JP3561277B2 - 免許不要帯域ポートが自主的に混信閾値とパワー・レベルを決定する方法 - Google Patents

免許不要帯域ポートが自主的に混信閾値とパワー・レベルを決定する方法 Download PDF

Info

Publication number
JP3561277B2
JP3561277B2 JP52680697A JP52680697A JP3561277B2 JP 3561277 B2 JP3561277 B2 JP 3561277B2 JP 52680697 A JP52680697 A JP 52680697A JP 52680697 A JP52680697 A JP 52680697A JP 3561277 B2 JP3561277 B2 JP 3561277B2
Authority
JP
Japan
Prior art keywords
channel
rssi
level
threshold
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP52680697A
Other languages
English (en)
Other versions
JPH11508106A (ja
Inventor
チァン,リー―ファン
ノエルペル,アンソニー,アール.
Original Assignee
テルコーディア テクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルコーディア テクノロジーズ インコーポレイテッド filed Critical テルコーディア テクノロジーズ インコーポレイテッド
Publication of JPH11508106A publication Critical patent/JPH11508106A/ja
Application granted granted Critical
Publication of JP3561277B2 publication Critical patent/JP3561277B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

関連出願
本出願には、Li Fung Chang、Anthony Noerpel、Ashok Ranade、Nelson Sollenbergerによって発明され、ここに開示する本発明の譲受人に譲渡された「Method for Assigning Band Port Frequencies In An Unlicensed Personal Communications System」という発明の名称の同時係属出願に関する主題が含まれている。この発明の名称を記載して、この関連出願の内容を本発明の一部とする。
発明の分野
本発明は、無線通信システムに関し、より具体的には、免許不要パーソナル通信スペクトル内の無線ポートが、混信閾値と伝送パワーレベルを自律決定する方法に関する。
発明の背景
FCC(Federal Communication Commission)は、1920MHz〜1930MHzの周波数帯域をUPCS(unlicensed band for isochrous personal communications services)と指定した。この免許不要帯域は、無線電話および回線交換データをサポートするのに、主に用いられることになる。300kHzの帯域幅に対して、最大許容伝送パワーが55mWであるので、UPCSの使用は屋内に限定されている。というのは、このパワーレベルは低く過ぎて、屋外で有効に使用することができないからである。
図1は簡単なUPCSシステム50の例である。観客は、無線電話またはキーセットのような移動端末(MT)52であって、RPCU(radio port control unit)56に接続されたRP(radio port)54と無線通信しているMT52を有する。UPCSシステムは多くのRP54を同一または異なるRPCU56に接続させることができる。RPCU56を通信網、例えば、加入者線交機60に接続する通常電話線58に接続させることができる。加入者線交換機60はPSTN(public switched telephone network)62のような電話網に接続する。その顧客は個人情報、例えば、電話またはパーソナル通信番号と、呼・転送・ルーティング情報と、アカウント情報と、クレジットおよびビリング情報とを有することができ、しかも、電話網データベースにストアされたリンクであって、HLR(Home Location Register)64として知られたリンクであり、その顧客のホームエリアにサービスするリンクを有することができる。
以前は、1920MHz〜1930MHzの帯域は免許されたポンイトツーポイント(point−to−point)・マイクロ波通信に割り振られていた。少なくとも、この帯域から、全てのポイントツーポイント・マイクロ波システムが一掃されるまでは、FCCがUPCSシステムの使用に関する厳密な要件を制定していた。この一掃プロセスは7年掛かるだろうと予想されていた。そこで、FCCは、UPCSコンポーネントがあるオーソライズされたエリア外に移動した場合、UPCSコンポーネントが伝送できなくなることを要求していた。そのため、その帯域が一掃されるまでは、大規模で地理的に拘束されたシステム、例えば、セントレックス(Centrex)およびPBXシステムのみを使用することができると、一般的に、確信されていた。(オーソライズされたエリア外に移動可能な)MT52ではなく、RP54が、通信を開始しなければならないことも、暗黙の要求であった。
UPCS帯域は免許不要なので、取り付けた各無線設備ごとにFCCにライセンス料を支払わずに使用可能である。多くの無線ポート、例えば、同一エリア内の異なるシステムからの複数のRPか、あるいは、多くのサービス・プロバイダからの複数のRPが、UPCS帯域を公平に使用できるようにするため、FCCはUPCS帯域で複数のチャネルを獲得するためのエチケット(etiquette)を要求している。このエチケットはLBT(Listen−Before Talk)エチケットと呼ばれている。
このLBTエチケットでは、各RPは伝送帯域で使用可能なチャネルを見つけなければならない。FCCは、その伝送帯域を8つの1.25MHzチャネルに分割していた。その伝送帯域の下位3MHzで、利用可能チャネルのサーチを開始するには、「狭帯域」(例えば、625kHz未満の占有信号帯域幅)通信装置が必要である。その伝送帯域の上位3MHzで、使用可能チャネルのサーチを開始するには、「広帯域」通信装置が必要である。以下、説明は、狭帯域通信装置を参照して行うが、狭帯域通信装置に関する説明は、当然、広帯域通信装置にも適用可能である。UPCSスペクトルにおけるプロトコルにより、1.25MHzチャネルをそれぞれ幾つかのシステム・チャネルに分割することができる。
RP54は、その通信帯域の(例えば、その通信帯域の最下位3MHzに含まれるシステム・チャネルからランダムに選択された)第1のチャネルを設定して、そのサーチを開始し、ある閾値(この閾値が、特殊な場合を除き、バックグランド・レベルから30dBを超えないことを、FCCは要求している)未満の混信が存在するか否かを判定する。この閾値レベルを超える混信は、そのチャネルがすでに近接RPによって占有されていて、使用できない可能性があること示している。別のRPが既に当該チャネルを獲得していないことを確認するため、RP54は、自身が伝送ができる前の10ms間の間、そのチャネルに混信閾値レベルが存在するか否かをモニタする。その10ms期間の間の任意の時点で、そのチャネルに、閾値を超える混信がある場合は、RP54は次に高いチャネルをサーチする。あるRPは、自身がモニタした最初のチャネルであって、このチャネルで、10msの間に、この閾値を超える混信を検出しない場合には、この最初のチャネルは獲得しなければならない。
一度、RP54があるチャネルを獲得すると、獲得されたチャネルがMT52との通信に利用可能であることを「アドバタイズ(advertise)する」ため、その獲得されたチャネル上に直ちに伝送する必要がある。その30秒の時間間隔内に、RP54がMTとの通信を確立しない場合は、RP54はそのチャネルを破棄して、利用可能なチャネルが存在するか否かのサーチを再び開始しなければならない。
PACS−UBはUPCSスペクトルでの使用に適合されているプロトコルである。以下の説明では、PACS−UBプロトコルを使用して本発明を説明する。しかし、UPCSスペクトルで使用可能なプロトコルか、LBTエチケットを使用するプロトコルには、いずれも、本発明の原理が適用されることは当然のことである。このPACS−UBプロトコルは、「ブリンキング・ビーコン」プロトコルを使用することにより、FCCのUPCS要件を満たしている。このことは、通信チャネルを確立できるRPを見つけるために、MT52により使用される「ビーコン」信号をRP54が伝送することを意味する。この「ブリンキング・ビーコン」は、図2に示すPACS−UBハイパーフレームおよびスーパーフレーム構造を用いて達成するのが好ましい。図2は30個の1秒スーパーフレーム202を備えた好ましいPACS−UBハイパーフレーム200を示す。
この編成は、MT52との通信を確立しない限り、RP54は、獲得した周波数を30秒間しか保持できないというFCCの要件を満している。これらスーパーフレーム202は、SBC−SF(system broadcast channel superframe)である。あるタイプのスーパーフレームはアクセス・スーパーフレームと呼ばれている。RPは、チャネルを獲得しようとするとき、アクセス・スーパーフレームをブロードキャストする。図2はアクセス・スーパーフレーム202′を詳細に示す。アクセス・スーパーフレーム202′は4つのフェーズ204、206、208、210に分割されるのが好ましい。これらのフェーズは、
1.アクティブRP54が入呼(incoming call)アラートまたは短いメッセージをMT52に伝送する第1の200ms期間204(フェーズA)と、
2.アクティブRP54がシステムおよび他のサービス情報を伝送する第2の200ms期間206(フェーズB)と、
3.アイドル・ポートが、伝送に供されるチャネルを信号強度に基づいて選択する400ms期間208(フェーズC)と、
4.MT52が、最良信号強度を有するRP54であって、MT(すなわち、このMTは同一システムに属するものである)がアクセス権を有するRP54を選択する第3の200ms期間210(フェーズD)
である。
このエチケットの1つの問題として、多数のRPを有するインプリメンテーションであって、UPCSスペクトルの成功したインプリメンテーションは、これら多数のRPをフレーム同期しなければならないという問題がある。このフレーム同期により、次のような可能性がでてくる。すなわち、10msの間、複数のRPが1つのチャネルを同時にモニタして、1つのチャネルを獲得した結果、許容できないほどの同一チャネル混信(co−channel interference)が発生する可能性がある。同期化された複数のRPが、一度、同一チャネルを獲得すると、これら複数のRPは引き続き同一チャネルを獲得し、当該ポートを相対的に無用にする可能性がある。この問題を克服するために、関連出願では、無線ポートに「スタガ開始」タイムを割り当てることが提案されている。このことは、各RPが近接RPとは異なる時期に周波数サーチを開始することを意味する。したがって、互いに伝送を検出できる複数のRPは、チャネル・サーチを同時に開始するわけではない。よって、隣接ポートの同一チャネル混信の問題が回避される。
LBTエチケットのもう1つの問題を図3および図4を参照して説明する。図3はヒストグラムであって、所定の時間間隔での、UPCSスペクトルにおけるPACS−UBプロトコル・システム例のチャネルのRPの信号レベル測定値を示すヒストグラム300である。PACS−UBは8つの1.25MHzチャネルを、それぞれ、さらに、4つの300kHzシステム・チャネルに分割し、合計32個のチャネルを提供する。閾値レベルThは、あるチャネルがRPに利用可能かどうかを判定するために使用される。この閾値が図3のTh1のような高レベルに設定されている場合、チャネルは非常にノイジー(noisy)なチャネルであり、パフォーマンスがいくらか適正になる。図3において、チャネル2のような比較的ノイジーなチャネルはこの閾値未満である。RPは、自身が遭遇した最初のチャネルであって、混信の閾値レベル未満の最初のチャネルを獲得しなければならないので、チャネル9および11のような非常に静かな(quiet)チャネルが利用可能であっても、チャネル2のようなノイジーなチャネルが獲得される可能性がある。FCCは、最大レベルを、バックグラウンド・ノイズ・レベルより30dBより高く固定しているので、バックグラウンド・ノイズ・レベルはPACS−UBプロトコル・システムでは約−118dBmになる。しかし、RPの伝送パワーを対応する量だけ低減することにより、この最大レベルを最高20dB分だけ上げることができる。
閾値レベルが、非常に低いレベル、例えば、図3に示すTh3に設定されている場合には、非常に静かなチャネルだけが選択されることになる。この低い閾値を満足するチャネルは、存在しても、数が非常に少ないので、RPは利用可能なチャネルを見つけ出せない。図3において、チャネル31のみがTh3レベル未満である。幾つかのRPチャネルがをサーチし、当該RPとほぼ同じ信号レベルを「聞く(hear)」場合、虞らく、このチャネルが獲得されるが、当該RPおよび他のRPに利用可能なチャネルはない。
したがって、Th2のような中間閾値レベルが望ましい。図3において、この閾値レベル未満の少なくとも7つのチャネルが利用可能である。しかし、このレベルでも最適ではない可能性がある。最も静かなチャネルはチャネル9、11、31である。当該RPは閾値未満の最初の利用可能チャネルを獲得することになる。この場合、そのチャネルはチャネル4である。チャネル4は、チャネル9、11、31の約2倍ノイジーであるので、望ましくない。しかも、これらのチャネルの信号レベルは、着呼および発呼により、時間とともに変化する。図3に示す時点では、Th2を好ましい閾値レベルとすることができる。しかし、別の時点では、その時点で測定した信号レベルにとって、異なる閾値レベルの方が良いこともある。
図4はPACS−UBシステム例で32個のチャネルがそれぞれ選択される回数を示すチャート400である。上述したように、LBTプロトコルでは、10ms期間の間に、閾値レベル未満の混信を有すると検出した最初のチャネルを、RPが選択することを要求している。LBTプロトコルでは、RPがその帯域の下位3MHzでそのチャネル・サーチを開始し、利用可能チャネルが見つかるまで上に向かってサーチすることも要求されている。(広帯域システムの場合、帯域の上位3MHzでサーチが始まる。)この2つの要件によって、上位周波数チャネルより最下位周波数チャネルの方が獲得される頻度が高い(広帯域システムの場合は、この逆になる。)。このことを、図4に示す。「ACTUAL」とラベルを付した曲線は、比較的簡単なUPCSシステムでチャネルが獲得される頻度を示している。この曲線は下位チャネルの方が上位チャネルより獲得される頻度が高いことを示している。その結果、システム資源の使用が不充分になる。理想的なチャネル使用分布は、「IDEAL」とラベルを付した線で示してあって、図4に示すように均一である。すなわち、各チャネルは他のチャネルと同じ頻度で獲得され、全ての利用可能チャネルが最大限に利用される。
この理想的な分布に近づくため、閾値レベルを調整して、このシステムの関連条件にとって高すぎたり低すぎたりしない適切なレベルにしなければならない。しかし、このシステムの関連条件は、例えば、RP間隔と、現行UPCSスペクトル用途と、局部伝播条件は、システムごとに変化し、同一システム内でも時間とともに変化する。さらに、最適閾値は、同一システム内のRP間で異なる可能性があり、関連条件が変化するにつれて、時間とともに、各RPごとに変化する可能性がある。したがって、単一システムの場合でも、常に理想に近づくようなチャネル分布を提供する単一閾値を選択することは、困難であるか不可能である。
閾値レベルは、場合によっては、RP伝送パワーに関連する。FCCはUPCSスペクトルで動作する装置の最大伝送パワーを制限している。この最大パワーレベルは伝送帯域幅の平方根に比例する。PACS−UBプロトコルでは、この最大伝送パワーは約17dBmである。FCCは、伝送パワーが対応量だけ最大値未満に下げられた場合は、混信閾値を30dB最大値から上げることを許可している。例えば、混雑していてノイジーな環境では、RPは35dBの混信閾値を必要とすることもある。FCCは、伝送パワーを5dBmだけ下げた場合、混信閾値をこのレベルまで上げることを許可している。したがって、ここで説明しているPACS−UBの例では、最大伝送パワーは12dBmに低減される。
RP間の混信を低減するために、伝送パワーを低減することが好ましいこともある。このことを図5に示す。図5はUPCSシステムを有するビルディング500の1フロアを示す図である。このビルディングは3つの部分、すなわち、高密度のRP54を有するオフィス・スイート502と、中密度のRP54を有する工場04と、低密度のRP54を有する倉庫506を備えている。これらRPの伝送によってサービスエリア(coverage area)508が作成される。これらサービスエリア508は図5に円(または、円の一部)で示す。領域全体がサービスエリア508によって覆われるように、これらRP54を配置するのが好ましい。したがって、ビルディング500内のMTの位置に関らず、MT52はRP54と無線通信することになる。この例では、近接RPによる不要な混信を回避するため、オフィス502内のサービスエリア508は、工場504または倉庫506内のサービスエリアより狭い領域をカバーしている。(RPサービスエリアにギャップが生じないように、カバレッジ(coverage)がある程度重なるのが好ましい)。したがって、オフィス502のRP54の伝送パワーは、工場504または倉庫506内のRP54より低くなる。また、1つの領域内のRP54の伝送パワーは同じである必要はない。例えば、この例の倉庫506では、RP54′の伝送パワーはRP54′′より高い。この場合、混信閾値に影響する条件が変化すると、この条件の変化に適応して、混信閾値が変化する可能性があり、伝送パワーはそれに応じて変化できなければならない。
本発明の第1の目的は混信閾値レベルを適応自律設定する方法を提供することにある。
本発明の第2の目的は、全ての利用可能チャネルを効率的に使用するUPCSシステムを提供することにある。
本発明の第3の目的は伝送パワーレベルを適応自律設定する方法を提供することにある。
発明の要約
このような目的およびその他の目的は、各無線ポートがその混信閾値または伝送パワーレベルを適応自律設定する方法を提供する本発明によって達成される。これは、例えば、RPが各チャネル上で信号レベルを測定し、その測定値に応じて混信閾値またはパワーレベルを設定することによって行うことができる。
好ましい方法では、各チャネル上で信号レベルを測定し、測定された信号レベルの順にチャネルをランク付けし、このようなランク付けを用いて、閾値を決定することにより、混信閾値が決定される。伝送パワーレベルは、適応混信閾値に関連して設定することができる。このレベルは、システムおよびFCCパワー制限と、現行伝播条件とを用いて、満足のいく伝送レベルを提供することによって決定される。
好ましい一実施の形態では、混信閾値を決定するための方程式は、
Th=Min(50,RSSI2+Max(2,RSSI3−RSSI2)−kTB)dB
ただし、
Thは混信閾値、
RSSInは受信信号強度インジケータ(RSSI)によって検出されたランク付きRFエネルギー(例えば、信号レベル)であり、そのランクは最低から最高であり(例えば、RSSI2は2番目に低いRFエネルギーである)、
kTBはバックグラウンド・ノイズ・レベル
のようになっている。
好ましい一方法では、混信閾値に関連して伝送パワーを決定するための方程式は、
TX=Min(+TXMAX,Max(TXmin,TXmax(Th−30)))dB
ただし、
TXは伝送パワー、
TXmaxはFCCが許可する最大伝送パワー、
TXminはシステム依存の最小伝送パワー、
Thは混信閾値
のようになっている。
【図面の簡単な説明】
次の図面を参照して本発明を説明する。
図1は免許不要パーソナル通信システムを示す図である。
図2はPACS−UBシステム例のハイパーフレーム/スーパーフレーム構造を示す図である。
図3はUPCS内のPACS−UBシステム例のチャネルに対する信号レベルを示すヒストグラムである。
図4はスペクトル内のPACS−UBシステム例によって各チャネルが選択される回数を示すチャートである。
図5はUPCSシステムを有するビルディングの1フロアを示す図である。
図6は混信閾値を自主的に決定する好ましい方法の流れ図である。
図7は混信閾値を自主的に決定する好ましい方法を示すタイミング図である。
本特許出願で使用する頭字語の用語集を付録Aとして添付する。
好ましい実施の形態の詳細な説明
本発明は、UPCSシステム内の無線ポートが混信閾値または伝送パワーレベルを適応決定するための方法である。これは、全てのチャネル上で信号強度を測定し、この測定値を使用して閾値またはレベルを決定することによって達成されることが好ましい。
以下の詳細な説明は、UPCSスペクトルで機能するPACS−UBプロトコルに関連する。しかし、本発明はLBTエチケットで使用する他のプロトコルにも同様に適用可能であることは当然のことである。特定の方程式も開示する。この方程式は例であり、本発明の方法を効率的に実施するため、他の方程式も利用可能であることは当然のことである。
A.混信閾値レベルを適応自律決定する方法
上述したように、最適閾値は同一システム内のRPごとに異なる可能性があり、関連条件が変化するにつれて、時間とともに、RPごとに変化する可能性がある。したがって、単一システムでも、常に理想に近づくような周波数分布を提供する単一閾値を選択することは困難であるか不可能である。この問題を解決するため、混信閾値レベルを適応自律決定するための方法を提供する。よって、各RPは、特定の瞬間に、チャネル信号レベルに基づいて、閾値を選ぶことができる。LBTエチケットでは、あるRPが当該帯域内のチャネル上で信号レベルを測定することを要求している。本発明による好ましい方法では、そのRPは、全てのチャネルに対して検出した信号レベルを測定し、このチャネルを検出信号レベル順にランク付けし、この測定値を用いて混信閾値レベルを選択する。この測定値は、チャネル信号レベルを測定するのに用いられるRP内の受信信号強度インジケータ(received signal strength indicator;RSSI)によって取ることができる。
この閾値レベルを選択するための1つの可能な方程式は次のようになっている。
Th=Min(50,RSSI2+Max(2,RSSI3−RSSI2)−kTB)dB
ただし、
Thは混信閾値であり、
RSSInはRSSIによって検出されたランク付き信号レベルであり、そのランクは最低から最高であり(例えば、RSSI2は2番目に静かなチャネルである)、
kTBはバックグラウンド・ノイズ・レベルである。
この方程式は、選択されたレベルが、
(1)2番目に低いチャネルの信号レベルと、
(a)2dB、または
(b)3番目に低いチャネルの信号レベルと2番目に低いチャネルの信号レベルの差のうちの高い方とを加算し、その結果から、バックグラウンド・ノイズ(kTB)を減算した結果か、あるいは、
(2)50dB(伝送パワーを対応する量だけ低減したときに許可されるFCCの最大閾値レベル)からバックグラウンド・ノイズ(kTB)を減算した結果のうちの最低値であることを意味する。当業者にとって当然のことであるが、本発明の目的を達成するために、任意の数の方程式を用いることができる。
各RPは各自が経験した混信条件に対して最適閾値を選択する。この例の閾値は2番目と3番目に静かなチャネル(例えば、2番目および3番目に低い測定RFエネルギーを有するもの)に基づいて選択される。この方程式の場合、測定プロセスの不正確さまたはエラーを補償するため、その閾値は常に2つの最良チャネルに対するレベルより2dB高くなる。3番目の最良チャネルが2番目の最良チャネルのレベルを2dB未満だけ超えた場合、そのレベルは3番目の最良チャネルのレベルまで上げられる。したがって、2つの最も静かなチャネルが3番目に静かなチャネルより非常に静かな(例えば、3dB以上静かである)場合、2番目と3番目に静かなレベルの差が2番目に静かなレベルに加算される。そうではない場合は、2dBという最小量が2番目に静かなレベルに加算される。
図6は混信閾値を決定する本発明の方法を示す流れ図600である。図6では、RPはPACS−UBプロトコルで機能し、上記の関連出願に記載されている「スタガ開始」方法を使用する。この方法は、ハイパーフレーム・タイマを初期設定して開始される(ステップ602)。予め定めた時間で、例えば、そのRPのアクセス・スーパーフレーム・フェーズB206の最後の40msで、そのRPはUPCSスペクトル内の各チャネルの信号レベルを測定する(ステップ604)。32個のチャネルが存在し、しかも、合計40msの間に全てのチャネルが測定される場合、各チャネルは1.25msの間にモニタされる。これら32個の測定値は、そのRPによりその帯域で検出された混信レベルの概要を、そのRPに与える。その測定値を用いて、これらのチャネルは信号レベル順にランク付けされ、閾値混信レベルが決定される(ステップ606)。
一度、閾値混信レベルが決定されると、そのRPは、そのRPに割り当てられたスタガ開始タイムに応じて、決定された閾値を用いて、スーパーフレーム・フェーズCの間に、LBTエチケットを実行する(ステップ608)。LBTエチケット・チャネル・サーチ中に、そのRPはチャネルをモニタして、チャネルが獲得可能かどうかを判定する。10msが満了する前に、そのRPが閾値混信レベルを上回る混信を検出した場合、そのRPはそのチャネルを放棄し次のチャネルをモニタする。10ms期間全体に亘って、そのPRが閾値レベルを上回る混信を検出しない場合、そのRPはそのチャネルを獲得しそのチャネル上に直ちに伝送する。
RFチャネルが獲得されない場合(ステップ610)(例えば、どのチャネルも閾値以下の信号レベルを備えていない場合)、ハイパーフレーム・タイマは満了し(例えば、30秒間)、そのプロセスが再び始まる(ステップ612)。チャネルが獲得された場合(ステップ610)(例えば、閾値以下の信号レベルを有する最初のチャネルをRPが獲得した場合)、そのRPは獲得したチャネル上で伝送(例えば、それがMTにとって利用可能であるという「アドバタイズ」)を開始する(ステップ614)。
ハイパーフレームの終了時に(ステップ616)、そのRPがMTと通信していない場合(ステップ618)、そのRPはそのチャネルを放棄し、そのプロセスを再び開始する。そのRPがMTと通信している場合(ステップ618)、ハイパーフレーム・タイマは、そのRPがMTと通信しなくなるまで、再び初期設定される(ステップ620)。
図7は混信レベルを決定する、本発明の方法を示すタイミング図700である。図7に示すシステムは、PACS−UBプロトコルを用いるn個のRPを有し、関連出願に記載されている「スタガ開始」方法と本発明の方法との両方を実施する。この説明では、スタガ開始タイムが既に割り当てられており、複数のRPが既に動作している。図7には、SBC−SFi 702とSBC−SFi+1704という2つのスーパーフレーム202が図示してある。第1のスーパーフレームSBC−SFi 702では、RP1に第1のスタガ開始インターバルが割り当てられ、RP4に第2のスタガ開始インターバルが割り当てられ、RP2には第3のスタガ開始インターバルが割り当てられ、RP3には第4のスタガ開始インターバルが割り当てられている。RPnには次のスーパーフレームSBC−SFi+1のフェーズC208のスタガ開始が割り当てられている。すなわち、SBC−SFi+1はRPnのアクセス・スーパーフレームである。フェーズB206の終了時には、そのスーパーフレーム202内にそのスタガ開始を有する各RP(例えば、そのアクセス・スーパーフレームとしてこのスーパーフレームを有するRP)は、「Th」706で示すインターバルの間に本発明の方法を実行する。この好ましいPACS−UB例では、Thインターバル706はスーパーフレーム・フェーズB206の最後の40msecである。第1のスタガ開始タイムを有するRP(この場合は、RP1)は、「測定」インターバル710の間に、これらのチャネル上でRFエネルギーを測定することによって、そのチャネル・サーチを開始する。「i」で示す短いアイドルタイム708の後に、スタガ開始タイムを有する他のRPは、それぞれの周波数サーチを開始する。アイドルタイム708はフェーズCの開始からRPのスタガ開始周波数サーチの開始までの時間である。したがって、第1のスタガ開始タイムを有するRPのアイドルタイムはゼロである。「Th」インターバル706の間に決定された適応混信レベルを、そのRPは「測定」インターバル710の間に使用し、第1のチャネルであって、10ms間にモニタされた後、その閾値を超える信号レベルを備えていない第1のチャネルを獲得する。ある周波数が獲得された後、「Xmit」インターバル712の間のMT52との通信に、その獲得された周波数が使用できることを、そのRPは「アドバタイズ」する。各RPは、割り当てられたスタガ開始タイムに従って、「測定」および「Xmit」インターバル710、712をパフォームする。
B.適応自律混信閾値レベルに基づいて伝送パワーを決定する方法
同一領域内に複数の競合システムが存在する応用例では、混信閾値に比例して伝送パワーレベルを低減することが好ましい。これは、競合システムが一斉に「スタガ開始」される可能性がないからである。その結果、直接的なチャネル争奪が起こり、同一チャネル混信が発生する可能性が高くなる。図5では、サービスエリア508間の重なりを最小限にするために、オフィス502内のRPの伝送パワーが低減されている。サービスエリアが縮小されると、そのRPに関連してスタガ開始されないが、チャネル争奪を行っている異なる複数のシステムに近接する複数のRPによる混信が発生する可能性が低くなる。
好ましい一方法では、混信閾値に関連して伝送パワーを決定するための方程式は、
TX=Min(+TXmix,Max(TXmin,TXmax−(Th−30)))dBm
ただし、
TXは伝送パワー、
TXmaxはFCCが許可する最大伝送パワー、
TXminはシステム依存の最小伝送パワー、
ThはRPの混信閾値
のようになっている。
この方程式では、決定された伝送パワーは、
(1)次の(a),(b)、すなわち、
(a)システム依存の最小伝送レベル、または
(b)FCCの最大伝送パワーレベルと、混信閾値が30dBを超える量との差
のうちの大きい方か、
(2)FCCの最大伝送パワーか
のいずれかのうちの小さい方である。
本発明の目的を達成するために、任意の数の方程式を用いることができることは、当業者にとって当然のことである。
本発明は、開示された方法に限定されるものではなく、本発明の範囲の逸脱しない限り、種々の変更、置換、等化、および方法を使用することができる。
付録A
頭字語の用語集:
FCC 米国連邦通信委員会(Federal Communicating Commision)
HLR ホーム・ロケーション・レジスタ(Home Location Register)
LBT リスン・ビフォア・トーク・エチケット(Listen−Before−Talk Etiquitte)
MT 移動端末(Mobile Terminal)
PACS−U 免許不要パーソナル・アクセス通信システム(Unlicensed Personal Access Communication System)
PCS パーソナル通信サービス(Personal Communication Service)
PST 公衆交換電話網(Public Switched Telephone Network)
RP 無線ポート(Radio Port)
RPCU 無線ポート制御ユニット(Radio Port Control Unit)
RSSI 受信信号強度インジケータ(Received Signal Strength Indicator)
SBC−SF システム同報チャネル・スーパーフレーム(System Broadcast Channel Superframes)
UPCS 免許不要パーソナル通信システム(Unlicesed Personal Communication System)

Claims (2)

  1. 複数のチャネルを有し、リスン・ビフォア・トーク・エチケットを用いる通信システムで、無線ポートが混信閾値を自律的に決定する方法において、
    各チャネル上でRFエネルギー・レベルを測定するステップと、
    これらの測定値に基づいて混信閾値を選択するステップと
    を含み、
    前記選択するステップは、次の式、すなわち、
    Th=Min(50,RSSI2+Max(2,RSSI3−RSSI2)−kTB)db
    ただし、
    Th=混信閾値、
    RSSI2=2番目に低い測定RFエネルギー・レベル、
    RSSI3=3番目に低い測定RFエネルギー・レベル、
    kTB=バックグラウンド・ノイズRFエネルギー・レベル
    にしたがって前記混信閾値を選択するステップ
    を備えたことを特徴とする方法。
  2. 複数の無線ポートと複数のチャネルを有し、該複数のチャネルを介して前記無線ポートが伝送することができる無線通信システムにおいて、前記無線チャネルのうちの1つの無線チャネルを選択しその伝送パワーを自律的にセットするための混信閾値を各無線ポートが自律的にセットする方法において、
    前記複数の無線ポートに対する各チャネル上でRF信号レベルを測定するステップと、
    測定したRF信号レベルに基づくとともに、
    Th=Min(50,RSSI2+Max(2,RSSI3−RSSI2)−kTB)db
    ただし、
    Th=混信閾値、
    RSSI2=2番目に低い測定RFエネルギー・レベル、
    RSSI3=3番目に低い測定RFエネルギー・レベル、
    kTB=バックグラウンド・ノイズRFエネルギー・レベル
    にしたがって前記1つの無線ポートに対する前記混信閾値を選択するステップと、
    TX=Min(+TXMAX,Max(TXMIN,TXMAX−(TH−30)))
    ただし、
    TX=決定した伝送パワー、
    TXMAX=最大伝送パワー、
    TXMIN=最小伝送パワー、
    TH=混信閾値
    にしたがって伝送パワーを決定するステップと
    を備えたことを特徴とする方法。
JP52680697A 1996-01-24 1996-03-27 免許不要帯域ポートが自主的に混信閾値とパワー・レベルを決定する方法 Expired - Fee Related JP3561277B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/590,751 US5956638A (en) 1996-01-24 1996-01-24 Method for unlicensed band port to autonomously determine interference threshold and power level
US08/590,751 1996-01-24
PCT/US1996/004276 WO1997027680A1 (en) 1996-01-24 1996-03-27 Method for unlicensed band port to autonomously determine interference threshold and power level

Publications (2)

Publication Number Publication Date
JPH11508106A JPH11508106A (ja) 1999-07-13
JP3561277B2 true JP3561277B2 (ja) 2004-09-02

Family

ID=24363549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52680697A Expired - Fee Related JP3561277B2 (ja) 1996-01-24 1996-03-27 免許不要帯域ポートが自主的に混信閾値とパワー・レベルを決定する方法

Country Status (10)

Country Link
US (1) US5956638A (ja)
EP (1) EP0873600A4 (ja)
JP (1) JP3561277B2 (ja)
KR (1) KR100313467B1 (ja)
CN (1) CN1211358A (ja)
AU (1) AU708295B2 (ja)
CA (1) CA2243202C (ja)
MX (1) MX9805830A (ja)
MY (1) MY113122A (ja)
WO (1) WO1997027680A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675629A (en) 1995-09-08 1997-10-07 At&T Cordless cellular system base station
KR100241780B1 (ko) * 1997-12-16 2000-02-01 윤종용 무선 통신 단말기의 전원 절약 장치
JP3778397B2 (ja) * 1997-12-27 2006-05-24 ソニー株式会社 送信方法、送信電力制御方法及び基地局装置
JP3310209B2 (ja) * 1998-01-28 2002-08-05 株式会社エヌ・ティ・ティ・ドコモ 通信チャネル選択方法および基地局装置
JP2002519888A (ja) * 1998-06-23 2002-07-02 シーメンス アクチエンゲゼルシヤフト 非編成かつ未ライセンスのシステムモードにおける無線遠隔通信システムでのポイント・ツー・マルチポイント接続の出力制御方法
US6807163B1 (en) * 1999-04-01 2004-10-19 Ericsson Inc. Adaptive rate channel scanning method for TDMA wireless communications
US7031274B2 (en) * 2001-01-16 2006-04-18 At&T Corp. Method for enabling interoperability between data transmission systems conforming to IEEE 802.11 and HIPERLAN standards
US20020155811A1 (en) * 2001-04-18 2002-10-24 Jerry Prismantas System and method for adapting RF transmissions to mitigate the effects of certain interferences
US6714605B2 (en) * 2002-04-22 2004-03-30 Cognio, Inc. System and method for real-time spectrum analysis in a communication device
US6760671B1 (en) * 2002-04-09 2004-07-06 Cisco Technology, Inc. Method and apparatus of low power energy detection for a WLAN
US7292656B2 (en) * 2002-04-22 2007-11-06 Cognio, Inc. Signal pulse detection scheme for use in real-time spectrum analysis
US7254191B2 (en) * 2002-04-22 2007-08-07 Cognio, Inc. System and method for real-time spectrum analysis in a radio device
US7809087B2 (en) * 2002-04-26 2010-10-05 Qualcomm, Incorporated Power detection techniques and discrete gain state selection for wireless networking
AU2003234232A1 (en) * 2002-04-26 2003-11-10 Qualcomm, Incorporated Dynamic noise floors in a wireless device
WO2006040608A1 (en) * 2004-10-12 2006-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Early service loss or failure indication in an unlicensed mobile access network
US20060270371A1 (en) * 2005-05-31 2006-11-30 Sugar Gary L Tracking short-term maximum power spectrum density for improved visibility of low duty cycle signals
WO2007134108A2 (en) * 2006-05-09 2007-11-22 Cognio, Inc. System and method for identifying wireless devices using pulse fingerprinting and sequence analysis
US8718561B2 (en) * 2007-11-20 2014-05-06 Aruba Networks, Inc. Method and apparatus for detecting and avoiding interference in a communications network
US9078214B2 (en) 2010-06-16 2015-07-07 Essence Security International Ltd. Adaptive thresholding in a Wake-On-Radio system
US8594121B2 (en) * 2011-04-20 2013-11-26 Qualcomm Incorporated Cognitive radio spectrum sensor employing peak-to-average ratio as the signal feature
US20120311173A1 (en) * 2011-05-31 2012-12-06 Broadcom Corporation Dynamic Wireless Channel Selection And Protocol Control For Streaming Media
US9445278B2 (en) 2014-04-11 2016-09-13 Qualcomm Incorporated Classification-based adaptive transmission in unlicensed spectrum
US9480071B2 (en) 2014-12-10 2016-10-25 Qualcomm Incorporated Intelligent skipping of interfering frequency measurements in UE measurement gaps
CN109716831B (zh) * 2016-09-02 2022-03-04 日本电信电话株式会社 无线通信系统以及无线通信方法
US20210307175A1 (en) * 2017-11-29 2021-09-30 Whoborn, Inc. Communication system including antennas on substrate
CN108513732B (zh) * 2018-01-04 2022-07-01 北京小米移动软件有限公司 数据传输方法、装置及用户设备
KR102656638B1 (ko) 2020-05-15 2024-04-09 조성호 초음파 측정기를 구비한 초음파 세척장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905301A (en) * 1988-07-28 1990-02-27 Motorola, Inc. Selective system scan for multizone radiotelephone subscriber units
JP2748656B2 (ja) * 1990-06-19 1998-05-13 ソニー株式会社 移動無線通信方法
US5204970A (en) * 1991-01-31 1993-04-20 Motorola, Inc. Communication system capable of adjusting transmit power of a subscriber unit
US5203012A (en) * 1992-02-10 1993-04-13 Motorola, Inc. Method and apparatus for optimum channel assignment
US5483669A (en) * 1993-09-09 1996-01-09 Hughes Aircraft Company Dynamic thresholding for mobile assisted handoff in a digital cellular communication system
JP3368439B2 (ja) * 1994-03-17 2003-01-20 富士通株式会社 移動通信システム
WO1996005709A1 (en) * 1994-08-09 1996-02-22 Pacific Communication Sciences, Inc. Method and apparatus for efficient handoffs by mobile communication entities

Also Published As

Publication number Publication date
AU5434796A (en) 1997-08-20
MX9805830A (es) 1998-10-31
KR19990081963A (ko) 1999-11-15
CA2243202C (en) 2001-08-07
KR100313467B1 (ko) 2001-12-12
CN1211358A (zh) 1999-03-17
JPH11508106A (ja) 1999-07-13
AU708295B2 (en) 1999-07-29
US5956638A (en) 1999-09-21
EP0873600A4 (en) 2001-01-17
EP0873600A1 (en) 1998-10-28
MY113122A (en) 2001-11-30
WO1997027680A1 (en) 1997-07-31
CA2243202A1 (en) 1997-07-31

Similar Documents

Publication Publication Date Title
JP3561277B2 (ja) 免許不要帯域ポートが自主的に混信閾値とパワー・レベルを決定する方法
KR100297418B1 (ko) 비전용 개인 휴대 통신 시스템에서 대역 포트 채널들을할당하기 위한 방법
EP0288904B1 (en) Microcellular communications system using macrodiversity
US5491717A (en) Method for controlling transmission during handoff in a communication system
US6584325B1 (en) Subscriber unit and method of cell selection for a cellular communication system
RU2260913C2 (ru) Управление мощностью в системе радиосвязи
JP2893951B2 (ja) 改善されたハンドオーバー決定アルゴリズム
RU2534035C2 (ru) Способ задания мощности передачи в нисходящей линии связи
US6456858B1 (en) System and methods in a dual mode wireless system for transmitting rescan command based on detected network conditions
KR100699714B1 (ko) 셀룰러 통신 시스템에서 통신 리소스들을 시공유하는 방법
US6501947B1 (en) Efficient resource management for packet data services
JP2000125333A (ja) Cdma方式移動通信システム
RU2000110624A (ru) Система и способ управления с помощью мобильного доступа
MX2007009609A (es) Metodo y aparato para procesar paquetes que se originan de conjuntos de servicios basicos locales y vecinos.
EP0872140B1 (en) A method for selecting the way to perform a handover, and a cellular radio system
WO2005004522A1 (en) Uplink interference reduction in wireless communications systems
CA2237597C (en) Method and apparatus for maintaining channel priority in a multiple wireless communication system environment
JP4171745B2 (ja) オーバーリーチ検出方法及びそれを用いた移動機
JP2004015333A (ja) 通信システム、通信方法及び制御装置
JP2833591B2 (ja) 移動無線通信システムにおける干渉軽減方式

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees