JP3560749B2 - 画像出力装置及び画像出力のための信号処理方法 - Google Patents
画像出力装置及び画像出力のための信号処理方法 Download PDFInfo
- Publication number
- JP3560749B2 JP3560749B2 JP30624096A JP30624096A JP3560749B2 JP 3560749 B2 JP3560749 B2 JP 3560749B2 JP 30624096 A JP30624096 A JP 30624096A JP 30624096 A JP30624096 A JP 30624096A JP 3560749 B2 JP3560749 B2 JP 3560749B2
- Authority
- JP
- Japan
- Prior art keywords
- pixel
- contour
- outline
- pixels
- interest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Facsimile Image Signal Circuits (AREA)
- Editing Of Facsimile Originals (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Description
【発明の属する技術分野】
本発明は、ビットマップデータに対してスムージング(平滑化)処理あるいは画素密度変換処理が施された画像を出力する画像出力手段及び画像出力のためのデータ処理方法に関する。
【0002】
【従来の技術】
プリンタやCRT等の画像出力装置は小さい画点(画素)の集合で画像を形成する。画素は通常格子マトリクス上の固定位置にのみ出力が可能であるため、格子間隔以下の精度に画像を表現できない。例えば、図23に示すような垂直に近い斜線20を出力した場合、ジャギ(ジャグ―jag)と呼ばれるギザギザのノイズ15が現れる。この格子間隔D30の逆数は解像度と呼ばれ、画像表現力の1つの尺度として一般に用いられている。
【0003】
解像度を高めればジャギを減少させることができるが、扱う画素10の数が増え、データ量が大きくなるためコストが高くなり、記録速度が遅くなるといった問題が生じる。
【0004】
解像度を高くせずにジャギを小さくする方法として、スムージング(平滑化)と呼ばれる技術が用いられている。これは、図24に示すように、大きさや位置を変調した画素40を出力して輪郭を滑らかにする技術である。しかし、画素データを処理するコストや時間の制約から画像出力装置内におけるデータは各々の画素につき2値ビットマップデータにより扱われ、多値ビットマップデータ等の画素変調情報を有していない場合が多い。そこで、スムージングを行なう場合、2値ビットマップデータから多値画素変調データであるスムージング信号を生成する必要がある。
【0005】
上記スムージング信号を生成する一般的な方法としては、変調すべき注目画素を含む近傍の2値ビットマップデータパターンから生成する方法がある。文字や線画等の画像はその輪郭が滑らかに連続しているという性質を一般的に有しているため、ジャギを減少させるための画素変調データと近傍パターンとの間には相関がある。この画像の性質を利用し、変調信号を生成する。
【0006】
近傍2値ビットマップデータパターン惰報の把握及び注目画素の画素変調データを求める従来の方法としてテンプレートマッチングによる方法が広く用いられている(特開平2−119966号公報参照)。この方法は2値テンプレートパターンと2値原画像の注目画素を含むその近傍2値テンプレートパターンとのマッチングをとることにより近傍パターン情報を把握し、さらに各テンプレートの出力として、スムージング信号をあらかじめ与えておくものである。
【0007】
また、特開平7−137339号公報には、ビットマップ画像からアウトライン情報を求めて強度変調信号を求める方法が開示されているが、具体的なアウトライン情報を求める方法が示されていないために実用的でない。
【0008】
また、画像のディジタル化と共に様々なビットマップ形式の画像データが画像出力装置に送られ、出力されるケースが増えてきている。しかし、それらの画像データの密度は画像出力装置が有する解像度とは異なる場合がある。このように異なる解像度の画像を画像出力装置の解像度のまま出力した場合、出力される画像サイズが本来の画像サイズとは異なってしまう。例えば、200dpi(dot per inch−1インチあたりの画素数)の解像度を有する画像を、そのまま600dpiの解像度を有するプリンタによって出力すると、画像サイズが1/3になる。これを解消する方法の一つに解像度変換がある。具体的には、原画像の解像度より画像出力装置の解像度が高い場合、原画像の各画素サイズを拡大し、低い場合は間引きする。しかし、単純な水増し処理による拡大を行なうとジャギがそのまま拡大され、一層目立つようになる。そこで単純に拡大せずに上述したようなテンプレートマッチングを用いて輪郭をスムージングしながら拡大する技術が用いられている。
【0009】
【発明が解決しようとする課題】
上述したテンプレートマッチングパターンによるスムージング変調信号生成方法や解像度変換方法による従来の画像出力のためのデータ処理方法は、変調信号や解像度を変換できるパターンがあらかじめ設計者が用意したテンプレートの数に限定されるという間題がある。そのため、任意のパターンや画像の解像度に対応できず、画質が劣化したり、それらをカバーしようとしてテンプレート数が多くなりコストアップにつながっていた。一方、アウトライン情報を求める方法も処理が複雑であり、短時間で処理するのは困難であった。
【0010】
本発明は、以上のような問題に鑑みてなされたものであり、任意の2値画像をあらゆる解像度や多値数のスムージングデータに変換可能で、画像を低コストで、しかも短時間で高画質化することができる、画像出力装置及び画像出力のための信号処理方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するため、請求項1に係る発明は、画像出力装置が、画像データから輪郭画素を抽出する輪郭抽出手段と、前記輪郭画素の各位置に基づいてアウトラインを推測するアウトライン推測手段と、注目画素と前記アウトラインとの相対的な位置関係に基づいて前記画像データの注目画素に対するスムージング信号を生成するスムージング信号生成手段と、を備えると共に、前記輪郭抽出手段は、前記注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出するする追跡手段より構成され、前記スムージング信号生成手段で用いられる前記相対的な位置関係は、前記注目画素から前記アウトラインへの距離と前記注目画素から前記アウトラインへの垂線の傾き角度との少なくとも1つを含み、かつ、前記スムージング信号の大きさと方向は、前記距離および前記傾き角度の少なくとも1つに基づいて決定されることを特徴とする。
【0012】
また、請求項2に係る画像出力装置は、画像データから輪郭画素を抽出する輪郭抽出手段と、前記輪郭画素の各位置に基づいてアウトラインを推測するアウトライン推測手段と、前記画像データにおける注目画素を高解像度画素に変換しかつ前記アウトラインと各高解像度画素との相対的な位置関係に基づいて高解像度注目画素に関する信号を生成する画素密度変換手段と、を備えると共に、前記輪郭抽出手段は、前記注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出する追跡手段より構成され、前記画素密度変換手段で用いられる前記相対的な位置関係は、前記高解像度注目画素から前記アウトラインへの距離と前記高解像度注目画素から前記アウトラインへの垂線の傾き角度との少なくとも1つを含み、かつ、前記高解像度注目画素に関する信号は、前記距離および前記傾き角度の少なくとも1つに基づいて全ての高解像度注目画素から選択されて生成されることを特徴とする。
【0013】
請求項3に係る画像出力装置は、複数の画素パターンと各画素パターンの輪郭画素座標とを記憶し、前記複数の画素パターンを画像データ中の注目画素を含む近傍画素パターンと比較し、この近傍画素パターンに適合する画素パターンの輪郭画素座標を出力する輪郭抽出手段と、前記輪郭画素座標の位置に基づいてアウトラインを推測するアウトライン推測手段と、前記注目画素と前記アウトラインとの相対的な位置関係に基づいて前記注目画素に対するスムージング信号を生成するスムージング信号生成手段と、を備え、前記輪郭抽出手段は、注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出する追跡手段より構成されることを特徴とする。
【0014】
請求項4に係る画像出力装置は、複数の画素パターンと各画素パターンの輪郭画素座標とを記憶し、前記複数の画素パターンを画像データ内の注目画素を含む近傍画素パターンと比較し、この近傍画素パターンに適合する画素パターンの輪郭画素座標を出力する輪郭抽出手段と、前記輪郭画素座標の位置に基づいてアウトラインを推測するアウトライン推測手段と、画像データ内の注目画素を高解像度注目画素に変換すると共に、前記アウトラインと各高解像度注目画素との相対的な位置関係に基づいて高解像度注目画素に対する信号を生成する画素密度変換手段と、を備え、前記輪郭抽出手段は、前記注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出する追跡手段より構成されることを特徴とする。
【0015】
請求項5に係る画像出力装置は、請求項1ないし請求項4の何れかに記載の画像出力装置において、前記アウトラインは、Bスプライン曲線を近似した折れ線であることを特徴とする。
【0016】
請求項6に係る画像出力のためのデータ処理方法は、注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび/または左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出するステップと、前記輪郭の各位置に基づいてアウトラインを抽出するステップと、前記注目画素から前記アウトラインへの距離と前記注目画素から前記アウトラインへの垂線の傾き角度との少なくとも1つを含み、かつ、前記スムージング信号の大きさと方向とは、前記距離および前記傾き角度の少なくとも1つに基づいて決定される、前記注目画素と前記アウトラインとの相対的な位置関係、に基づいて前記画像データの注目画素に対するスムージング信号を生成するステップと、を備えることを特徴とする。
【0017】
請求項7に係る画像出力のためのデータ処理方法は、注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出するステップと、前記輪郭の各位置に基づいてアウトラインを抽出するステップと、前記画像データにおける注目画素を高解像度画素に変換し、かつ、前記注目画素から前記アウトラインへの距離と前記注目画素から前記アウトラインへの垂線の傾き角度との少なくとも1つを含む前記アウトラインと各高解像度画素との相対的な位置関係に基づいて、前記距離および前記傾き角度の少なくとも1つに基づいて全ての高解像度注目画素から選択されて生成される高解像度注目画素に関する信号を生成するステップと、を備えることを特徴とする。
【0018】
請求項8に係る画像出力のためのデータ処理方法は、複数の画素パターンと各々の画素パターンの輪郭画素座標とを記憶するステップと、前記複数の画素パターンを画像データ中の前記注目画素を含む近傍画素パターンと比較するステップと、前記近傍画素パターンに適合する画素パターンの輪郭画素座標を出力するステップと、前記輪郭画素座標の位置に基づいて前記注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出することによりアウトラインを推測するステップと、前記注目画素と前記アウトラインとの相対的な位置関係に基づいて前記注目画素に対するスムージング信号を生成するステップと、を備えることを特徴とする。
【0019】
請求項9に係る画像出力のためのデータ処理方法は、複数の画素パターンと各々の画素パターンの輪郭画素座標とを記憶するステップと、前記複数の画素パターンを画像データ内の注目画素を含む近傍画素パターンと比較するステップと、 前記近傍画素パターンに適合する画素パターンの輪郭画素座標を出力するステップと、前記輪郭画素座標の位置に基づいて前記注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出することによりアウトラインを推測するステップと、画像データ内の注目画素を高解像度注目画素に変換するステップと、前記アウトラインと各高解像度注目画素との相対的な位置関係に基づいて高解像度注目画素に対する信号を生成するステップと、を備えることを特徴とする。
【0020】
請求項10に係る画像出力のためのデータ処理方法は、請求項6ないし請求項9の何れかに記載の画像出力のためのデータ処理方法において、前記アウトラインが、Bスプライン曲線を近似した折れ線であることを特徴とする。
【0021】
上述のように構成することにより、固定パターンであるテンプレートを用いて近傍パターンを把握することでスムージング信号を発生するのでなく、効率の良い輪郭追跡・抽出方法により近傍パターンを把握し、輪郭情報の簡単な演算によりスムージング信号もしくは解像度変換を行なうことにより、あらゆる原画像パターンや解像度に対応でき、ジャギの少ないスムージングもしくは解像度変換を行なうことができる。
【0022】
【発明の実施の形態】
以下、本発明に係る画像出力装置及び画像出力のための信号処埋方法の好適な実施の形態について、図面に従い詳細に説明する。図2は、本発明の第1の実施の形態に係る画像出力装置の構成を示している。ここでは、プリンタを例にして説明するが、本発明はプリンタ以外のディジタル複写機やファクシミリ等の画像記録装置やディスプレイなどの画像表示装置にも適用可能なものである。本明細書においては、これらの画像記録装置及び画像表示装置を総括する概念として画像出力装置を定義して用いるものとする。
【0023】
図2に示すように、本発明の第1の実施の形態に係る画像出力装置100は、画像データ作成部200、ページメモリ210、スムージング処理部300及び画像出力部500を有する。画像データ作成部200はホスト50から文字コード・図形コードで構成される画像データ102を受け取り、ビットマップ形式の展開画像データ202に変換する。展開画像データ202は、ページメモリ210で一時蓄積される。画像データ102がスキャナやディジタルカメラで読み込んだ画像のような、すでにビットマップ形式になっている場合は画像データ102が展開画像データ202としてそのままぺージメモリ210へ送られる。
【0024】
すべての画像データ102が、展開画像データ202へと変換され、ぺージメモリ210へ送られると、ぺージメモリ210の内容がぺージの隅から順にシリアルビットマップデータ212として読み出され、スムージング処理部300へ送られる。スムージング処理部300において、シリアルビットマップデータ212はスムージング信号302へと変換され、画像出力部500に送られる。画像出力部500はスムージング信号302を出力画像502としてイメージ化して出力する。
【0025】
図1は、図2におけるスムージング処理部300の詳細な構成を示している。図1においてスムージング処理部300はウィンドウ形成部310、輪郭抽出部330、スムージング信号生成部390を備えている。図1及び図3を用いてスムージング処理部300における信号処理の様子を視覚的に説明する。
【0026】
シリアルビットマップデータ212はウィンドウ形成部310において暫定的に記憶(バッファ)され、注目画素214を中心とするM×M画素のウィンドウ216(図3ではM=7)を形成する。シリアルビットマップデータ212がクロックにのって1画素ずつ送られてくるごとに、ウィンドウ216は1画素分右へシフトし、それに伴いウィンドウ216の中心である注目画素214も右隣の画素215へシフトする。1つのライン上を右端まで移動し終えると、ウィンドウ216は1画素分下のライン上の移動を開始する。ウィンドウ216内のM×M画素の部分ビットマップ信号320は、輪郭抽出部330に送られる。輪郭抽出部330では、注目画素214付近の最大M点の輪郭画素(P1〜PM)を抽出し、その座標である輪郭画素座標380{(x1,y1)〜(xM,yM)}を求め、スムージング信号生成部390に送る。スムージング信号生成部390は輪郭画素座標380からアウトライン326を推測し,そのアウトライン惰報から注目画素214のスムージング信号302を生成し、出力する。
【0027】
図4は、図1におけるウィンドウ形成部310の詳細なハードウェア構成を示している。図4において、ウィンドウ形成部310は先入れ先出しメモリ(以下FIFO―First−in−First−out―という。)306と、M個のシフトレジスタ308とを有する。FIFO306はMライン分のシリアルビットマップデータ212を暫定的に記憶(バッファ)する。一時記憶(バッファ)されたM本のライン信号307は、それぞれ対応するシフトレジスタ308に送られる。各シフトレジスタ308はシリアルに送られてきた対応するライン信号307をM画素分だけ暫定的に記憶(バッファ)する。この動作により、各シフトレジスタ308の出力信号を集めると、ぺージメモリからある画素を中心としたM×M画素のウィンドウ216内の部分ビットマップ信号320を切り出したことになる。
【0028】
図5は、図1における輪郭抽出部330の構成を示すブロック図である。図5において、輪郭抽出部330はスタート輪郭画素抽出部332、右回り輪郭画素追跡部334、及び左回り輪郭画素追跡部336を有する。
【0029】
図3及び図5を用いて輪郭抽出部330における信号処理の動作を説明する。スタート輪郭画素抽出部332は、部分ビットマップ信号320の一部である注目画素214を中心とする小ウィンドウ217内のm×m画素(図3においてはm=3)の小部分ビットマップ信号322を受け取り、注目画素214の近傍にある輪郭画素(スタート輪郭画素364)を最大でもm点だけ抽出し、その座標をスタート輪郭画素座標370として出力する。ここでは説明の便宜上、各スタート輪郭画素364に、Pi{i=(M−m)/2+1,(M−m)/2+2,…(M−m)/2+m)(M=7,m=3とする図3においてはP3 〜P5 )の名称をつけることにする。iは画像の輪郭に沿って反時計回り(左回り)にたどる順に増えていく。x座標、y座標の値は1〜Mの整数値なので、1つのスタート輪郭画素364のx座標、y座標を表わすのにそれぞれL(Lは2x >Mとなる最小のx)だけの数の信号線が必要となる。したがって、スタート輪郭画素座標370全体では「m×L×2」本の信号線が必要となる。
【0030】
スタート輪郭画素364のうち番号が最も小さい画素、つまり輪郭を時計回り(右回り)に沿った方向の先端にある画素(図3においてはP3 )のスタート輪郭画素座標370は第1右回り起点画素座標362として右回り輪郭画素追跡部334に送られる。同様に番号が最も大きいスタート輪郭画素364(図3においてはP5 )のスタート輪郭画素座標370は第1左回り起点画素座標363として左回り輪郭画素追跡部336に送られる。
【0031】
右回り輪郭画素追跡部334は部分ビットマップ信号320を入力として受け取り、第1右回り起点画素座標362を起点に、画像の輪郭に沿って右回りに、最高(M−m)/2点の右回り輪郭画素365を追跡する。ここでも便宜上スタート輪郭画素364と同様に右回り輪郭画素365にPi{i=1,2,…,(M−m)/2}の名称をつけ(M=7,m=3とする図3においては、P1 〜P2 )、画像の輪郭を右回りに追跡する程iの番号が小さくなるものとする。そして、それぞれの右回り輪郭画素365の座標位置である右回り輪郭画素座標355(xi,yi)を出力する。右回り輪郭画素365の個数は(M−m)/2であるから上記の計算と同様に右回り輪郭画素座標355は{(M−m)/2×L×2}だけの信号線が必要になる。
【0032】
同様に左回り輪郭画素追跡部336は、部分ビットマップ信号320を入力として受け取り、第1左回り起点画素座標363を起点に、画像の輪郭に沿って左回りに、最高(M−m)/2点の左回り輪郭画素366を追跡する。ここでも、上述したのと同様に、左回り輪郭画素366にPi{i=(M−m)/2+1,(M−m)/2+2,…,M)の名称をつけ(M=7,m=3とする図3においてはP6〜P7)、画像の輪郭を左回りに追跡する程iの番号が大きくなるものとする。そして、それぞれの左回り輪郭画素363の座標位置である左回り輪郭画素座標356(xi,yi)を出力する。上記の計算と同様に左回り輪郭画素座標356は{(M−m)/2×L×2}だけの信号線が必要になる。
【0033】
図6は、図5におけるスタート輪郭画素抽出部332の構成を示す図である。スタート輪郭画素座標370の抽出は、その順序付けも含めてパターンマッチングにより行なう。7×7画素程度の大きさでパターンマッチングを行なう従来技術と異なり、注目画素周辺の小さな範囲(例えば3×3画素)で行なうため、小規模な回路でどんなパターンに対しても、もれなくマッチングが行なえるメリットがある。スタート輪郭画素抽出部332は、複数のパターンマッチング部340、パターンマッチング部340と同数の座標出力部342、複数の選択部346を有する。入力された小部分ビットマップ信号322は複数に分岐され、それぞれがパターンマッチング部340に供給される。各パターンマッチング部340は、1つのm×m画素のパターン情報を持ち、そのパターンに小部分ビットマップ信号322が一致したとき、一致信号348を出力する。各座標出力部342は、一致信号348が入力されたときに、それぞれ対応したスタート輪郭画素座標370を出力し、それ以外はハイインピーダンス信号となる。上述したように、スタート輪郭画素座標370の一部は、第1右回り起点画素座標362及び第1左回り輪郭画素座標363としてそれぞれ右回り輪郭画素追跡部334、左回り輪郭画素追跡部336に送られる。
【0034】
図7は、マッチングさせるパターンとこれに対応するスタート輪郭画素を示している。ここでは、m=3とし、注目画素214を中心とする3×3画素から1パターンが構成されている例を示すが、パターンサイズはこれに限定されない。左斜線の正方形、右斜線の正方形、白の正方形はそれぞれ黒画素、白画素、黒画素・白画素どちらでも構わない画素を示している。番号16のパターンを例にとると、この図7においては、中央の画素から見て、右上、右、下の画素が黒画素であり、左上、上、左、中央、左下の画素が白画素であり、右下の画素がどちらでも構わない画素である。
【0035】
また、黒線で囲まれたパターン対は、入力信号である小部分ビットマップ信号322によっては両方のパターンに合致する。例えば、小部分ビットマップ信号322が図8のような信号であったとすると、パターン番号35と39に合致する。選択部346はこのパターン対に対応する2つのパターンマッチング部340の出力である一致信号348を入力信号とし、この2つの信号のどちらか一方を選択し、他方をハイインピーダンスにする。白画素の多い方のパターン(図7においてパターン番号の小さい方、この場合はパターン35)の一致信号348を選択することが望ましい。
【0036】
図9に図7中のパターン番号16に対応するパターンマッチング部340の構成を示す。パターンマッチング部340は、反転部350、断線部352、ハイ(High)信号出力部353、及び9入力の論埋積部354を持つ。ここで、注目画素214を中心とするm×m画素の信号である小部分ビットマップ信号322の各信号は対応する画素が黒画素のときをハイ(High)出力とし、白画素のときをロー(Low )出力とする。マッチングするパターンで白画素にあたる信号線には反転部350が接続される。黒白どちらでも構わない画素は、断線部352によってその信号線が電気的に切断され、論埋積部354側の線がハイ(High)信号出力部353につながれ、ハイ(High)信号となり論理積部354に供給される。図9では画素1、2、4、5、7に対応する信号線に反転部350が、画素9に対応する信号線に断線部352が設けられている。最後に、これらの信号線の積が論理積部354により求められ、その結果が一致信号348として出力される。
【0037】
図10は、図6におけるに座標出力部342の詳細な横成を示すブロック図である。座標出力部342はm個(図10においてはm=3)の座標信号発生部357、358、359を有し、それぞれのパターンに対応する「L×2」ビットのスタート輪郭画素座標370を発生させる。一致信号348はゲート信号となり、一致信号348がないときはハイインピーダンス信号になる。スタート輪郭画素座標370のうちP(M−m)/2+1 座標信号発生部357(M=7,m=3である図10においてはP3 )、P(M−m)/2+m 座標信号発生部359(図10においてはP5 )の出力はそれぞれ第1右回り起点画素座標362、第1左回り起点画素座標363となる。
【0038】
図11は、図5における右回り輪郭画素追跡部334の詳細な構成を示すブロック図である。図11において、右回り輪郭画素追跡部334は、「(M−2)×(M−2)」個の輪郭抽出部371、372を有している。輪郭抽出部371及び372は図3における中ウィンドウ213内の「(M−2)×(M−2)」の画素P(u,v){(u,v=2,3,…(M−1)}のそれぞれに対応している。輪郭抽出部371は、その対応する画素がm×m画素の小ウィンドウ217内にあり、輪郭抽出部372は対応する画素が小ウィンドウ217の外にあることになる。各輪郭抽出部371、372にはその対応する画素に隣接する8つの画素の周辺画素信号374と、右回り起点画素信号369が入力される。右回り起点画素信号369は、「{(M−m)/2}−1」本の信号線からなり、それぞれが第n右回り起点画素信号{n=2,3,....,(M−m)/2}に対応している。さらに、小ウィンドウ217内のm×m画素に対応する輪郭抽出部371には第1右回り起点画素座標361も入力される。第1右回り起点画素信号361は、スタート輪郭画素抽出部332からの第1右回り起点画素座標362を座標デコーダ376によりデコードしたものである。第1右回り起点画素座標362は、m×m画素の小ウィンドウ217内の画素の座標であるから、小ウィンドウ217の外にある画素に対応する輪郭抽出部372には、第1右回り起点画素信号361は入力されない。
【0039】
輪郭抽出部371、372は{(M−m)/2}個の右回り輪郭画素座標355を出力する。それぞれが「L×2」本の信号線を有しているため、各輪郭抽出部371、372からの出力信号線の総数は最大で「((M−m)/2)×L×2」本になる。そして使宜上それぞれに、第1右回り輪郭画素座標から第{(M−m)/2}右回り輪郭画素座標と番号をつけることにする。
【0040】
各輪郭抽出部371、372に入力される右回り起点画素信号369(小ウィンドウ217内のm×m画素に対応する輪郭抽出部371の場合は第1右回り起点画素信号361も含む)の中で第n右回り起点画素信号がオンのとき、各輪郭抽出部371、372は、対応する画素に隣接する8つの画素の信号である周辺画素信号374の中から、右回り輪郭画素を一つ抽出し、その座標を第n右回り輪郭画素座標(図示されないが、右回り輪郭画素座標355の一部)として出力する。第n右回り輪郭画素座標は分岐され、一つは座標デコーダ367でデコードされ、第n+1右回り起点画素信号(図示されないが、右回り起点画素信号369の一部)となり、対応する画素の輪郭抽出部371、372に供給されることになる。
【0041】
この右回り輪郭画素座標355と右回り起点画素信号369との関係を図3及び図11を用いてさらに詳しく説明する。3点のスタート輪郭画素364のうち輪郭を時計回り(右回り)に沿った方向の先端にある画素(P3)の座標が、第1右回り起点画素座標362である。この座標信号が図11の座標デコーダ376でデコードされると、各輪郭抽出部371に接続されている第1右回り起点画素信号361のうち、画素P3に対応する輸郭抽出部371に接続されている信号線のみオンになる。そのため、P3に対応する輪郭抽出部371が追跡した画素(P2)の座標のみ、第1右回り輪郭画素座標として出力されて、他の輪郭抽出部371からの第1右回り輪郭画素座標の出力は全てハイインピーダンスとなる。
【0042】
第1右回り輪郭画素座標は2分されて、1つは座標デコーダ367でデコードされて、第2右回り起点画素信号となる。画素P2は第1右回り輪郭画素であるから、P2に対応する輪郭抽出部371(または372)に接続されている第2右回り起点画素信号のみオンとなる。そのため、P2に対応する輪郭抽出部371(または372)が追跡した画素(図3においてはP1)の座標のみ、第2右回り輪郭画素座標として出力され、他の輪郭紺出部371(または372)からの第2右回り輪郭画素座標の出力は全てハイインビーダンスとなる。
【0043】
図12に小ウィンドウ217内の画素P(u,v)に対応する輪郭抽出部371の構成を示す。上で説明したように周辺画素信号374は画素P(u,v)に接する8つの画素の信号{P(u−1,v−1),P(u+1,v−1),P(u+1,v−1),P(u−1,v),P(u+1,v),P(u−1,v+1),P(u,v+1),P(u+1,v+1)}である。この8つの周辺画素信号374は、それぞれ反転部382で反転された左隣の周辺画素信号374との論理積を論理積部384でとられる。左隣りの画素とは、図13に示すように、画素P(u,v)を中心にして反時計回りの方向に隣接する位置関係にある画素である。この論理積部384の出力は、以下に示す右回り輪郭画素の条件を満たす画素かどうかを表す。右回り輪郭画素の条件とは、
(1) 右回り起点画素に隣接する8つの画素であること、
(2) 画素が黒画素であること、
(3) 右回り起点画素からその黒画素に向かって左手に白画素があること、
の3つである。図12に示した輪郭抽出部371はこの3つの条件を満たす画素信号を出力する。
【0044】
次にセレクト部386の作用を説明する。周辺画素信号374が図13に示されるようなパターンの場合、P(u,v)を第n右回り起点画素としたとき、第n右回り輪郭画素である条件を満たす画素がP(u−1,v−1)375、P(u+1,v)378と2つある。この時は、2つの侯補のどちらかを選択する必要がある。セレクト部386は、各侯補に優先順位をつけ、その画素自身より順位が上位の信号に侯補がある場合は、その画素の座標を出力をしないように動作する。
【0045】
8本の周辺画素信号374の優先順位は、各輪郭画素抽出部371、372毎に異なり、各輪郭画素抽出部371、372に対応する画素が中ウィンドウ213内のどの位置にあるかによって決定される。中ウインドウ213の中心、つまり注目画素214に最も近い場所にある画素の優先順位が最も低く、そこをスタートとして画素P(u,v)を中心に反時計回りにいくほど順位が高くなる。その様子を図14を用いて具体的に説明する。ここでは、P(2,3)に対応する輪郭抽出部372を例にあげる。注目画素214であるP(4,4)に最も近い位置にある画素P(3,3){画素P(3,4)でも構わない}が優先順位が8と最も低くなり、反時計回りに回るにつれて順位が高くなる。
【0046】
論理積部384の出力はセレクト部386を通過した後、座標符号化部381において、対応する画素の座標値383に符号化される。座標値383は、(M−m)/2となり、それぞれ第1右回り輪郭画素ゲート部377及び第n右回り輪郭画素ゲート部379{n=2,3…,(M−m)/2}を通過して、それぞれ第1輪郭画素座標及び第n右回り輪郭画素座標{n=2,3,…,(M−m)/2}となる。これらが集まって右回り輪郭画素座標355{n=1,2,…,(M−m)/2}となる。第1右回り起点画素信号361は第1右回り輪郭画素ゲート部377のゲート信号であり、右回り起点画素信号369を構成する第n右回り起点画素信号{n=2,3,…,(M−2)/2}が、第n右回り輪郭画素ゲート部379のゲート信号である。
【0047】
小ウィンドウ217内のm×m画素以外の画素に対応する輪郭抽出部372の場合、第1右回り起点画素信号361と第1右回り輪郭画素ゲート部377を有していない。左回り輪郭画素追跡部336も、同様なアルゴリズム及び回路構成を用いて左回り輪郭画素366を追跡し、それらの座標である左回り輪郭画素座標356を出力する。この場合、時計回りと反時計回りが逆になる。
【0048】
図15はスムージング信号生成部390における処理を示すフローチャートであり、図16はその処理内容を視覚的に説明する図である。まず、媒介変数tを初期化する(ステップST1)。次に、媒介変数tをインクリメント(ステップST2)させながら、各媒介変数tに対する点P{ x(t) ,y(t)}を求める(ステップST3)。x(t) ,y(t) はそれぞれ、
である。ここで、Bi−M (t) は公知のBスプライン関数であり、
の関係がある。Bスプライン関数はサンプル点(この場合輪郭画素座標380)から連続かつ視覚的にスムーズなアウトラインを生成するので効果的である。続いて注目画素214をP0(x0,y0)とすると、このP0と上記ステップST3により求めた各媒介変数tに対する点P{x(t),y(t) }の中で、t<tmax の範囲内で最も距離が近くなる点p{x(T) ,y(T) }{=p(t=T)}501とその距離dmin を求める(ステップST4,ST5及びST6)。
【0049】
図16から分かるようにp(t=T)は略、p0からアウトライン326への垂線の足である。さらに、垂線の傾きθも
θ=(y(T) −y0)/(x(T) −x0)
で求めることができる(ステップST7)。
【0050】
最後に上で求めたdmin とθより注目画素のスムージング信号を求める(ステップST8)。距離dmin から画素の濃度(パルス幅)を求めることができ、傾きθより、パルスの位相(例えば画素の右側にパルスを記録するか、左側に記録するか、中央に記録するか)を決定することができる。
【0051】
Bi,M(t) は媒介変数tについての高次式であるので、スムージング信号生成部390での処理はソフトウェアによる処理が適しているが、高速性を重視すればハードウェアにより構成することが必要となる。図17にハードウェア化を行なった場合の、本発明の第2の実施の形態に係る画像出力装置におけるスムージング信号生成部390の構成を示す。このスムージング信号生成部390は、「M×S×2」個の重み付け係数乗算部392{S=(t2−tl)/dt;t1、t2は媒介変数tの動く範囲のそれぞれ最大値、最小値であり、dtは媒介変数tの動くステップ幅である。)、S×2個の加算部393、S個の距離演算部394、距離比較部395、セレクト部396、傾き演算部397、スムージング信号演算部398を有する。
【0052】
各重み付け係数乗算部392は各入力xi,(i=1,2,...,M)に対して、Bi.− M (t) *xi (i=1,2,...,S)の、もしくは入力がyi (i=1,2,...,M)に対して、Bi.− M (t) *yi (i=1,2,...,S)の乗算を行なう乗算部である。xi ,yi は各Lビット(M=7の場合はL=3)程度で表わせるので、比較的小さいLUT規模で済む。各重み付け係数乗算部392の出力が各ti 毎にx座標、y座標別に加算部393において加算され、
が求められる(図15におけるステップST3に対応する)。x(tj)401、y(tj)402は2つに分岐され、一方は距離演算部394に入力される。距離演算部394はx(tj) 401、y(tj) 402から各tj に対する距離dj 403を求める。距離比較部395は各距離dj403の中から距離djが最小になるtj =Tのときのdmin 404を選択して、スムージング信号演算部398に送る(図15におけるステップST4乃至ステップST6に対応する)。加算部393から出力されたx(tj)401、y(tj)402のもう一方はセレクト部396に通される。セレクト部396は距離比較部395の比較結果405からx(T)406、y(T)407を選択し、それらを傾き演算部397へと供給する。傾き演算部397はx(T)406、y(T)407を入力し、傾きθ408を出力する(図15でのステップST7に対応する)。傾きθ408はスムージング信号演算部398に送られる。このスムージング信号演算部398は入力されたdmin 404と傾きθ408からスムージング信号302を生成する(図15におけるステップST8に対応する)。
【0053】
以上の説明においては、(1)式を用いて輪郭座標点からスプライン曲線を用いてアウトライン情報dmin とθを求めたが、回路規模に制約がある場合には、この発明の第2の実施の形態としてBスプライン関数のBi,M(t)を
と媒介変数tに関する1次式により近似することによって、重み付け係数乗算部392や加算部393を用いることなく簡単な演算回路によりdmin 404と、傾きθ408を求めることができ、回路規模を削減できる。この場合、アウトラインは曲線でなく、アウトラインを近似した折れ線になる。
【0054】
以上は2値ビットマップ画像をパルス幅変調など多値信号を含んで多値ビットマップ画像に変換する例である。しかし上述の処理は2値低解像度ビットマップ画像から2値高解像度ビットマップ画像への変換にも応用可能である。
【0055】
図18は、解像度を4倍に変換する例としての第3の実施の形態を示す説明図である。上述したように、原画像からアウトライン情報を生成した後、高解像度の各注目画素からアウトラインへの距離を求めることができる。図16の第1の実施の形態においては解像度が同一なため、変換後の注目画素の座標は定数であったが、解像度変換の場合、変換後の画素の座標(x01,y01),(x02,y01)…というように場所により異なる。また、この場合は傾き情報は必要なくなるので、変換後の画素がアウトラインからどの程度離れているかを示すdmin 404だけで求められる。つまり、図17に示されるハードウェア構成におけるセレクト部396と、傾き演算部397とが必要なくなる。
【0056】
最後に、本発明に係る画像出力のための信号処理方法について、第4及び第5の実施の形態により説明する。この第4及び第5の実施の形態に係る信号処理方法は、それぞれ請求項9及び請求項10に係る発明に相当している。まず、第4の実施の形態に係る画像出力のための信号処理方法について、図19乃至図21を参照しながら説明する。
【0057】
第4の実施の形態に係る画像出力のための信号処埋方法は、図19に示すように、ビットマップデータにおける注目画素を中心とするウィンドウを形成するステップST11と、スタート輪郭画素を抽出するステップST12と、輪郭画素を前記スタート輪郭画素を起点として右回り及び左回りに追跡して右回り及び左回り輪郭画素を抽出するステップST13及びST14と、前記スタート輪郭画素及び右回り並びに左回り輪郭画素の各位置に基づいてアウトラインを推測するステップST15と、注目画素と前記アウトラインとの相対的な位置関係に基づいて前記注目画素に対するスムージング信号を生成するステップST16と、を備えている。
【0058】
上記ステップST11においては、注目画素を中心とする「M×N」個のウィンドウを形成し、ステップST12においては、この注目画素付近のスタート輪郭画素をm点抽出する。このステップST12の更に詳細な処理内容が図20に示されている。この処理においては、注目画素付近の画素パターンとN枚のテンプレートパターンとのマッチングを行なう。すなわち、ステップST121において、テンプレート番号iを初期化(i=1)する。次に、テンプレート番号iがN枚以下であるか否かを判断する(ステップST122)。番号iがN枚以下である場合には処理を終了する。
【0059】
ステップST122において、テンプレート番号iがN枚以下であるものと判断された場合には、ステップST123においてパターンiにマッチしているか否かの判断を行ない、マッチしているものと判断された場合には、ステップST124において、3点のスタート輪郭画素の座標P2(x2,y2),P3(x3,y3),P4(x4,y4)を出力する。ステップST123において、パターンiにマッチしていないものと判断された場合には、ステップST125に移り、テンプレート番号iを1つ繰り上げて(i=i+1)から、前記ステップST121乃至ST124の動作を繰り返すことになる。
【0060】
再び図19に戻り、ステップST13及びST14において、それぞれ右回り及び左回り輪郭画素を「(M−m)/2」点ずつ抽出する。この右回り及び左回り輪郭画素の抽出の更に詳細な処理動作が、図21に示されている。この場合、「M=5、m=3」として説明する。ステップST13においては、前記スタート輪郭画素の中で輪郭に沿って右回り方向の先端にある画素P2(x2,y2)から輪郭を追跡して1点の輪郭画素を追跡する。
【0061】
図21においては、まず、ステップST131により追跡方向i0を初期化する(i0=1)。次に、ステップST132において、追跡方向を順次に変更しながら中心画素つまり注目画素が存在する方向i0を検索する。具体的には、ステップST132である画素がウィンドウの中心であるか否かを判断し、違うものと判断された場合にはステップST133において方向i0を1つ繰り上げて(i0=i0+1)、再度同様の判断を行なう。ある画素が中心画素であるものと判定された場合には、ステップST134において方向iが「i=i0」であるものと決定される。
【0062】
ステップST134において、方向i0が決定されると、i0を出発点としてP2(x2,y2)に隣接している8つの画素が右回り輪郭画素の条件に合致するか否かを右回りに順次調べていく(ステップST135)。輪郭画素の条件と合致した場合には、ステップ136において、条件に合った画素の座標を右回り輪郭画素P1(x1,y1)として出力し、輪郭画素の条件と合致しなかった場合には、ステップST137において画素番号iを1つ繰り上げて(i=i+1)から、画素番号が隣接する8つの画素を超えているか否かを判断し(ステップST138)、8つの画素数を超えている場合には、ステップST139において再び中心画素に検索画素数を戻す。画素数iが8より小さければステップST135以降の動作を繰り返すことになる。
【0063】
左回り輪郭画素の検索も、上述した図21と同様の処理ステップにより行なわれるが、前記スタート輪郭画素の中で輪郭に沿って左回りの方向の先端にある画素P4(x4,y4)から輪郭を抽出する点と、左回りに輪郭画素に合う条件の画素を調べていく点とが異なる。
【0064】
図19に戻り、ステップST15において、ステップST12で求められたスタート輪郭画素と、ステップST13及びST14で求められた右回り輪郭画素及び左回り輪郭画素の合計M点の座標からアウトラインが推測される。これらのステップにおけるアウトラインの推測方法は、先に説明したように、Bスプライン関数の曲線若しくはこれに近似した曲線又は折れ線等が利用されており、このような利用はアウトラインの平滑化の観点より望ましい。
【0065】
図19におけるステップST16においては、上記ステップST15により求められた前記アウトラインと前記注目画素の相対的な位置関係より前記注目画素のスムージング信号を生成する。前記相対的位置関係は図16に示すように、前記注目画素から前記アウトラインへの距離やアウトラインの傾きに基づいて通常はテーブル等を用いて決定される。
【0066】
次に、請求項10の発明に相当する第5の実施の形態に係る画像出力における信号処理方法について、図22を参照しながら詳細に説明する。この第5の実施の形態に係る信号処理方法は、ビットマップデータにおける注目画素を中心とするウィンドウを形成するステップST21と、このウィンドウの中からスタート輪郭画素を抽出するステップST22と、前記スタート輪郭画素を起点として右回りに追跡して右回り輪郭画素を抽出するステップST23と、前記スタート輪郭画素を起点として左回りに追跡して左回り輪郭画素を抽出するステップST24と、前記スタート輪郭画素及び前記右回り並びに左回り輪郭画素の各位置よりアウトラインを推測するステップST25と、前記ビットマップデータにおける画素密度を変換するステップST26と、前記画素密度変換後の注目画素と前記アウトラインとの相対的な位置関係に基づいて注目画素の信号を生成するステップST27と、を備えている。
【0067】
上記第5の実施の形態に係る信号処理方法において、ステップST26及びST27以外の処理動作については、第4の実施の形態に係る信号処理方法におけるステップST11乃至ST15に相当している。ステップST26及びST27においては、図18に示すような画素密度変換後の注目画素と前記アウトラインとの相対的位置関係から画素密度変換後の注目画素信号を生成している。
【0068】
【発明の効果】
以上説明したように本発明によれば、任意の2値画像をあらゆる解像度や多値数のスムージングデータに変換可能で、画像を低コストで、しかも短時間で高画質化できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る画像出力装置の要部としてのスムージング信号処理部の構成を示すブロック図。
【図2】本発明の第1の実施の形態に係る画像出力装置の構成を示すブロック図。
【図3】本発明の第1の実施の形態における輪郭抽出を説明する図。
【図4】本発明の第1の実施の形態におけるウインドウ形成部の構成を示す図。
【図5】本発明の第1の実施の形態におけるスムージング信号生成部の構成を示すブロック図。
【図6】本発明の第1の実施の形態におけるスタート輪郭画素抽出部の横成を示すブロック図。
【図7】第1の実施の形態におけるパターンマッチングのパターン例を示す図。
【図8】図7のパターン例に当てはめる関連パターンの例を示す図。
【図9】第1の実施の形態におけるパターンマッチング部の構成例を示す図。
【図10】第1の実施の形態における座標出力部の構成例を示す図。
【図11】第1の実施の形態における右回り輪郭画素追跡部の構成例を示す図。
【図12】第1の実施の形態における輪郭抽出部の構成例を示す図。
【図13】第1の実施の形態における右回り輪郭画素の追跡を説明する図。
【図14】第1の実施の形態における優先順位を説明する図。
【図15】第1の実施の形態におけるスムージング信号生成の処理アルゴリズムを示すフローチャート。
【図16】本発明の第1の実施の形態におけるスムージング信号生成の処理を視覚的に説明する図。
【図17】本発明の第2の実施の形態に係る画像出力装置におけるスムージング信号生成部のハードウェア構成を示すブロック図。
【図18】本発明の第3の実施の形態におけるスムージング信号生成の処理を視覚的に説明する図。
【図19】本発明の第4の実施の形態に係る画像出力のための信号処理方法の各ステップを示すフローチャート。
【図20】第4の実施の形態による信号処理方法におけるスタート輪郭画素の抽出動作を示すフローチャート。
【図21】第4の実施の形態による信号処理方法における右回り及び左回り輪郭画素の抽出動作を示すフローチャート。
【図22】本発明の第5の実施の形態に係る画像出力のための信号処理方法の各ステップを示すフローチャート。
【図23】一般的なジャギノイズの発生を説明する図。
【図24】従来のジャギノイズ除去のためのスムージングを説明する図。
【符号の説明】
100 画像出力装置
200 画像データ作成部
210 ぺージメモリ
300 スムージング処理部
310 ウインドウ形成部
330 輪郭抽出部
390 スムージング信号生成部
500 画像出力部
Claims (10)
- 画像データから輪郭画素を抽出する輪郭抽出手段と、前記輪郭画素の各位置に基づいてアウトラインを推測するアウトライン推測手段と、注目画素と前記アウトラインとの相対的な位置関係に基づいて前記画像データの注目画素に対するスムージング信号を生成するスムージング信号生成手段と、を備えると共に、
前記輪郭抽出手段は、前記注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出する追跡手段より構成され、前記スムージング信号生成手段で用いられる前記相対的な位置関係は、前記注目画素から前記アウトラインへの距離と前記注目画素から前記アウトラインへの垂線の傾き角度との少なくとも1つを含み、かつ、前記スムージング信号の大きさと方向は、前記距離および前記傾き角度の少なくとも1つに基づいて決定されることを特徴とする画像出力装置。 - 画像データから輪郭画素を抽出する輪郭抽出手段と、前記輪郭画素の各位置に基づいてアウトラインを推測するアウトライン推測手段と、前記画像データにおける注目画素を高解像度画素に変換しかつ前記アウトラインと各高解像度画素との相対的な位置関係に基づいて高解像度注目画素に関する信号を生成する画素密度変換手段と、を備えると共に、
前記輪郭抽出手段は、前記注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出する追跡手段より構成され、前記画素密度変換手段で用いられる前記相対的な位置関係は、前記高解像度注目画素から前記アウトラインへの距離と前記高解像度注目画素から前記アウトラインへの垂線の傾き角度との少なくとも1つを含み、かつ、前記高解像度注目画素に関する信号は、前記距離および前記傾き角度の少なくとも1つに基づいて全ての高解像度注目画素から選択されて生成されることを特徴とする画像出力装置。 - 複数の画素パターンと各画素パターンの輪郭画素座標とを記憶し、前記複数の画素パターンを画像データ中の注目画素を含む近傍画素パターンと比較し、この近傍画素パターンに適合する画素パターンの輪郭画素座標を出力する輪郭抽出手段と、
前記輪郭画素座標の位置に基づいてアウトラインを推測するアウトライン推測手段と、
前記注目画素と前記アウトラインとの相対的な位置関係に基づいて前記注目画素に対するスムージング信号を生成するスムージング信号生成手段と、
を備え、
前記輪郭抽出手段は、前記注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出する追跡手段より構成されることを特徴とする画像出力装置。 - 複数の画素パターンと各画素パターンの輪郭画素座標とを記憶し、前記複数の画素パターンを画像データ内の注目画素を含む近傍画素パターンと比較し、この近傍画素パターンに適合する画素パターンの輪郭画素座標を出力する輪郭抽出手段と、
前記輪郭画素座標の位置に基づいてアウトラインを推測するアウトライン推測手段と、
画像データ内の注目画素を高解像度注目画素に変換すると共に、前記アウトラインと各高解像度注目画素との相対的な位置関係に基づいて高解像度注目画素に対する信号を生成する画素密度変換手段と、
を備え、
前記輪郭抽出手段は、前記注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出する追跡手段より構成されることを特徴とする画像出力装置。 - 前記アウトラインは、Bスプライン曲線を近似した折れ線であることを特徴とする請求項1ないし請求項4の何れかに記載の画像出力装置。
- 注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出するステップと、
前記輪郭の各位置に基づいてアウトラインを抽出するステップと、
前記注目画素から前記アウトラインへの距離と前記注目画素から前記アウトラインへの垂線の傾き角度との少なくとも1つを含み、かつ、前記スムージング信号の大きさと方向とは、前記距離および前記傾き角度の少なくとも1つに基づいて決定される、前記注目画素と前記アウトラインとの相対的な位置関係、に基づいて前記画像データの注目画素に対するスムージング信号を生成するステップと、
を備えることを特徴とする画像出力のためのデータ処理方法。 - 注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出するステップと、
前記輪郭の各位置に基づいてアウトラインを抽出するステップと、
前記画像データにおける注目画素を高解像度画素に変換し、かつ、前記注目画素から前記アウトラインへの距離と前記注目画素から前記アウトラインへの垂線の傾き角度との少なくとも1つを含む前記アウトラインと各高解像度画素との相対的な位置関係に基づいて、前記距離および前記傾き角度の少なくとも1つに基づいて全ての高解像度注目画素から選択されて生成される高解像度注目画素に関する信号を生成するステップと、
を備えることを特徴とする画像出力のためのデータ処理方法。 - 複数の画素パターンと各々の画素パターンの輪郭画素座標とを記憶するステップと、
前記複数の画素パターンを画像データ中の前記注目画素を含む近傍画素パターンと比較するステップと、
前記近傍画素パターンに適合する画素パターンの輪郭画素座標を出力するステップと、
前記輪郭画素座標の位置に基づいて前記注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出することによりアウトラインを推測するステップと、
前記注目画素と前記アウトラインとの相対的な位置関係に基づいて前記注目画素に対するスムージング信号を生成するステップと、
を備えることを特徴とする画像出力のためのデータ処理方法。 - 複数の画素パターンと各々の画素パターンの輪郭画素座標とを記憶するステップと、
前記複数の画素パターンを画像データ内の注目画素を含む近傍画素パターンと比較するステップと、
前記近傍画素パターンに適合する画素パターンの輪郭画素座標を出力するステップと、
前記輪郭画素座標の位置に基づいて前記注目画素を中心とするM×M画素の所定範囲の中で前記注目画素の近傍のm×m画素の小さな範囲内の輪郭画素を最大でもm個を起点として、右回りおよび左回りで輪郭を追跡して最大でもそれぞれ(M−m)/2点ずつの輪郭画素を抽出することによりアウトラインを推測するステップと、
画像データ内の注目画素を高解像度注目画素に変換するステップと、
前記アウトラインと各高解像度注目画素との相対的な位置関係に基づいて高解像度注目画素に対する信号を生成するステップと、
を備えることを特徴とする画像出力のためのデータ処理方法。 - 前記アウトラインは、Bスプライン曲線を近似した折れ線であることを特徴とする請求項6ないし請求項9の何れかに記載の画像出力のためのデータ処理方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30624096A JP3560749B2 (ja) | 1996-11-18 | 1996-11-18 | 画像出力装置及び画像出力のための信号処理方法 |
US08/971,698 US6052489A (en) | 1996-11-18 | 1997-11-17 | Image output apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30624096A JP3560749B2 (ja) | 1996-11-18 | 1996-11-18 | 画像出力装置及び画像出力のための信号処理方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10150568A JPH10150568A (ja) | 1998-06-02 |
JP3560749B2 true JP3560749B2 (ja) | 2004-09-02 |
Family
ID=17954694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30624096A Expired - Fee Related JP3560749B2 (ja) | 1996-11-18 | 1996-11-18 | 画像出力装置及び画像出力のための信号処理方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US6052489A (ja) |
JP (1) | JP3560749B2 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7016539B1 (en) * | 1998-07-13 | 2006-03-21 | Cognex Corporation | Method for fast, robust, multi-dimensional pattern recognition |
US20030115306A1 (en) * | 2001-12-19 | 2003-06-19 | Richard Hagarty | Modification of map of storage area network resources |
US6927780B2 (en) * | 2002-01-14 | 2005-08-09 | Seiko Epson Corporation | Fast text/graphics resolution improvement with chain-code table look-up |
JP4214459B2 (ja) | 2003-02-13 | 2009-01-28 | ソニー株式会社 | 信号処理装置および方法、記録媒体、並びにプログラム |
JP4144377B2 (ja) * | 2003-02-28 | 2008-09-03 | ソニー株式会社 | 画像処理装置および方法、記録媒体、並びにプログラム |
JP4392584B2 (ja) * | 2003-06-27 | 2010-01-06 | ソニー株式会社 | 信号処理装置および信号処理方法、並びにプログラムおよび記録媒体 |
US8081820B2 (en) | 2003-07-22 | 2011-12-20 | Cognex Technology And Investment Corporation | Method for partitioning a pattern into optimized sub-patterns |
US7190834B2 (en) * | 2003-07-22 | 2007-03-13 | Cognex Technology And Investment Corporation | Methods for finding and characterizing a deformed pattern in an image |
AU2003268756A1 (en) * | 2003-10-03 | 2005-04-21 | Software Cradle Co., Ltd. | Printing device and program |
US8437502B1 (en) | 2004-09-25 | 2013-05-07 | Cognex Technology And Investment Corporation | General pose refinement and tracking tool |
US7593587B1 (en) * | 2005-04-12 | 2009-09-22 | The United States Of America As Represented By The Secretary Of The Army | Spectral feature generation using high-pass filtering for scene anomaly detection |
JP4821663B2 (ja) * | 2007-03-12 | 2011-11-24 | 日本電気株式会社 | 文字ノイズ除去装置、文字ノイズ除去方法、文字ノイズ除去プログラム |
US8103085B1 (en) | 2007-09-25 | 2012-01-24 | Cognex Corporation | System and method for detecting flaws in objects using machine vision |
JP5233839B2 (ja) * | 2009-05-20 | 2013-07-10 | 株式会社リコー | 情報抽出装置、情報抽出方法、情報抽出プログラム、及び記憶媒体 |
US9679224B2 (en) | 2013-06-28 | 2017-06-13 | Cognex Corporation | Semi-supervised method for training multiple pattern recognition and registration tool models |
JP6241292B2 (ja) * | 2014-01-27 | 2017-12-06 | 株式会社リコー | 集積回路、画像処理装置および画像形成装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4847641A (en) * | 1988-08-16 | 1989-07-11 | Hewlett-Packard Company | Piece-wise print image enhancement for dot matrix printers |
US5134495A (en) * | 1990-11-07 | 1992-07-28 | Dp-Tek, Inc. | Resolution transforming raster-based imaging system |
US5815605A (en) * | 1992-07-17 | 1998-09-29 | Ricoh Company, Ltd. | Image processing system and method |
JP2967011B2 (ja) * | 1992-12-28 | 1999-10-25 | キヤノン株式会社 | 画像処理方法及び装置 |
JPH07137339A (ja) * | 1993-09-22 | 1995-05-30 | Toshiba Corp | 画像形成装置及びその方法並びにそれらを用いた電子写真記録装置 |
-
1996
- 1996-11-18 JP JP30624096A patent/JP3560749B2/ja not_active Expired - Fee Related
-
1997
- 1997-11-17 US US08/971,698 patent/US6052489A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US6052489A (en) | 2000-04-18 |
JPH10150568A (ja) | 1998-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3560749B2 (ja) | 画像出力装置及び画像出力のための信号処理方法 | |
US6185341B1 (en) | Image processing using vector data to reduce noise | |
US6757431B2 (en) | Resolution conversion for anti-aliased images using loose gray scale template matching | |
US20030179935A1 (en) | Image processing apparatus, image processing method, image processing program, and computer-readable record medium storing image processing program | |
JP3167120B2 (ja) | 画像処理装置及び方法 | |
EP0200885A2 (en) | Method and apparatus for processing image data | |
JPH07131634A (ja) | 画像処理装置 | |
JP4259949B2 (ja) | 画像作成装置、画像作成プログラムおよび記録媒体 | |
JP2006237858A (ja) | 画像処理装置、画像処理方法、その方法をコンピュータに実行させるプログラム、および記録媒体 | |
JP3952188B2 (ja) | 画像補間装置、画像補間方法および画像補間プログラム | |
JP2000194845A (ja) | 画像処理装置及びその方法、及び画像処理システム | |
JP2001283212A (ja) | ベクタ変換下地補間方法 | |
JP3624153B2 (ja) | 画像処理装置及び画像処理方法 | |
JP3814547B2 (ja) | 画像処理装置及びその方法 | |
JP3716528B2 (ja) | 画像処理装置 | |
JP3997415B2 (ja) | エッジ生成装置、エッジ生成方法およびエッジ生成プログラム | |
JP3972625B2 (ja) | 画像処理装置および画像処理方法 | |
JP3211591B2 (ja) | イメージ処理装置 | |
JP2788554B2 (ja) | 画像処理方法およびその装置 | |
JP3147246B2 (ja) | 画像処理装置及び方法 | |
JP3080937B2 (ja) | Jbigによる符号化方法およびjbigプログラムを記録した記録媒体 | |
JP4080973B2 (ja) | 画像出力装置、画像出力プログラムおよびこのプログラムが記録された記録媒体 | |
JPH10198333A (ja) | アウトライン文字描画装置 | |
JP3054299B2 (ja) | 画像処理装置及びその方法 | |
JP3190085B2 (ja) | 画像処理装置及び方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031217 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20031226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040414 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040518 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040526 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090604 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090604 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100604 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100604 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110604 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120604 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120604 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130604 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |