity circuit
EP2741093A1 (en) Ground fault detection device, ground fault detection method, solar energy system, and ground fault detection program
WO1997028574A1 (en) On-line battery monitoring system
JP6902545B2 (en) Check connectivity between cell and control wiring electronics using a single switch
WO2014167710A1 (en) Electricity storage device abnormality detection circuit, and electricity storage device provided with same
EP3822109A1 (en) Ground fault detection device
WO2008033064A1 (en) Method and device for automatic monitoring of battery insulation condition.
US11811024B2 (en) BMS and battery system
US20030001581A1 (en) Method for predicting the loading capability of an electrochemical element
JP5332062B2 (en) Uninterruptible power supply system and battery charging method
KR20160002378A (en) Battery state monitoring circuit and battery device
KR101544215B1 (en) System for Monitoring Battery State of Health
JP4445709B2 (en) Method for diagnosing life of secondary battery in power supply system
US20150042348A1 (en) Capacitor power supply, voltage monitoring device, method of monitoring voltage, and method of manufacturing capacitor power supply
JPH09113588A (en) Method for detecting pack battery condition
JP2015187572A (en) Earth fault detector and earth fault detection method
CN114062951A (en) Battery fault detection device and method
JP2002040064A (en) Battery voltage detector
US20230230788A1 (en) Relay control device and method of controlling relay control device
KR100811608B1 (en) Battery Test Apparatus and its Methods
JP4014067B2 (en) Capacitor power storage system remaining amount detection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3562633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040629

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20041116

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees