JP3561205B2 - Transmission structure of rotational driving force and motor device - Google Patents

Transmission structure of rotational driving force and motor device Download PDF

Info

Publication number
JP3561205B2
JP3561205B2 JP2000086757A JP2000086757A JP3561205B2 JP 3561205 B2 JP3561205 B2 JP 3561205B2 JP 2000086757 A JP2000086757 A JP 2000086757A JP 2000086757 A JP2000086757 A JP 2000086757A JP 3561205 B2 JP3561205 B2 JP 3561205B2
Authority
JP
Japan
Prior art keywords
output
damper
rotation axis
input
side rotator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000086757A
Other languages
Japanese (ja)
Other versions
JP2001271845A (en
Inventor
勝彦 鳥居
博昭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2000086757A priority Critical patent/JP3561205B2/en
Publication of JP2001271845A publication Critical patent/JP2001271845A/en
Application granted granted Critical
Publication of JP3561205B2 publication Critical patent/JP3561205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gear Transmission (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば車両のパワーウィンドウ装置に使用されるモータ装置における回転駆動力の伝達構造と、同回転駆動力の伝達構造を備えたモータ装置に関するものである。
【0002】
【従来の技術】
従来、例えば車両用のサイドガラスを開閉するパワーウィンドウ装置のモータ装置は、図8に示すように、モータ50の図示しない出力軸に固定したウォームがウォームホイール51を回転駆動し、ウォームホイール51がゴムダンパ52を介して出力板53及び出力軸54を回転駆動する構成となっている。ゴムダンパ52を介して回転が伝達されるウォームホイール51と出力板53とは同一の回転軸線上に配置されている。又、ゴムダンパ52は、ウォームホイール51の内側に形成された円環状のダンパ収容部55に収容され、図9に示すように、ウォームホイール51の底板部上面51aと出力板下面53aとによって回転軸線方向に保持されている。ゴムダンパ52は、ウォームホイール51に設けられた係合部56と出力板53に設けられた係合凸部57との間に配置された略扇状の各ダンパ部58からなっている。
【0003】
そして、モータ50が回転動作してサイドガラスが上昇しているとき、サイドガラスが窓枠に当たって上昇が規制されると、出力板53の回転が規制され各ダンパ部58を介してウォームホイール51の回転が規制される。このとき、各ダンパ部58は、回転軸線の周方向に加わる大きな回転駆動力によって同周方向に圧縮され回転軸線方向に膨張するように弾性変形する。このため、モータ50を止めようとする力が各ダンパ部58によって吸収され、モータ50に発生する衝撃が緩衝される。このとき、回転軸線方向に膨張するように弾性変形した各ダンパ部58は、底板部上面51aと出力板下面53aとによって回転軸線方向に支持される。
【0004】
ここで、各ダンパ部58と底板部上面51a及び出力板下面53aとの間の隙間が小さすぎると、各ダンパ部58は回転軸線方向に十分膨張することによって弾性変形できない。このため、各ダンパ部58は、モータ50を止めようとする力を十分に吸収できず、衝撃を十分に緩衝することができなくなる。
【0005】
又、各ダンパ部58が弾性変形すると、その両側面58aが底板部上面51a及び出力板下面53aに圧接する。このため、各ダンパ部58の両側面58aが各面51a,53aに貼り付いた状態となって摩耗が促進される。
【0006】
そこで、上記のモータ装置では、図8,9に示すように、各ダンパ部58の両側面58aに、回転駆動力が加わっていない状態で底板部上面51a及び出力板下面53aに接触しないように各ダンパ部58を支持する突起部58bを一体に設けていた。
【0007】
この場合には、大きな回転駆動力が加わったとき、ダンパ部58は、図10に示すように、突起部58bを除く部分が回転軸線方向に膨張するように弾性変形して底板部上面51a及び出力板下面53aに圧接する。このため、各ダンパ部58が回転軸線方向に十分に膨張するように弾性変形して、モータ50に発生する衝撃を十分緩衝する。同時に、突起部58bを設けていない場合のように両側面58a全体が圧接しないので、両側面58aが各面51a,53aに張り付き難く摩耗が抑制される。
【0008】
【発明が解決しようとする課題】
しかしながら、上記モータ装置では、突起部58bをダンパ部58に一体に形成しているので、使用しているうちに突起部58bが早期に摩耗して高さが低くなる。このため、ダンパ部58の両側面58aのほぼ全体が底板部上面51a及び出力板下面53aに圧接するようになって貼り付き易くなり摩耗が促進される。従って、ゴムダンパ52の寿命を十分に長くすることができなかった。
【0009】
本発明は、上記問題点を解決するためになされたものであって、その目的は、伝達する回転駆動力を緩衝するゴム体の寿命をより長くすることができる回転駆動力の伝達構造、及び、同回転駆動力の伝達構造を備えたモータ装置を提供することにある。
【0010】
【課題を解決するための手段】
上記問題点を解決するため、請求項1に記載の発明は、回転駆動される入力側回転体に対して出力側回転体を同一回転軸線上に配置し、該入力側回転体及び出力側回転体の各支持面によって前記回転軸線方向に支持されたゴム体を介して該入力側回転体から該出力側回転体に回転駆動力を伝達する回転駆動力の伝達構造において、前記入力側回転体及び出力側回転体の支持面には、前記ゴム体を支持する凸状部が設けられ、前記入力側回転体の支持面に形成された前記凸状部に対し、前記出力側回転体の支持面に形成された前記凸状部は、より径の大きな円の円周に沿って前記ゴム体を支持するように形成されていることを特徴とする回転駆動力の伝達構造である。
【0011】
請求項1に記載の発明によれば、入力側回転体が回転駆動されているときに出力側回転体の回転動作が規制されると、ゴム体に対し周方向に大きな力が加わる。すると、ゴム体は周方向に圧縮され回転軸線方向に膨張するように弾性変形する。このとき、ゴム体は、凸状部で支持されている部分以外の部分が膨張するように弾性変形して各支持面に圧接する。このため、ゴム体の回転軸線方向の弾性変形が凸状部によって支持されている部分以外では規制されないので、ゴム体が回転軸線方向に十分に膨張するように弾性変形する。従って、入力側回転体から出力側回転体に伝達される回転駆動力がゴム体によって十分に吸収され、入力側回転体に発生する衝撃が十分に緩衝される。又、ゴム体が凸状部で支持される部分では支持面に圧接されないので、その側面が支持面に張り付き難い。従って、ゴム体の側面の摩耗が促進されない。さらに、凸状部は、ゴム体でなく回転体に形成されているので、長期間に渡って使用されても摩耗しない。従って、ゴム体の両側面の摩耗が長期間に渡って促進されない。また、ゴム体の両側面がそれぞれ凸状部によって支持されるので、ゴム体が両支持面に貼り付き難く両側面の摩耗が促進されない。また、ゴム体の外周部が入力側回転体の支持面側に弾性変形して圧接する。このため、ゴム体の弾性変形に基づく回転軸線方向の付勢力が主に入力側回転体に加わり、出力側回転体には加わり難い。
請求項2に記載の発明は、請求項1に記載の発明において、前記凸状部は、前記回転軸線を中心とする円の円周に沿って前記ゴム体を支持するように形成されていることを特徴とする。
請求項2に記載の発明によれば、請求項1に記載の発明の作用に加えて、ゴム体の側面が回転軸線に対する周方向の全体に渡って支持面に張り付き難いので、側面の摩耗がさらに確実に促進されない。
【0012】
請求項に記載の発明は、モータと、前記モータによって回転駆動される入力側回転体と、前記入力側回転体と同一回転軸線上に配置された出力側回転体と、前記入力側回転体及び出力側回転体の各支持面によって前記回転軸線方向に支持され、該入力側回転体から出力側回転体に回転駆動力を伝達するゴム体とを備えたモータ装置において、前記入力側回転体及び出力側回転体の支持面には、前記ゴム体を支持する凸状部が設けられ、前記入力側回転体の支持面に形成された前記凸状部に対し、前記出力側回転体の支持面に形成された前記凸状部は、より径の大きな円の円周に沿って前記ゴム体を支持するように形成されていることを特徴とするモータ装置である。
【0013】
請求項に記載の発明によれば、モータの回転駆動力をゴム体を介して出力側回転体に出力するモータ装置において、ゴム体の両側面の摩耗が長期間に渡って促進されない。また、ゴム体の両側面がそれぞれ凸状部によって支持されるので、ゴム体が両支持面に貼り付き難く両側面の摩耗が促進されない。また、ゴム体の外周部が入力側回転体の支持面側に弾性変形して圧接する。このため、ゴム体の弾性変形に基づく回転軸線方向の付勢力が主に入力側回転体に加わり、出力側回転体には加わり難い。
【0016】
請求項4に記載の発明は、請求項3に記載の発明において、前記凸状部は、前記回転軸線を中心とする円の円周に沿って前記ゴム体を支持するように形成されていることを特徴とする。
【0017】
請求項4に記載の発明によれば、請求項3に記載の発明の作用に加えて、ゴム体の側面が回転軸線に対する周方向の全体に渡って支持面に張り付き難いので、側面の摩耗がさらに確実に促進されない。
【0020】
【発明の実施の形態】
以下、本発明を車両用パワーウィンドウ装置のモータ装置に具体化した一実施形態を図1〜図5に従って説明する。
【0021】
図1に示すように、モータ装置1は、モータ本体10及び減速部11から構成されている。モータ本体10の図示しない出力軸は、減速部11側に延出されている。減速部11は、ハウジング12、ウォームホイール13、ゴムダンパ14、出力板15、出力軸16及び蓋17等から構成されている。
【0022】
ハウジング12は合成樹脂で一体成形され、モータ固定部12a、ウォーム収容部12b及びホイール収容部12cを備えている。
モータ固定部12aには前記モータ本体10が固定され、その出力軸がウォーム収容部12bの内部に延出されている。この出力軸には図示しないウォームギヤが固定され、ウォームギヤはその一部がホイール収容部12c内に配置されている。
【0023】
ホイール収容部12cは略有底筒状に形成され、その底板部上面における中央に円筒状の軸支持部18が形成されている。軸支持部18には、その軸線方向に貫通する軸孔18aが形成されている。又、ホイール収容部12cの底板部上面には、回転軸線を中心とする円の円周に沿って複数の凸状支持部19が等角度間隔に形成されている。凸状支持部19は、前記ウォームホイール13を支持するために形成されている。ホイール収容部12cには、ウォームホイール13が収容されている。
【0024】
ウォームホイール13は合成樹脂で略有底筒状に一体成形され、その外周面には前記ウォームギヤが歯合するギヤ部20が形成されている。ウォームホイール13の中央には、前記軸支持部18が挿通可能な軸孔21が形成されている。ギヤ部20と軸孔21との間には、前記ゴムダンパ14を収容する円環状のダンパ収容部22が設けられている。ダンパ収容部22の底板部上面13aには、3つの係合部23が形成されている。各係合部23は、ダンパ収容部22の外周側の周面から回転軸線の径方向に内周側に延びるように等角度間隔に形成されている。各係合部23は等角度間隔に形成され、ダンパ収容部22をそれぞれ略扇状の3つの部分に区画している。又、ダンパ収容部22の底板部上面には、図2に示すように、回転軸線を中心とする円の円周に沿って延びる凸状部としての突条部24が形成されている。そして、ウォームホイール13は、その軸孔21に軸支持部18が挿通し、その底板部下面に各凸状支持部19が当接するとともにギヤ部20がウォームギヤに歯合した状態で回転可能にホイール収容部12cに収容されている。ダンパ収容部22には、ゴムダンパ14が収容されている。
【0025】
図1に示すように、ゴムダンパ14は一体成形され、略扇状に形成された6つのダンパ部25が、その内周側で連結部25aによって環状に連結されている。各ダンパ部25は同一厚さに形成されている。そして、ゴムダンパ14は、隣り合う2つのダンパ部25同士が、各係合部23で区画された各部分にそれぞれ収容された状態でダンパ収容部22に収容されている。
【0026】
このとき、ゴムダンパ14は、図4に示すように、各ダンパ部25が、その径方向におけるほぼ中央に当接する前記突条部24によって、底板部上面13aに接触しないように支持される。即ち、各ダンパ部25は、突条部24により、回転軸線を中心とする円の円周に沿って連続して支持される。ゴムダンパ14の上には前記出力板15が配置されている。
【0027】
図1に示すように、出力板15は金属板で略円板状に形成され、その中央には前記出力軸16が固定される軸嵌合部26が形成されている。出力板15の下面15aには、ダンパ収容部22において隣り合う両係合部23で区画された両ダンパ部25の間の隙間に係合するそれぞれ3つの係合凸部27が等角度間隔に形成されている。又、出力板下面15aには、図3に示すように、回転軸線を中心とする円に沿って延びる凸状部としての突条部28が形成されている。この各突条部28は、図4に示すように、ウォームホイール13の底板部上面13aに形成された前記各突条部24よりも径の大きな円の円周に沿って延びるように形成されている。そして、出力板15は、その突条部28を各ダンパ部25の上面に当接させるとともに、各係合凸部27を対応する両ダンパ部25間の隙間に係合させた状態でウォームホイール13に収容されている。
【0028】
このとき、ゴムダンパ14の各ダンパ部25は、突条部28によって出力板下面15aに接触しないように支持される。即ち、各ダンパ部25は、突条部28により、回転軸線を中心とする円の円周に沿ってそれぞれ連続して支持される。従って、ゴムダンパ14の各ダンパ部25は、ウォームホイール13の底板部上面13aに設けられた突条部24と、出力板15の下面15aに設けられた突条部28とよって、回転駆動力が加わっていない自然状態で上面13a及び下面15aに対し共に接触しないように回転軸線方向に支持されている。出力板15の軸嵌合部26には、前記出力軸16が軸支持部18の軸孔18aを貫通して嵌合されている。
【0029】
出力軸16は、その軸部29の上端に軸嵌合部26に嵌合する嵌合部30を備え、軸部29の下部にギヤ部31を備えている。ギヤ部31は、図示しないウィンドウレギュレータの駆動側ギヤ部に歯合される。そして、出力軸16は、軸支持部18の軸孔18aに軸部29を回転可能に貫通させ、嵌合部30を出力板15の軸嵌合部26に一体回転可能に嵌合させた状態でホイール収容部12cに支持されている。出力軸16は、軸嵌合部26から上に突出する嵌合部30の上端に設けられた係合溝30aに係合されるEリング32によって、軸嵌合部26及び軸孔18aから抜けないように固定されている。尚、出力軸16には、軸部29とギヤ部31との間に、軸部29と軸孔18aとの間を密封するOリング33が装着されている。
【0030】
前記蓋17は、ホイール収容部12cの上側開口部を覆った状態で前記ハウジング12に固定されている。
次に、以上のように構成されたモータ装置の作用について説明する。
【0031】
サイドガラスを上昇させているときにサイドガラスが窓枠に当たって移動が規制されるとウィンドウレギュレータを介して出力軸16及び出力板15の動作が規制される。このとき、ウォームホイール13の各係合部23によって出力板15の各係合凸部27に押し当てられていた各ダンパ部25に加わる周方向の力が急激に大きくなる。すると、各ダンパ部25は周方向に圧縮され回転軸線方向に膨張するように弾性変形する。
【0032】
このとき、各ダンパ部25は、各突条部24,28で支持されている部分以外の部分で膨張するように回転軸線方向に弾性変形する。このため、各ダンパ部58の回転軸線方向の弾性変形が各突条部24,28で支持されている部分以外では規制されないので、各ダンパ部25が回転軸線方向に十分膨張するように弾性変形する。従って、ウォームホイール13から出力板15に伝達される回転駆動力が各ダンパ部58によって十分に吸収され、モータ本体10側に発生する衝撃が十分に緩衝される。
【0033】
又、各ダンパ部25は各突条部24,28で支持されている部分ではその両側面25bがそれぞれ底板部上面13a及び出力板下面15aに圧接しないので、両側面25bが各面13a,15aに張り付き難い。従って、各ダンパ部25の両側面25bの摩耗が促進されない。
【0034】
さらに、突条部24は合成樹脂からなるウォームホイール13に一体に形成され、突条部28は金属板から形成された出力板15に一体に形成されているので、長期間に渡って使用されて摩耗しない。従って、各ダンパ部25の両側面25bの摩耗が長期間に渡って促進されない。
【0035】
加えて、各ダンパ部25の側面25bが回転軸線に対する周方向の全体に渡って各面13a,15aに張り付き難いので、側面25bの摩耗がより確実に促進されない。
【0036】
さらに、各ダンパ部25の外周部がウォームホイール13の底板部上面13aに圧接するので、各ダンパ部25の弾性変形に基づく回転軸線方向の付勢力が主にウォームホイール13に加わり、出力板15には加わり難い。
【0037】
以上詳述した本実施形態によれば、以下に記載する各効果を得ることができる。
(1) 本実施形態では、ゴムダンパ14を、底板部上面13aに形成した突条部24と出力板下面15aに形成した突条部28とで回転軸線方向に支持した。従って、各ダンパ部25の両側面25bが底板部上面13a及び出力板下面15aに張り付き難く、その摩耗が促進されない。又、各突条部24,28が摩耗しないので、各ダンパ部25の摩耗が長期間に渡って促進されない。その結果、ゴムダンパ14の寿命を従来より長くすることができる。
【0038】
(2) 加えて本実施形態では、底板部上面13aに突条部24を設けるとともに出力板下面15aに突条部を設けた。従って、各ダンパ部25の両側面25bが共に底板部上面13a及び出力板下面15aに張り付き難く、その摩耗が促進されない。
【0039】
(3) 加えて本実施形態では、各突条部24,28が、回転軸線を中心とする円の円周に沿って連続して各ダンパ部25を支持するようにした。従って、各ダンパ部25の側面25bが回転軸線に対し周方向の全体に渡って各面13a,15aに張り付き難く、その摩耗がより確実に促進されない。
【0040】
(4) 加えて本実施形態では、回転軸線を中心とする円の円周に沿って延びるように底板部上面13aに形成した突条部24に対し、径のより大きな円の円周に沿って延びるように出力板下面15aに突条部28を形成した。従って、各ダンパ部25の外周部が底板部上面13aに圧接するので、各ダンパ部25の弾性変形に基づく回転軸線方向の付勢力が主にウォームホイール13に加わり、出力板15には加わり難い。その結果、Eリング32が外れる可能性が非常に小さくなり、出力軸16及び出力板15が脱落する可能性を非常に小さくすることができる。
【0041】
(5) 加えて本実施形態では、突条部24をウォームホイール13に一体に形成し、突条部28を出力板15に一体に形成したので、部品点数及び組立工数が増えない。
【0042】
以下、上記実施形態以外の発明の実施形態を別例として列挙する。
・ 上記実施形態では、回転軸線を中心とする円の円周に沿って延びる突条部24,28によって各ダンパ部25を回転軸線に対し円周に沿ってそれぞれ支持するようにした。これを、円周に沿って配列するように複数形成され、それぞれが1点でダンパ部25を支持する凸状部によって各ダンパ部25をそれぞれ円周に沿って支持するようにしてもよい。又は、円周に沿って延び、各ダンパ部25を周方向に連続しない状態で支持する1つ以上の突条部によって各ダンパ部25をそれぞれ円周に沿って支持するようにしてもよい。この各場合においても、各ダンパ部25が周方向に全体に渡って各面13a,15aに張り付き難く、その摩耗が促進されない。
【0043】
・ 上記実施形態では、底板部上面13a及び出力板下面15aに、それぞれ1つの円周に沿って突条部24,28を形成したが、図6に示すように、例えば径が異なる2つの円の円周に沿って突条部24a,24b、28a,28bをそれぞれ形成してもよい。この場合には、各ダンパ部25の両側面25bが周方向の全体に渡ってより確実に各面13a,15aに張り付き難いので、その摩耗がより確実に促進されないようにすることができる。
【0044】
・ 上記実施形態では、各突条部24,28を回転軸線を中心軸線とする円の円周に沿って周方向に延びるように形成したが、図7(a),(b)に示すように、複数の渦巻き状に形成され、周方向及び径方向に共に延びる突条部24c,28cとしてもよい。この場合にも、各ダンパ部25の両側面25bが各面13a,15aに張り付き難いようにし、その摩耗が促進されないようにすることができる。
【0045】
・ 上記実施形態では、回転軸線を中心とする円の円周に沿って延びる突条部24,28によって各ダンパ部25をそれぞれ円周に沿って支持するようにした。これを、同一の円周上に配列されず、各ダンパ部25を点で支持する複数の凸状部によって各ダンパ部25を支持するようにしてもよい。この場合にも、各ダンパ部25が各面13a,15aに張り付き難いようにし、その摩耗が促進されないようにすることができる。
【0046】
・ 上記実施形態では、底板部上面13a及び出力板下面15aにそれぞれ突条部24,28を設けたが、両面13a,15aのいずれか一方にのみ設けるとともに、突条部を設けていない側の各ダンパ部25の側面25bには従来技術に記載した突起部58bを設けてもよい。この場合にも、ゴムダンパ14の寿命を従来より長くすることができる。
【0047】
・ 上記実施形態では、各突条部24,28をそれぞれウォームホイール13及び出力板15に一体に設けたが、各突条部24,28を別体で形成し、ウォームホイール13及び出力板15に接着等の手段で組み付けてもよい。
【0048】
・ 上記実施形態では、車両用パワーウィンドウ装置のモータ装置1における回転駆動力の伝達構造に実施したが、その他車両用パワードア開閉装置、パワールーフ開閉装置等のモータ装置に実施してもよい。
【0049】
以下、前述した各実施形態から把握される技術的思想をその効果とともに記載する。
記凸状部は、前記支持面に一体に形成されているモータ装置。このような構成によれば、部品点数及び組立工数が増えない。
【0050】
記凸状部は、前記入力側回転体及び出力側回転体の前記各支持面にそれぞれ設けられている回転駆動力の伝達構造。このような構成によれば、ゴム体の両側面からの摩耗が促進されない。
【0051】
記凸状部は、前記回転軸線を中心とする円の円周に沿って前記ゴム体を支持するように形成されている回転駆動力の伝達構造。このような構成によれば、ゴム体の摩耗がより確実に促進されない。
【0052】
記入力側回転体の支持面に形成された前記凸状部に対し、前記出力側回転体の支持面に形成された前記凸状部は、より径の大きな円の円周に沿って前記ゴム体を支持するように形成されている回転駆動力の伝達構造。このような構成によれば、出力回転体に対し回転軸方向の力が加わり難い。
【0053】
記凸状部は、前記支持面に一体に形成されている回転駆動力の伝達構造。このような構成によれば、部品点数及び組立工数が増えない。
【0054】
【発明の効果】
請求項に記載の発明によれば、伝達する回転駆動力を緩衝するゴム体の摩耗が長期間に渡って促進されないので、ゴム体の寿命をより長くすることができる。
【図面の簡単な説明】
【図1】本実施形態のモータ装置を示す分解斜視図。
【図2】ウォームホイールの平面図。
【図3】出力板の平面図。
【図4】ウォームホイール、ゴムダンパ及び出力板の縦断面図。
【図5】作動状態のダンパ部を示す要部縦断面図。
【図6】他の実施形態での作動状態のダンパ部を示す要部縦断面図。
【図7】(a)他の実施形態の凸状部を備えたウォームホイールの平面図、(b)同じく出力板の平面図。
【図8】従来のモータ装置を示す分解斜視図。
【図9】ウォームホイール、ゴムダンパ及び出力板の縦模式断面図。
【図10】作動状態のダンパ部を示す縦断面図。
【符号の説明】
10…モータ装置、12…モータ、13…入力側回転体としてのウォームホイール、13a…支持面としての底板部上面、14…ゴム体としてのゴムダンパ、15…出力側回転体としての出力板、15a…支持面としての出力板下面、24…凸状部としての突条部、28…凸状部としての突条部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotational drive force transmitting structure in a motor device used for, for example, a power window device of a vehicle, and a motor device including the rotational drive force transmitting structure.
[0002]
[Prior art]
Conventionally, for example, in a motor device of a power window device for opening and closing a side glass for a vehicle, as shown in FIG. 8, a worm fixed to an output shaft (not shown) of a motor 50 drives a worm wheel 51 to rotate, and the worm wheel 51 is a rubber damper. An output plate 53 and an output shaft 54 are rotatably driven via 52. The worm wheel 51 to which the rotation is transmitted via the rubber damper 52 and the output plate 53 are arranged on the same rotation axis. The rubber damper 52 is accommodated in an annular damper accommodating portion 55 formed inside the worm wheel 51. As shown in FIG. 9, a rotation axis is formed by a bottom plate upper surface 51a of the worm wheel 51 and an output plate lower surface 53a. Is held in the direction. The rubber damper 52 includes substantially fan-shaped damper portions 58 disposed between an engaging portion 56 provided on the worm wheel 51 and an engaging convex portion 57 provided on the output plate 53.
[0003]
When the motor 50 rotates and the side glass rises, when the side glass hits the window frame and the rise is regulated, the rotation of the output plate 53 is regulated and the rotation of the worm wheel 51 is controlled via each damper part 58. Be regulated. At this time, each damper portion 58 is elastically deformed so as to be compressed in the same circumferential direction by a large rotational driving force applied in the circumferential direction of the rotation axis and expanded in the rotation axis direction. For this reason, the force for stopping the motor 50 is absorbed by each damper portion 58, and the shock generated in the motor 50 is buffered. At this time, each damper portion 58 elastically deformed so as to expand in the rotation axis direction is supported in the rotation axis direction by the bottom plate upper surface 51a and the output plate lower surface 53a.
[0004]
Here, if the gap between each damper part 58 and the bottom plate part upper surface 51a and the output plate lower surface 53a is too small, each damper part 58 cannot be elastically deformed because it expands sufficiently in the rotation axis direction. For this reason, each damper part 58 cannot fully absorb the force for stopping the motor 50, and cannot sufficiently absorb the impact.
[0005]
When each damper portion 58 is elastically deformed, both side surfaces 58a are pressed against the bottom plate portion upper surface 51a and the output plate lower surface 53a. Therefore, both sides 58a of each damper portion 58 are stuck to the respective surfaces 51a and 53a, and wear is promoted.
[0006]
Therefore, in the above-described motor device, as shown in FIGS. 8 and 9, both the side surfaces 58 a of each damper portion 58 are not brought into contact with the bottom plate portion upper surface 51 a and the output plate lower surface 53 a in a state where no rotational driving force is applied. The projections 58b for supporting the respective damper portions 58 are provided integrally.
[0007]
In this case, when a large rotational driving force is applied, as shown in FIG. 10, the damper portion 58 is elastically deformed so that portions other than the protruding portion 58b expand in the rotational axis direction, and the bottom plate portion upper surface 51a and It comes into pressure contact with the output plate lower surface 53a. For this reason, each damper portion 58 is elastically deformed so as to expand sufficiently in the direction of the rotation axis, and the shock generated in the motor 50 is sufficiently buffered. At the same time, since the entire side surfaces 58a are not pressed against each other as in the case where the projection 58b is not provided, the side surfaces 58a are unlikely to stick to the respective surfaces 51a and 53a, and wear is suppressed.
[0008]
[Problems to be solved by the invention]
However, in the above-mentioned motor device, since the projection 58b is formed integrally with the damper section 58, the projection 58b wears out early during use, and its height is reduced. For this reason, almost all of the both side surfaces 58a of the damper portion 58 come into pressure contact with the bottom plate portion upper surface 51a and the output plate lower surface 53a, so that they are easily stuck and wear is promoted. Therefore, the life of the rubber damper 52 cannot be sufficiently extended.
[0009]
The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a rotational driving force transmission structure capable of extending the life of a rubber body that buffers the transmitted rotational driving force, and Another object of the present invention is to provide a motor device having the same rotational driving force transmission structure.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 arranges an output-side rotating body on the same rotation axis with respect to an input-side rotating body that is driven to rotate, so that the input-side rotating body and the output-side rotating body are arranged. A rotational driving force transmission structure for transmitting rotational driving force from the input-side rotator to the output-side rotator via a rubber member supported in the rotation axis direction by each support surface of the body; A convex portion for supporting the rubber body is provided on each support surface of the output-side rotator, and the output-side rotator has a convex portion formed on the support surface of the input-side rotator. The convex portion formed on the support surface is formed so as to support the rubber body along the circumference of a circle having a larger diameter .
[0011]
According to the first aspect of the invention, when the rotation of the output-side rotator is restricted while the input-side rotator is being driven to rotate, a large force is applied to the rubber body in the circumferential direction. Then, the rubber body is elastically deformed so as to be compressed in the circumferential direction and expanded in the direction of the rotation axis. At this time, the rubber body is elastically deformed so as to expand a portion other than the portion supported by the convex portion, and is brought into pressure contact with each support surface. For this reason, since the elastic deformation of the rubber body in the rotation axis direction is not restricted except at the portion supported by the convex portion, the rubber body is elastically deformed so as to expand sufficiently in the rotation axis direction. Therefore, the rotational driving force transmitted from the input-side rotating body to the output-side rotating body is sufficiently absorbed by the rubber body, and the shock generated on the input-side rotating body is sufficiently buffered. In addition, since the rubber body is not pressed against the support surface at the portion supported by the convex portion, the side surface hardly sticks to the support surface. Therefore, wear on the side surface of the rubber body is not promoted. Furthermore, since the convex portion is formed on the rotating body instead of the rubber body, it does not wear even if used for a long period of time. Therefore, wear on both sides of the rubber body is not promoted for a long time. Further, since both side surfaces of the rubber body are supported by the convex portions, the rubber body is hardly stuck to both support surfaces, and wear on both side surfaces is not promoted. Further, the outer peripheral portion of the rubber body is elastically deformed and pressed against the support surface side of the input-side rotating body. For this reason, the urging force in the rotation axis direction based on the elastic deformation of the rubber body is mainly applied to the input side rotating body, and is hardly applied to the output side rotating body.
According to a second aspect of the present invention, in the first aspect, the convex portion is formed so as to support the rubber body along a circumference of a circle centered on the rotation axis. It is characterized by the following.
According to the second aspect of the invention, in addition to the operation of the first aspect, the side surface of the rubber body is unlikely to stick to the support surface over the entire circumferential direction with respect to the rotation axis, so that the side surface wear is reduced. Not surely promoted.
[0012]
According to a third aspect of the present invention, there is provided a motor, an input-side rotator rotationally driven by the motor, an output-side rotator disposed on the same rotation axis as the input-side rotator, and the input-side rotator. A rubber member that is supported in the direction of the rotation axis by each support surface of the output-side rotator, and that transmits a rotational driving force from the input-side rotator to the output-side rotator. A convex portion for supporting the rubber body is provided on each support surface of the output-side rotator, and the output-side rotator has a convex portion formed on the support surface of the input-side rotator. The motor device is characterized in that the convex portion formed on the support surface is formed so as to support the rubber body along the circumference of a circle having a larger diameter .
[0013]
According to the third aspect of the present invention, in the motor device that outputs the rotational driving force of the motor to the output side rotating body via the rubber body, the abrasion on both side surfaces of the rubber body is not promoted for a long time. Further, since both side surfaces of the rubber body are supported by the convex portions, the rubber body is hardly stuck to both support surfaces, and wear on both side surfaces is not promoted. Further, the outer peripheral portion of the rubber body is elastically deformed and pressed against the support surface side of the input-side rotating body. For this reason, the urging force in the rotation axis direction based on the elastic deformation of the rubber body is mainly applied to the input side rotating body, and is hardly applied to the output side rotating body.
[0016]
According to a fourth aspect of the present invention, in the third aspect of the invention, the convex portion is formed to support the rubber body along a circumference of a circle centered on the rotation axis. It is characterized by the following.
[0017]
According to the invention described in claim 4, in addition to the effect of the invention described in claim 3 , in addition to the fact that the side surface of the rubber body is unlikely to stick to the support surface over the entire circumferential direction with respect to the rotation axis, wear of the side surface is reduced. Not surely promoted.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is embodied in a motor device of a power window device for a vehicle will be described with reference to FIGS.
[0021]
As shown in FIG. 1, the motor device 1 includes a motor main body 10 and a speed reduction unit 11. An output shaft (not shown) of the motor main body 10 extends to the speed reduction unit 11 side. The reduction section 11 includes a housing 12, a worm wheel 13, a rubber damper 14, an output plate 15, an output shaft 16, a lid 17, and the like.
[0022]
The housing 12 is integrally formed of a synthetic resin, and includes a motor fixing portion 12a, a worm housing portion 12b, and a wheel housing portion 12c.
The motor main body 10 is fixed to the motor fixing portion 12a, and its output shaft extends inside the worm housing portion 12b. A worm gear (not shown) is fixed to the output shaft, and a part of the worm gear is disposed in the wheel housing 12c.
[0023]
The wheel accommodating portion 12c is formed in a substantially cylindrical shape with a bottom, and a cylindrical shaft support portion 18 is formed at the center of the upper surface of the bottom plate portion. The shaft support portion 18 has a shaft hole 18a penetrating in the axial direction. On the upper surface of the bottom plate portion of the wheel accommodating portion 12c, a plurality of convex support portions 19 are formed at equal angular intervals along the circumference of a circle centered on the rotation axis. The convex support 19 is formed to support the worm wheel 13. The worm wheel 13 is housed in the wheel housing 12c.
[0024]
The worm wheel 13 is integrally formed of a synthetic resin into a substantially cylindrical shape with a bottom, and a gear portion 20 with which the worm gear meshes is formed on the outer peripheral surface. A shaft hole 21 through which the shaft support 18 can be inserted is formed in the center of the worm wheel 13. An annular damper accommodating portion 22 for accommodating the rubber damper 14 is provided between the gear portion 20 and the shaft hole 21. Three engagement portions 23 are formed on the bottom plate upper surface 13 a of the damper housing 22. The engaging portions 23 are formed at equal angular intervals so as to extend from the outer peripheral surface of the damper housing 22 to the inner peripheral side in the radial direction of the rotation axis. The engaging portions 23 are formed at equal angular intervals, and divide the damper accommodating portion 22 into three substantially fan-shaped portions. Further, on the upper surface of the bottom plate portion of the damper accommodating portion 22, as shown in FIG. 2, a ridge portion 24 is formed as a convex portion extending along the circumference of a circle centered on the rotation axis. The worm wheel 13 is rotatable in a state where the shaft support portion 18 is inserted into the shaft hole 21, each convex support portion 19 abuts on the bottom surface of the bottom plate portion, and the gear portion 20 meshes with the worm gear. It is housed in the housing 12c. The rubber damper 14 is housed in the damper housing 22.
[0025]
As shown in FIG. 1, the rubber damper 14 is integrally formed, and six substantially fan-shaped damper portions 25 are annularly connected by a connecting portion 25a on the inner peripheral side. Each damper part 25 is formed in the same thickness. The rubber damper 14 is accommodated in the damper accommodating portion 22 in a state where two adjacent damper portions 25 are accommodated in respective portions partitioned by the respective engaging portions 23.
[0026]
At this time, as shown in FIG. 4, the rubber damper 14 is supported such that each damper portion 25 does not contact the upper surface 13a of the bottom plate portion by the protruding ridge portion 24 which abuts substantially the center in the radial direction. That is, each damper part 25 is continuously supported by the ridge 24 along the circumference of a circle centered on the rotation axis. The output plate 15 is disposed on the rubber damper 14.
[0027]
As shown in FIG. 1, the output plate 15 is formed in a substantially disc shape by a metal plate, and a shaft fitting portion 26 to which the output shaft 16 is fixed is formed at the center. On the lower surface 15 a of the output plate 15, three engagement projections 27 that engage with the gap between the two damper portions 25 defined by the two adjacent engagement portions 23 in the damper housing portion 22 are provided at equal angular intervals. Is formed. As shown in FIG. 3, a ridge portion 28 is formed on the lower surface 15a of the output plate as a convex portion extending along a circle centered on the rotation axis. As shown in FIG. 4, each of the ridges 28 is formed so as to extend along the circumference of a circle having a diameter larger than that of each of the ridges 24 formed on the bottom plate upper surface 13a of the worm wheel 13. ing. The output plate 15 has a worm wheel in a state where the protruding ridges 28 are brought into contact with the upper surfaces of the respective damper portions 25 and the respective engaging convex portions 27 are engaged with the gaps between the corresponding damper portions 25. 13.
[0028]
At this time, each damper portion 25 of the rubber damper 14 is supported by the ridge 28 so as not to contact the output plate lower surface 15a. That is, each of the damper portions 25 is continuously supported by the protrusions 28 along the circumference of a circle centered on the rotation axis. Accordingly, each of the damper portions 25 of the rubber damper 14 has a rotational driving force due to a ridge portion 24 provided on the bottom plate upper surface 13 a of the worm wheel 13 and a ridge portion 28 provided on the lower surface 15 a of the output plate 15. It is supported in the direction of the rotation axis so that the upper surface 13a and the lower surface 15a do not come into contact with each other in a natural state where they are not applied. The output shaft 16 is fitted into the shaft fitting portion 26 of the output plate 15 through a shaft hole 18 a of the shaft support 18.
[0029]
The output shaft 16 includes a fitting portion 30 fitted to the shaft fitting portion 26 at the upper end of the shaft portion 29, and a gear portion 31 below the shaft portion 29. The gear portion 31 is meshed with a drive-side gear portion of a window regulator (not shown). The output shaft 16 is in a state where the shaft portion 29 is rotatably penetrated through the shaft hole 18 a of the shaft support portion 18, and the fitting portion 30 is fitted to the shaft fitting portion 26 of the output plate 15 so as to be integrally rotatable. At the wheel accommodating portion 12c. The output shaft 16 is disengaged from the shaft fitting portion 26 and the shaft hole 18a by an E-ring 32 engaged with an engagement groove 30a provided at the upper end of the fitting portion 30 projecting upward from the shaft fitting portion 26. Not fixed. The output shaft 16 is provided with an O-ring 33 between the shaft portion 29 and the gear portion 31 for sealing between the shaft portion 29 and the shaft hole 18a.
[0030]
The lid 17 is fixed to the housing 12 so as to cover the upper opening of the wheel housing 12c.
Next, the operation of the motor device configured as described above will be described.
[0031]
When the side glass hits the window frame and its movement is restricted while the side glass is raised, the operations of the output shaft 16 and the output plate 15 are restricted via the window regulator. At this time, the circumferential force applied to each damper portion 25 pressed against each engagement protrusion 27 of the output plate 15 by each engagement portion 23 of the worm wheel 13 sharply increases. Then, each damper part 25 is elastically deformed so as to be compressed in the circumferential direction and expanded in the rotation axis direction.
[0032]
At this time, each damper part 25 is elastically deformed in the direction of the rotation axis so as to expand at a part other than the part supported by the ridges 24 and 28. For this reason, since the elastic deformation of each damper portion 58 in the direction of the rotation axis is not restricted except at the portions supported by the ridges 24 and 28, the elastic deformation is performed so that each damper portion 25 expands sufficiently in the direction of the rotation axis. I do. Therefore, the rotational driving force transmitted from the worm wheel 13 to the output plate 15 is sufficiently absorbed by each damper portion 58, and the shock generated on the motor body 10 side is sufficiently buffered.
[0033]
In addition, since the both side surfaces 25b of the damper portions 25 are not pressed against the bottom plate upper surface 13a and the output plate lower surface 15a at the portions supported by the ridges 24 and 28, the both side surfaces 25b are connected to the respective surfaces 13a and 15a. Hard to stick to. Therefore, abrasion of both side surfaces 25b of each damper portion 25 is not promoted.
[0034]
Further, the ridge portion 24 is formed integrally with the worm wheel 13 made of a synthetic resin, and the ridge portion 28 is formed integrally with the output plate 15 formed of a metal plate. No wear. Therefore, abrasion of both side surfaces 25b of each damper portion 25 is not promoted for a long period of time.
[0035]
In addition, since the side surface 25b of each damper part 25 is hard to stick to each surface 13a, 15a over the entire circumference in the circumferential direction with respect to the rotation axis, wear of the side surface 25b is not more reliably promoted.
[0036]
Further, since the outer peripheral portion of each damper portion 25 is pressed against the upper surface 13a of the bottom plate portion of the worm wheel 13, the urging force in the rotation axis direction based on the elastic deformation of each damper portion 25 is mainly applied to the worm wheel 13, and the output plate 15 It is hard to join.
[0037]
According to the embodiment described above, the following effects can be obtained.
(1) In the present embodiment, the rubber damper 14 is supported in the rotational axis direction by the ridges 24 formed on the bottom plate upper surface 13a and the ridges 28 formed on the output plate lower surface 15a. Therefore, both side surfaces 25b of each damper part 25 are hard to stick to the bottom plate part upper surface 13a and the output plate lower surface 15a, and the wear thereof is not promoted. Further, since the projections 24 and 28 do not wear, the wear of the dampers 25 is not promoted for a long period of time. As a result, the life of the rubber damper 14 can be made longer than before.
[0038]
(2) In addition, in the present embodiment, the protrusion 24 is provided on the bottom plate upper surface 13a, and the protrusion is provided on the output plate lower surface 15a. Therefore, both side surfaces 25b of each damper part 25 are hard to stick to the bottom plate part upper surface 13a and the output plate lower surface 15a, and the wear thereof is not promoted.
[0039]
(3) In addition, in the present embodiment, each protruding ridge portion 24, 28 continuously supports each damper portion 25 along the circumference of a circle centered on the rotation axis. Therefore, it is difficult for the side surface 25b of each damper portion 25 to stick to each surface 13a, 15a over the entire circumference in the circumferential direction with respect to the rotation axis, and the wear thereof is not more reliably promoted.
[0040]
(4) In addition, in the present embodiment, the protrusions 24 formed on the bottom plate upper surface 13a so as to extend along the circumference of the circle about the rotation axis are arranged along the circumference of the circle having a larger diameter. A projection 28 is formed on the lower surface 15a of the output plate so as to extend. Therefore, since the outer peripheral portion of each damper portion 25 is pressed against the upper surface 13a of the bottom plate portion, the urging force in the rotation axis direction based on the elastic deformation of each damper portion 25 is mainly applied to the worm wheel 13 and is hardly applied to the output plate 15. . As a result, the possibility that the E-ring 32 comes off becomes very small, and the possibility that the output shaft 16 and the output plate 15 come off can be made very small.
[0041]
(5) In addition, in the present embodiment, since the ridges 24 are formed integrally with the worm wheel 13 and the ridges 28 are formed integrally with the output plate 15, the number of parts and the number of assembling steps do not increase.
[0042]
Hereinafter, embodiments of the invention other than the above-described embodiment will be listed as other examples.
In the above embodiment, each damper portion 25 is supported along the circumference with respect to the rotation axis by the ridges 24 and 28 extending along the circumference of the circle around the rotation axis. A plurality of these may be formed along the circumference, and each of the dampers 25 may be supported along the circumference by a convex portion that supports the damper 25 at one point. Alternatively, each of the damper portions 25 may be supported along the circumference by one or more ridges extending along the circumference and supporting the respective damper portions 25 in a discontinuous state in the circumferential direction. Also in each case, each damper portion 25 is hardly stuck to each surface 13a, 15a in the entire circumferential direction, and its wear is not promoted.
[0043]
In the above embodiment, the ridges 24 and 28 are formed on the bottom plate upper surface 13a and the output plate lower surface 15a respectively along one circumference. However, as shown in FIG. 6, for example, two circles having different diameters are formed. Projecting portions 24a, 24b, 28a, 28b may be respectively formed along the circumference of. In this case, since both side surfaces 25b of each damper portion 25 are less likely to stick to the respective surfaces 13a, 15a over the entire circumferential direction, the wear thereof can be more reliably prevented from being promoted.
[0044]
In the above-described embodiment, each of the ridges 24 and 28 is formed so as to extend in the circumferential direction along the circumference of a circle having the rotation axis as the center axis, but as shown in FIGS. 7 (a) and 7 (b). Alternatively, the ridges 24c and 28c may be formed in a plurality of spirals and extend in both the circumferential direction and the radial direction. In this case as well, both side surfaces 25b of each damper portion 25 can be made hard to stick to each surface 13a, 15a, and the wear thereof can be prevented from being promoted.
[0045]
In the above embodiment, each damper portion 25 is supported along the circumference by the ridges 24 and 28 extending along the circumference of the circle around the rotation axis. These may not be arranged on the same circumference, and each damper part 25 may be supported by a plurality of convex parts that support each damper part 25 at points. Also in this case, it is possible to prevent the respective damper portions 25 from sticking to the respective surfaces 13a and 15a, so that the wear thereof is not promoted.
[0046]
In the above embodiment, the ridges 24 and 28 are provided on the bottom plate upper surface 13a and the output plate lower surface 15a, respectively. However, the ridges 24 and 28 are provided on only one of the two surfaces 13a and 15a, and the ridges 24 and 28 are not provided. The side face 25b of each damper section 25 may be provided with a projection 58b described in the prior art. Also in this case, the life of the rubber damper 14 can be made longer than before.
[0047]
In the above-described embodiment, the ridges 24 and 28 are provided integrally with the worm wheel 13 and the output plate 15, respectively. However, the ridges 24 and 28 are formed separately, and the worm wheel 13 and the output plate 15 are formed. May be assembled by means such as adhesion.
[0048]
In the above embodiment, the present invention is applied to the transmission structure of the rotational driving force in the motor device 1 of the power window device for a vehicle, but may be applied to a motor device such as a power door opening / closing device and a power roof opening / closing device for a vehicle.
[0049]
Hereinafter, technical ideas grasped from each of the above embodiments will be described together with their effects.
· Before Symbol convex portions, a motor unit which is formed integrally with the supporting surface. According to such a configuration, the number of components and the number of assembly steps do not increase.
[0050]
· Before Symbol convex portion, the transfer structure of the rotary driving force respectively provided on the respective support surfaces of the input side rotating member and the output side rotating body. According to such a configuration, wear from both sides of the rubber body is not promoted.
[0051]
· Before Symbol convex portion, the transfer structure of the rotary driving force along the circumference of a circle centered on the axis of rotation is formed so as to support the rubber body. According to such a configuration, wear of the rubber body is not more reliably promoted.
[0052]
- the convex portion with respect to that formed in the support surface of the entering force side rotating body, the convex portion formed on the supporting surface of the output rotary bodies, along the circumference of the large circle of more diameter A rotational driving force transmission structure formed to support the rubber body. According to such a configuration, it is difficult to apply a force in the rotation axis direction to the output rotating body.
[0053]
· Before Symbol convex portion, the transfer structure of the rotary drive force which is formed integrally with the supporting surface. According to such a configuration, the number of components and the number of assembly steps do not increase.
[0054]
【The invention's effect】
According to the invention described in the claims, since the wear of the rubber member for buffering the rotational driving force transmitted is not promoted for a long period of time, it is possible to further prolong the life of the rubber body.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a motor device according to an embodiment.
FIG. 2 is a plan view of a worm wheel.
FIG. 3 is a plan view of an output plate.
FIG. 4 is a longitudinal sectional view of a worm wheel, a rubber damper, and an output plate.
FIG. 5 is a vertical sectional view of a main part showing a damper part in an operating state.
FIG. 6 is a vertical sectional view of a main part showing a damper part in an operating state according to another embodiment.
7A is a plan view of a worm wheel having a convex portion according to another embodiment, and FIG. 7B is a plan view of an output plate.
FIG. 8 is an exploded perspective view showing a conventional motor device.
FIG. 9 is a schematic vertical sectional view of a worm wheel, a rubber damper, and an output plate.
FIG. 10 is a longitudinal sectional view showing a damper unit in an operating state.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Motor device, 12 ... Motor, 13 ... Warm wheel as an input side rotating body, 13a ... Bottom plate upper surface as a support surface, 14 ... Rubber damper as a rubber body, 15 ... Output plate as an output side rotating body, 15a ... The lower surface of the output plate as a support surface, 24. A ridge as a convex, and 28. A ridge as a convex.

Claims (4)

回転駆動される入力側回転体(13)に対して出力側回転体(15)を同一回転軸線上に配置し、該入力側回転体(13)及び出力側回転体(15)の各支持面(13a,15a)によって前記回転軸線方向に支持されたゴム体(14)を介して該入力側回転体(13)から該出力側回転体(15)に回転駆動力を伝達する回転駆動力の伝達構造において、
前記入力側回転体(13)及び出力側回転体(15)の支持面(13a,15a)には、前記ゴム体(14)を支持する凸状部(24,28)が設けられ
前記入力側回転体(13)の支持面(13a)に形成された前記凸状部(24)に対し、前記出力側回転体(15)の支持面(15a)に形成された前記凸状部(28)は、より径の大きな円の円周に沿って前記ゴム体(14)を支持するように形成されている回転駆動力の伝達構造。
The output-side rotator (15) is arranged on the same rotation axis with respect to the input-side rotator (13) that is driven to rotate, and each support surface of the input-side rotator (13) and the output-side rotator (15) is provided. (13a, 15a) a rotational driving force for transmitting a rotational driving force from the input-side rotator (13) to the output-side rotator (15) via the rubber body (14) supported in the rotation axis direction. In the transmission structure,
On each of the support surfaces (13a, 15a) of the input-side rotating body (13) and the output-side rotating body (15), there are provided convex portions (24, 28) for supporting the rubber body (14) ,
In contrast to the convex portion (24) formed on the support surface (13a) of the input-side rotator (13), the convex portion formed on the support surface (15a) of the output-side rotator (15). (28) A rotational driving force transmission structure formed to support the rubber body (14) along the circumference of a larger diameter circle .
前記凸状部(24,28)は、前記回転軸線を中心とする円の円周に沿って前記ゴム体(14)を支持するように形成されている請求項1に記載の回転駆動力の伝達構造 The rotational driving force according to claim 1, wherein the convex portion (24, 28) is formed to support the rubber body (14) along a circumference of a circle centered on the rotation axis. Transmission structure . モータ(10)と、
前記モータ(10)によって回転駆動される入力側回転体(13)と、
前記入力側回転体(13)と同一回転軸線上に配置された出力側回転体(15と、
前記入力側回転体(13)及び出力側回転体(15)の各支持面(13a,15a)によって前記回転軸線方向に支持され、該入力側回転体(13)から出力側回転体(15)に回転駆動力を伝達するゴム体(14)と
を備えたモータ装置において、
前記入力側回転体(13)及び出力側回転体(15)の各支持面(13a,15a)には、前記ゴム体(14)を支持する凸状部(24,28)が設けられ、
前記入力側回転体(13)の支持面(13a)に形成された前記凸状部(24)に対し、前記出力側回転体(15)の支持面(15a)に形成された前記凸状部(28)は、より径の大きな円の円周に沿って前記ゴム体(14)を支持するように形成されているモータ装置。
A motor (10);
An input-side rotating body (13) rotationally driven by the motor (10);
An output-side rotator (15, which is arranged on the same rotation axis as the input-side rotator (13);
The input-side rotator (13) and the output-side rotator (15) are supported in the rotation axis direction by the support surfaces (13a, 15a) of the output-side rotator (15). A rubber body (14) that transmits rotational driving force to
In the motor device provided with
On each of the support surfaces (13a, 15a) of the input-side rotating body (13) and the output-side rotating body (15), there are provided convex portions (24, 28) for supporting the rubber body (14),
In contrast to the convex portion (24) formed on the support surface (13a) of the input-side rotator (13), the convex portion formed on the support surface (15a) of the output-side rotator (15). (28) A motor device formed to support the rubber body (14) along the circumference of a larger diameter circle .
前記凸状部(24,28)は、前記回転軸線を中心とする円の円周に沿って前記ゴム体(14)を支持するように形成されている請求項3に記載のモータ装置。The convex portions (24, 28), the motor apparatus according to Motomeko 3 along the circumference of the circle that is formed so as to support the rubber body (14) around the axis of rotation.
JP2000086757A 2000-03-27 2000-03-27 Transmission structure of rotational driving force and motor device Expired - Lifetime JP3561205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000086757A JP3561205B2 (en) 2000-03-27 2000-03-27 Transmission structure of rotational driving force and motor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000086757A JP3561205B2 (en) 2000-03-27 2000-03-27 Transmission structure of rotational driving force and motor device

Publications (2)

Publication Number Publication Date
JP2001271845A JP2001271845A (en) 2001-10-05
JP3561205B2 true JP3561205B2 (en) 2004-09-02

Family

ID=18602871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000086757A Expired - Lifetime JP3561205B2 (en) 2000-03-27 2000-03-27 Transmission structure of rotational driving force and motor device

Country Status (1)

Country Link
JP (1) JP3561205B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272018A (en) * 2008-05-09 2009-11-19 Fujitsu Ten Ltd Device for mounting electronic device
KR101256990B1 (en) 2011-05-25 2013-04-26 주식회사 광진 Door checker for vehicle
JP5545454B2 (en) 2012-02-17 2014-07-09 コニカミノルタ株式会社 Rotating damper and image forming apparatus
JP6095464B2 (en) * 2013-04-24 2017-03-15 株式会社Okiデータ・インフォテック Image forming apparatus
JP6463905B2 (en) * 2014-05-29 2019-02-06 川崎重工業株式会社 Clutch damper structure

Also Published As

Publication number Publication date
JP2001271845A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
US6591707B2 (en) Geared motor having worm wheel drivingly connected to output shaft
JP2005329757A (en) Motor-driven wheel
CN102713325B (en) Constant velocity joint torsional damper
GB2249371A (en) Torsionally-resilient damper for motor with worm gear
JP3887416B2 (en) Dump flywheel, especially dump flywheel for automobile
JP3561205B2 (en) Transmission structure of rotational driving force and motor device
CN1951719A (en) Hinge mounting for an adjustment device of a motor vehicle seat
WO2006022351A1 (en) Universal joint
JP2000002260A (en) Shaft coupling with damper
JPH0642588A (en) Tortion damper for automobile
JP2981468B2 (en) Clutch disc for motor vehicle friction clutch
KR101509794B1 (en) Noise Reducing Structure for Motor Driven Power Steering
JPH05106687A (en) Double shock-absorption type flywheel for automobile
JP3731236B2 (en) Torsion damper
JP4294424B2 (en) Rotation driving force transmission structure and motor device
JP3783922B2 (en) Motor equipment
JPH02283510A (en) Torsion damper for automobile provided with double flywheel
JP2005226768A (en) Rotational driving force transmission mechanism and motor apparatus
JPH0522858U (en) Drive force transmission mechanism
JP2605317Y2 (en) Torque transmission device for motor with worm gear
JP2012127506A (en) Rotational driving force transmission structure and motor device
JPS6267330A (en) Driven plate for clutch
JPH1182630A (en) Torque transmitting device
JPH0732987Y2 (en) Elastic coupling
JPH1130291A (en) Damper gear and bearing locking method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3561205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term